메뉴 건너뛰기




Volumn 34, Issue , 2016, Pages 1-5

The role of CD44 in glioblastoma multiforme

Author keywords

CD44 protein; CD44v6 antigen; Glioblastoma multiforme

Indexed keywords

ANTINEOPLASTIC AGENT; BIVATUZUMAB MERTANSINE; DOXORUBICIN; HERMES ANTIGEN; LIVER ENZYME; NANOPARTICLE; POLYGLACTIN; RO 5429083; UNCLASSIFIED DRUG; CD44 PROTEIN, HUMAN;

EID: 84994430535     PISSN: 09675868     EISSN: 15322653     Source Type: Journal    
DOI: 10.1016/j.jocn.2016.05.012     Document Type: Review
Times cited : (111)

References (71)
  • 1
    • 84934276861 scopus 로고    scopus 로고
    • Interactions between Hyaluronan and Its Receptors (CD44, RHAMM) Regulate the Activities of Inflammation and Cancer
    • [1] Misra, S., Hascall, V.C., Markwald, R.R., et al. Interactions between Hyaluronan and Its Receptors (CD44, RHAMM) Regulate the Activities of Inflammation and Cancer. Front Immunol, 6, 2015, 201.
    • (2015) Front Immunol , vol.6 , pp. 201
    • Misra, S.1    Hascall, V.C.2    Markwald, R.R.3
  • 2
    • 84962552024 scopus 로고    scopus 로고
    • Editorial: Interaction Between Hyaluronic Acid and Its Receptors (CD44, RHAMM) Regulates the Activity of Inflammation and Cancer
    • [2] Naor, D., Editorial: Interaction Between Hyaluronic Acid and Its Receptors (CD44, RHAMM) Regulates the Activity of Inflammation and Cancer. Front Immunol, 7, 2016, 39.
    • (2016) Front Immunol , vol.7 , pp. 39
    • Naor, D.1
  • 4
    • 44749091840 scopus 로고    scopus 로고
    • Involvement of CD44, a molecule with a thousand faces, in cancer dissemination
    • [4] Naor, D., Wallach-Dayan, S.B., Zahalka, M.A., et al. Involvement of CD44, a molecule with a thousand faces, in cancer dissemination. Semin Cancer Biol 18 (2008), 260–267.
    • (2008) Semin Cancer Biol , vol.18 , pp. 260-267
    • Naor, D.1    Wallach-Dayan, S.B.2    Zahalka, M.A.3
  • 5
    • 0037388204 scopus 로고    scopus 로고
    • Prospective identification of tumorigenic breast cancer cells
    • [5] Al-Hajj, M., Wicha, M.S., Benito-Hernandez, A., et al. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100 (2003), 3983–3988.
    • (2003) Proc Natl Acad Sci U S A , vol.100 , pp. 3983-3988
    • Al-Hajj, M.1    Wicha, M.S.2    Benito-Hernandez, A.3
  • 6
    • 0033964912 scopus 로고    scopus 로고
    • CD44s expression in human colon carcinomas influences growth of liver metastases
    • [6] Choi, S.H., Takahashi, K., Eto, H., et al. CD44s expression in human colon carcinomas influences growth of liver metastases. Int J Cancer 85 (2000), 523–526.
    • (2000) Int J Cancer , vol.85 , pp. 523-526
    • Choi, S.H.1    Takahashi, K.2    Eto, H.3
  • 7
    • 34547193404 scopus 로고    scopus 로고
    • Phenotypic characterization of human colorectal cancer stem cells
    • [7] Dalerba, P., Dylla, S.J., Park, I.K., et al. Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci U S A 104 (2007), 10158–10163.
    • (2007) Proc Natl Acad Sci U S A , vol.104 , pp. 10158-10163
    • Dalerba, P.1    Dylla, S.J.2    Park, I.K.3
  • 8
    • 0025825209 scopus 로고
    • A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells
    • [8] Gunthert, U., Hofmann, M., Rudy, W., et al. A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells. Cell 65 (1991), 13–24.
    • (1991) Cell , vol.65 , pp. 13-24
    • Gunthert, U.1    Hofmann, M.2    Rudy, W.3
  • 9
    • 0033887474 scopus 로고    scopus 로고
    • CD44 expression and regulation during mammary gland development and function
    • [9] Hebbard, L., Steffen, A., Zawadzki, V., et al. CD44 expression and regulation during mammary gland development and function. J Cell Sci 113 (2000), 2619–2630.
    • (2000) J Cell Sci , vol.113 , pp. 2619-2630
    • Hebbard, L.1    Steffen, A.2    Zawadzki, V.3
  • 10
    • 77949593175 scopus 로고    scopus 로고
    • CD44+ slow-cycling tumor cell expansion is triggered by cooperative actions of Wnt and prostaglandin E2 in gastric tumorigenesis
    • [10] Ishimoto, T., Oshima, H., Oshima, M., et al. CD44+ slow-cycling tumor cell expansion is triggered by cooperative actions of Wnt and prostaglandin E2 in gastric tumorigenesis. Cancer Sci 101 (2010), 673–678.
    • (2010) Cancer Sci , vol.101 , pp. 673-678
    • Ishimoto, T.1    Oshima, H.2    Oshima, M.3
  • 11
    • 80052445685 scopus 로고    scopus 로고
    • CD44v6 regulates growth of brain tumor stem cells partially through the AKT-mediated pathway
    • [11] Jijiwa, M., Demir, H., Gupta, S., et al. CD44v6 regulates growth of brain tumor stem cells partially through the AKT-mediated pathway. PLoS One, 6, 2011, e24217.
    • (2011) PLoS One , vol.6 , pp. e24217
    • Jijiwa, M.1    Demir, H.2    Gupta, S.3
  • 12
    • 0031407724 scopus 로고    scopus 로고
    • Expression of CD44 standard and CD44 variant 6 in human lung cancer
    • [12] Ochiai, S., Nakanishi, Y., Mizuno, K., et al. Expression of CD44 standard and CD44 variant 6 in human lung cancer. Nihon Kyobu Shikkan Gakkai Zasshi 35 (1997), 1179–1185.
    • (1997) Nihon Kyobu Shikkan Gakkai Zasshi , vol.35 , pp. 1179-1185
    • Ochiai, S.1    Nakanishi, Y.2    Mizuno, K.3
  • 13
    • 84940054659 scopus 로고    scopus 로고
    • Concise review: emerging role of CD44 in cancer stem cells: a promising biomarker and therapeutic target
    • [13] Yan, Y., Zuo, X., Wei, D., Concise review: emerging role of CD44 in cancer stem cells: a promising biomarker and therapeutic target. Stem Cells Transl Med 4 (2015), 1033–1043.
    • (2015) Stem Cells Transl Med , vol.4 , pp. 1033-1043
    • Yan, Y.1    Zuo, X.2    Wei, D.3
  • 14
    • 0028229539 scopus 로고
    • ERM family members as molecular linkers between the cell surface glycoprotein CD44 and actin-based cytoskeletons
    • [14] Tsukita, S., Oishi, K., Sato, N., et al. ERM family members as molecular linkers between the cell surface glycoprotein CD44 and actin-based cytoskeletons. J Cell Biol 126 (1994), 391–401.
    • (1994) J Cell Biol , vol.126 , pp. 391-401
    • Tsukita, S.1    Oishi, K.2    Sato, N.3
  • 15
    • 0035956428 scopus 로고    scopus 로고
    • Proteolytic release of CD44 intracellular domain and its role in the CD44 signaling pathway
    • [15] Okamoto, I., Kawano, Y., Murakami, D., et al. Proteolytic release of CD44 intracellular domain and its role in the CD44 signaling pathway. J Cell Biol 155 (2001), 755–762.
    • (2001) J Cell Biol , vol.155 , pp. 755-762
    • Okamoto, I.1    Kawano, Y.2    Murakami, D.3
  • 16
    • 84929598465 scopus 로고    scopus 로고
    • CD44: molecular interactions, signaling and functions in the nervous system
    • [16] Dzwonek, J., Wilczynski, G.M., CD44: molecular interactions, signaling and functions in the nervous system. Front Cell Neurosci, 9, 2015, 175.
    • (2015) Front Cell Neurosci , vol.9 , pp. 175
    • Dzwonek, J.1    Wilczynski, G.M.2
  • 17
    • 0033778387 scopus 로고    scopus 로고
    • Regulation of the cell adhesion molecule CD44 after nerve transection and direct trauma to the mouse brain
    • [17] Jones, L.L., Liu, Z., Shen, J., et al. Regulation of the cell adhesion molecule CD44 after nerve transection and direct trauma to the mouse brain. J Comp Neurol 426 (2000), 468–492.
    • (2000) J Comp Neurol , vol.426 , pp. 468-492
    • Jones, L.L.1    Liu, Z.2    Shen, J.3
  • 18
    • 15944405344 scopus 로고    scopus 로고
    • Temporal expression of osteopontin and CD44 in rat brains with experimental cryolesions
    • [18] Shin, T., Ahn, M., Kim, H., et al. Temporal expression of osteopontin and CD44 in rat brains with experimental cryolesions. Brain Res 1041 (2005), 95–101.
    • (2005) Brain Res , vol.1041 , pp. 95-101
    • Shin, T.1    Ahn, M.2    Kim, H.3
  • 19
    • 0036892932 scopus 로고    scopus 로고
    • CD44 deficiency in mice protects brain from cerebral ischemia injury
    • [19] Wang, X., Xu, L., Wang, H., et al. CD44 deficiency in mice protects brain from cerebral ischemia injury. J Neurochem 83 (2002), 1172–1179.
    • (2002) J Neurochem , vol.83 , pp. 1172-1179
    • Wang, X.1    Xu, L.2    Wang, H.3
  • 20
    • 77951599543 scopus 로고    scopus 로고
    • Targeting brain cancer: advances in the molecular pathology of malignant glioma and medulloblastoma
    • [20] Huse, J.T., Holland, E.C., Targeting brain cancer: advances in the molecular pathology of malignant glioma and medulloblastoma. Nat Rev Cancer 10 (2010), 319–331.
    • (2010) Nat Rev Cancer , vol.10 , pp. 319-331
    • Huse, J.T.1    Holland, E.C.2
  • 21
    • 0034987702 scopus 로고    scopus 로고
    • Malignant glioma: genetics and biology of a grave matter
    • [21] Maher, E.A., Furnari, F.B., Bachoo, R.M., et al. Malignant glioma: genetics and biology of a grave matter. Genes Dev 15 (2001), 1311–1333.
    • (2001) Genes Dev , vol.15 , pp. 1311-1333
    • Maher, E.A.1    Furnari, F.B.2    Bachoo, R.M.3
  • 22
    • 78649986150 scopus 로고    scopus 로고
    • TGF-beta receptor inhibitors target the CD44(high)/Id1(high) glioma-initiating cell population in human glioblastoma
    • [22] Anido, J., Saez-Borderias, A., Gonzalez-Junca, A., et al. TGF-beta receptor inhibitors target the CD44(high)/Id1(high) glioma-initiating cell population in human glioblastoma. Cancer Cell 18 (2010), 655–668.
    • (2010) Cancer Cell , vol.18 , pp. 655-668
    • Anido, J.1    Saez-Borderias, A.2    Gonzalez-Junca, A.3
  • 23
    • 0033962030 scopus 로고    scopus 로고
    • Disruption of intracerebral progression of C6 rat glioblastoma by in vivo treatment with anti-CD44 monoclonal antibody
    • [23] Breyer, R., Hussein, S., Radu, D.L., et al. Disruption of intracerebral progression of C6 rat glioblastoma by in vivo treatment with anti-CD44 monoclonal antibody. J Neurosurg 92 (2000), 140–149.
    • (2000) J Neurosurg , vol.92 , pp. 140-149
    • Breyer, R.1    Hussein, S.2    Radu, D.L.3
  • 24
    • 0029558983 scopus 로고
    • Expression of CD44 splice variants in human primary brain tumors
    • [24] Kaaijk, P., Troost, D., Morsink, F., et al. Expression of CD44 splice variants in human primary brain tumors. J Neurooncol 26 (1995), 185–190.
    • (1995) J Neurooncol , vol.26 , pp. 185-190
    • Kaaijk, P.1    Troost, D.2    Morsink, F.3
  • 25
    • 0026534890 scopus 로고
    • Differential expression of the CD44 molecule in human brain tumours
    • [25] Kuppner, M.C., Van Meir, E., Gauthier, T., et al. Differential expression of the CD44 molecule in human brain tumours. Int J Cancer 50 (1992), 572–577.
    • (1992) Int J Cancer , vol.50 , pp. 572-577
    • Kuppner, M.C.1    Van Meir, E.2    Gauthier, T.3
  • 26
    • 0028940999 scopus 로고
    • Alternative RNA splicing of the hyaluronic acid receptor CD44 in the normal human brain and in brain tumors
    • [26] Nagasaka, S., Tanabe, K.K., Bruner, J.M., et al. Alternative RNA splicing of the hyaluronic acid receptor CD44 in the normal human brain and in brain tumors. J Neurosurg 82 (1995), 858–863.
    • (1995) J Neurosurg , vol.82 , pp. 858-863
    • Nagasaka, S.1    Tanabe, K.K.2    Bruner, J.M.3
  • 27
    • 0032745859 scopus 로고    scopus 로고
    • Differential expressions of CD44 variants in tumors affecting the central nervous system
    • [27] Resnick, D.K., Resnick, N.M., Welch, W.C., et al. Differential expressions of CD44 variants in tumors affecting the central nervous system. Mol Diagn 4 (1999), 219–232.
    • (1999) Mol Diagn , vol.4 , pp. 219-232
    • Resnick, D.K.1    Resnick, N.M.2    Welch, W.C.3
  • 28
    • 77950231070 scopus 로고    scopus 로고
    • CD44 attenuates activation of the hippo signaling pathway and is a prime therapeutic target for glioblastoma
    • [28] Xu, Y., Stamenkovic, I., Yu, Q., CD44 attenuates activation of the hippo signaling pathway and is a prime therapeutic target for glioblastoma. Cancer Res 70 (2010), 2455–2464.
    • (2010) Cancer Res , vol.70 , pp. 2455-2464
    • Xu, Y.1    Stamenkovic, I.2    Yu, Q.3
  • 29
    • 0036144093 scopus 로고    scopus 로고
    • CD44 expression in human gliomas
    • [discussion 35–6]
    • [29] Ranuncolo, S.M., Ladeda, V., Specterman, S., et al. CD44 expression in human gliomas. J Surg Oncol 79 (2002), 30–35 [discussion 35–6].
    • (2002) J Surg Oncol , vol.79 , pp. 30-35
    • Ranuncolo, S.M.1    Ladeda, V.2    Specterman, S.3
  • 30
    • 77649259735 scopus 로고    scopus 로고
    • Evaluation of the prognostic value of CD44 in glioblastoma multiforme
    • [30] Wei, K.C., Huang, C.Y., Chen, P.Y., et al. Evaluation of the prognostic value of CD44 in glioblastoma multiforme. Anticancer Res 30 (2010), 253–259.
    • (2010) Anticancer Res , vol.30 , pp. 253-259
    • Wei, K.C.1    Huang, C.Y.2    Chen, P.Y.3
  • 31
    • 33644820339 scopus 로고    scopus 로고
    • Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis
    • [31] Phillips, H.S., Kharbanda, S., Chen, R., et al. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9 (2006), 157–173.
    • (2006) Cancer Cell , vol.9 , pp. 157-173
    • Phillips, H.S.1    Kharbanda, S.2    Chen, R.3
  • 32
    • 73649123907 scopus 로고    scopus 로고
    • Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1
    • [32] Verhaak, R.G., Hoadley, K.A., Purdom, E., et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17 (2010), 98–110.
    • (2010) Cancer Cell , vol.17 , pp. 98-110
    • Verhaak, R.G.1    Hoadley, K.A.2    Purdom, E.3
  • 33
    • 84995975540 scopus 로고    scopus 로고
    • CD44 as a prognostic and predictive marker for GBM
    • [33] Vaillant, B.D., Bhat, K., Sulman, E.P., et al. CD44 as a prognostic and predictive marker for GBM. J Clin Oncol, 29, 2011, 2049.
    • (2011) J Clin Oncol , vol.29 , pp. 2049
    • Vaillant, B.D.1    Bhat, K.2    Sulman, E.P.3
  • 34
    • 84896107633 scopus 로고    scopus 로고
    • Osteopontin-CD44 signaling in the glioma perivascular niche enhances cancer stem cell phenotypes and promotes aggressive tumor growth
    • [34] Pietras, A., Katz, A.M., Ekstrom, E.J., et al. Osteopontin-CD44 signaling in the glioma perivascular niche enhances cancer stem cell phenotypes and promotes aggressive tumor growth. Cell Stem Cell 14 (2014), 357–369.
    • (2014) Cell Stem Cell , vol.14 , pp. 357-369
    • Pietras, A.1    Katz, A.M.2    Ekstrom, E.J.3
  • 35
    • 84862873512 scopus 로고    scopus 로고
    • CD44 in human glioma correlates with histopathological grade and cell migration
    • [35] Yoshida, T., Matsuda, Y., Naito, Z., et al. CD44 in human glioma correlates with histopathological grade and cell migration. Pathol Int 62 (2012), 463–470.
    • (2012) Pathol Int , vol.62 , pp. 463-470
    • Yoshida, T.1    Matsuda, Y.2    Naito, Z.3
  • 36
    • 84878151308 scopus 로고    scopus 로고
    • Mesenchymal glioma stem cells are maintained by activated glycolytic metabolism involving aldehyde dehydrogenase 1A3
    • [36] Mao, P., Joshi, K., Li, J., et al. Mesenchymal glioma stem cells are maintained by activated glycolytic metabolism involving aldehyde dehydrogenase 1A3. Proc Natl Acad Sci U S A 110 (2013), 8644–8649.
    • (2013) Proc Natl Acad Sci U S A , vol.110 , pp. 8644-8649
    • Mao, P.1    Joshi, K.2    Li, J.3
  • 37
    • 0028136623 scopus 로고
    • CD44 mediates human glioma cell adhesion and invasion in vitro
    • [37] Merzak, A., Koocheckpour, S., Pilkington, G.J., CD44 mediates human glioma cell adhesion and invasion in vitro. Cancer Res 54 (1994), 3988–3992.
    • (1994) Cancer Res , vol.54 , pp. 3988-3992
    • Merzak, A.1    Koocheckpour, S.2    Pilkington, G.J.3
  • 38
    • 0033673670 scopus 로고    scopus 로고
    • Epidermal growth factor up-regulates CD44-dependent astrocytoma invasion in vitro
    • [38] Monaghan, M., Mulligan, K.A., Gillespie, H., et al. Epidermal growth factor up-regulates CD44-dependent astrocytoma invasion in vitro. J Pathol 192 (2000), 519–525.
    • (2000) J Pathol , vol.192 , pp. 519-525
    • Monaghan, M.1    Mulligan, K.A.2    Gillespie, H.3
  • 39
    • 0026438940 scopus 로고
    • Hyaluronate binding and CD44 expression in human glioblastoma cells and astrocytes
    • [39] Asher, R., Bignami, A., Hyaluronate binding and CD44 expression in human glioblastoma cells and astrocytes. Exp Cell Res 203 (1992), 80–90.
    • (1992) Exp Cell Res , vol.203 , pp. 80-90
    • Asher, R.1    Bignami, A.2
  • 40
    • 0028106756 scopus 로고
    • CD44 plays a role in adhesive interactions between glioma cells and extracellular matrix components
    • [40] Radotra, B., McCormick, D., Crockard, A., CD44 plays a role in adhesive interactions between glioma cells and extracellular matrix components. Neuropathol Appl Neurobiol 20 (1994), 399–405.
    • (1994) Neuropathol Appl Neurobiol , vol.20 , pp. 399-405
    • Radotra, B.1    McCormick, D.2    Crockard, A.3
  • 41
    • 0030918130 scopus 로고    scopus 로고
    • Glioma invasion in vitro is mediated by CD44-hyaluronan interactions
    • [41] Radotra, B., McCormick, D., Glioma invasion in vitro is mediated by CD44-hyaluronan interactions. J Pathol 181 (1997), 434–438.
    • (1997) J Pathol , vol.181 , pp. 434-438
    • Radotra, B.1    McCormick, D.2
  • 42
    • 84904293608 scopus 로고    scopus 로고
    • Regulatory factor X1 is a new tumor suppressive transcription factor that acts via direct downregulation of CD44 in glioblastoma
    • [42] Feng, C., Zhang, Y., Yin, J., et al. Regulatory factor X1 is a new tumor suppressive transcription factor that acts via direct downregulation of CD44 in glioblastoma. Neuro Oncol 16 (2014), 1078–1085.
    • (2014) Neuro Oncol , vol.16 , pp. 1078-1085
    • Feng, C.1    Zhang, Y.2    Yin, J.3
  • 43
    • 0031016446 scopus 로고    scopus 로고
    • Inhibition of epidermal growth factor receptor-associated tyrosine kinase blocks glioblastoma invasion of the brain
    • [43] Penar, P.L., Khoshyomn, S., Bhushan, A., et al. Inhibition of epidermal growth factor receptor-associated tyrosine kinase blocks glioblastoma invasion of the brain. Neurosurgery 40 (1997), 141–151.
    • (1997) Neurosurgery , vol.40 , pp. 141-151
    • Penar, P.L.1    Khoshyomn, S.2    Bhushan, A.3
  • 44
    • 0029964091 scopus 로고    scopus 로고
    • Patterns of epidermal growth factor receptor amplification in malignant gliomas
    • [44] Sauter, G., Maeda, T., Waldman, F.M., et al. Patterns of epidermal growth factor receptor amplification in malignant gliomas. Am J Pathol 148 (1996), 1047–1053.
    • (1996) Am J Pathol , vol.148 , pp. 1047-1053
    • Sauter, G.1    Maeda, T.2    Waldman, F.M.3
  • 45
    • 0029812272 scopus 로고    scopus 로고
    • TGF-beta 1 perturbation of the fibroblast cell cycle during exponential growth: switching between negative and positive regulation
    • [45] Zhang, D., Jacobberger, J.W., TGF-beta 1 perturbation of the fibroblast cell cycle during exponential growth: switching between negative and positive regulation. Cell Prolif 29 (1996), 289–307.
    • (1996) Cell Prolif , vol.29 , pp. 289-307
    • Zhang, D.1    Jacobberger, J.W.2
  • 46
    • 0037435016 scopus 로고    scopus 로고
    • Presenilin-dependent gamma-secretase activity mediates the intramembranous cleavage of CD44
    • [46] Murakami, D., Okamoto, I., Nagano, O., et al. Presenilin-dependent gamma-secretase activity mediates the intramembranous cleavage of CD44. Oncogene 22 (2003), 1511–1516.
    • (2003) Oncogene , vol.22 , pp. 1511-1516
    • Murakami, D.1    Okamoto, I.2    Nagano, O.3
  • 47
    • 0034644654 scopus 로고    scopus 로고
    • Activation of protein kinase C induces nuclear translocation of RFX1 and down-regulates c-myc via an intron 1 X box in undifferentiated leukemia HL-60 cells
    • [47] Chen, L., Smith, L., Johnson, M.R., et al. Activation of protein kinase C induces nuclear translocation of RFX1 and down-regulates c-myc via an intron 1 X box in undifferentiated leukemia HL-60 cells. J Biol Chem 275 (2000), 32227–32233.
    • (2000) J Biol Chem , vol.275 , pp. 32227-32233
    • Chen, L.1    Smith, L.2    Johnson, M.R.3
  • 48
    • 84863332576 scopus 로고    scopus 로고
    • Regulatory factor X1-induced down-regulation of transforming growth factor beta2 transcription in human neuroblastoma cells
    • [48] Feng, C., Zuo, Z., Regulatory factor X1-induced down-regulation of transforming growth factor beta2 transcription in human neuroblastoma cells. J Biol Chem 287 (2012), 22730–22739.
    • (2012) J Biol Chem , vol.287 , pp. 22730-22739
    • Feng, C.1    Zuo, Z.2
  • 49
    • 33847002689 scopus 로고    scopus 로고
    • Inhibition of the hyaluronan-CD44 interaction by merlin contributes to the tumor-suppressor activity of merlin
    • [49] Bai, Y., Liu, Y.J., Wang, H., et al. Inhibition of the hyaluronan-CD44 interaction by merlin contributes to the tumor-suppressor activity of merlin. Oncogene 26 (2007), 836–850.
    • (2007) Oncogene , vol.26 , pp. 836-850
    • Bai, Y.1    Liu, Y.J.2    Wang, H.3
  • 50
    • 48649109725 scopus 로고    scopus 로고
    • Merlin is a potent inhibitor of glioma growth
    • [50] Lau, Y.K., Murray, L.B., Houshmandi, S.S., et al. Merlin is a potent inhibitor of glioma growth. Cancer Res 68 (2008), 5733–5742.
    • (2008) Cancer Res , vol.68 , pp. 5733-5742
    • Lau, Y.K.1    Murray, L.B.2    Houshmandi, S.S.3
  • 51
    • 84885013189 scopus 로고    scopus 로고
    • TGM2 inhibition attenuates ID1 expression in CD44-high glioma-initiating cells
    • [51] Fu, J., Yang, Q.Y., Sai, K., et al. TGM2 inhibition attenuates ID1 expression in CD44-high glioma-initiating cells. Neuro Oncol 15 (2013), 1353–1365.
    • (2013) Neuro Oncol , vol.15 , pp. 1353-1365
    • Fu, J.1    Yang, Q.Y.2    Sai, K.3
  • 53
    • 0141842674 scopus 로고    scopus 로고
    • Identification of a cancer stem cell in human brain tumors
    • [53] Singh, S.K., Clarke, I.D., Terasaki, M., et al. Identification of a cancer stem cell in human brain tumors. Cancer Res 63 (2003), 5821–5828.
    • (2003) Cancer Res , vol.63 , pp. 5821-5828
    • Singh, S.K.1    Clarke, I.D.2    Terasaki, M.3
  • 54
    • 77950221879 scopus 로고    scopus 로고
    • Transcriptional profiles of CD133+ and CD133- glioblastoma-derived cancer stem cell lines suggest different cells of origin
    • [54] Lottaz, C., Beier, D., Meyer, K., et al. Transcriptional profiles of CD133+ and CD133- glioblastoma-derived cancer stem cell lines suggest different cells of origin. Cancer Res 70 (2010), 2030–2040.
    • (2010) Cancer Res , vol.70 , pp. 2030-2040
    • Lottaz, C.1    Beier, D.2    Meyer, K.3
  • 55
    • 84904656143 scopus 로고    scopus 로고
    • Insights into the next generation of cancer stem cell research
    • [55] Brown, D.V., Mantamadiotis, T., Insights into the next generation of cancer stem cell research. Front Biosci (Landmark Ed) 19 (2014), 1015–1027.
    • (2014) Front Biosci (Landmark Ed) , vol.19 , pp. 1015-1027
    • Brown, D.V.1    Mantamadiotis, T.2
  • 56
    • 84934277764 scopus 로고    scopus 로고
    • CD44, hyaluronan, the hematopoietic stem cell, and leukemia-initiating cells
    • [56] Zoller, M., CD44, hyaluronan, the hematopoietic stem cell, and leukemia-initiating cells. Front Immunol, 6, 2015, 235.
    • (2015) Front Immunol , vol.6 , pp. 235
    • Zoller, M.1
  • 57
    • 0029958876 scopus 로고    scopus 로고
    • Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo
    • [57] Goodell, M.A., Brose, K., Paradis, G., et al. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 183 (1996), 1797–1806.
    • (1996) J Exp Med , vol.183 , pp. 1797-1806
    • Goodell, M.A.1    Brose, K.2    Paradis, G.3
  • 58
    • 84883656941 scopus 로고    scopus 로고
    • Mesenchymal differentiation mediated by NF-kappaB promotes radiation resistance in glioblastoma
    • [58] Bhat, K.P., Balasubramaniyan, V., Vaillant, B., et al. Mesenchymal differentiation mediated by NF-kappaB promotes radiation resistance in glioblastoma. Cancer Cell 24 (2013), 331–346.
    • (2013) Cancer Cell , vol.24 , pp. 331-346
    • Bhat, K.P.1    Balasubramaniyan, V.2    Vaillant, B.3
  • 59
    • 84862539273 scopus 로고    scopus 로고
    • CD44: a validated target for improved delivery of cancer therapeutics
    • [59] Ghosh, S.C., Neslihan Alpay, S., Klostergaard, J., CD44: a validated target for improved delivery of cancer therapeutics. Expert Opin Ther Target 16 (2012), 635–650.
    • (2012) Expert Opin Ther Target , vol.16 , pp. 635-650
    • Ghosh, S.C.1    Neslihan Alpay, S.2    Klostergaard, J.3
  • 60
    • 79955063673 scopus 로고    scopus 로고
    • Hyaluronan-CD44 interactions as potential targets for cancer therapy
    • [60] Misra, S., Heldin, P., Hascall, V.C., et al. Hyaluronan-CD44 interactions as potential targets for cancer therapy. FEBS J 278 (2011), 1429–1443.
    • (2011) FEBS J , vol.278 , pp. 1429-1443
    • Misra, S.1    Heldin, P.2    Hascall, V.C.3
  • 61
    • 0029889923 scopus 로고    scopus 로고
    • Suppression of CD44 expression decreases migration and invasion of human glioma cells
    • [61] Okada, H., Yoshida, J., Sokabe, M., et al. Suppression of CD44 expression decreases migration and invasion of human glioma cells. Int J Cancer 66 (1996), 255–260.
    • (1996) Int J Cancer , vol.66 , pp. 255-260
    • Okada, H.1    Yoshida, J.2    Sokabe, M.3
  • 62
    • 77954449068 scopus 로고    scopus 로고
    • Modulation of hyaluronan production by CD44 positive glioma cells
    • [62] Wiranowska, M., Ladd, S., Moscinski, L.C., et al. Modulation of hyaluronan production by CD44 positive glioma cells. Int J Cancer 127 (2010), 532–542.
    • (2010) Int J Cancer , vol.127 , pp. 532-542
    • Wiranowska, M.1    Ladd, S.2    Moscinski, L.C.3
  • 63
    • 33750685640 scopus 로고    scopus 로고
    • A phase I dose escalation study with anti-CD44v6 bivatuzumab mertansine in patients with incurable squamous cell carcinoma of the head and neck or esophagus
    • [63] Tijink, B.M., Buter, J., de Bree, R., et al. A phase I dose escalation study with anti-CD44v6 bivatuzumab mertansine in patients with incurable squamous cell carcinoma of the head and neck or esophagus. Clin Cancer Res 12 (2006), 6064–6072.
    • (2006) Clin Cancer Res , vol.12 , pp. 6064-6072
    • Tijink, B.M.1    Buter, J.2    de Bree, R.3
  • 64
    • 34247571007 scopus 로고    scopus 로고
    • Safety and pharmacokinetics of bivatuzumab mertansine in patients with CD44v6-positive metastatic breast cancer: final results of a phase I study
    • [64] Rupp, U., Schoendorf-Holland, E., Eichbaum, M., et al. Safety and pharmacokinetics of bivatuzumab mertansine in patients with CD44v6-positive metastatic breast cancer: final results of a phase I study. Anticancer Drugs 18 (2007), 477–485.
    • (2007) Anticancer Drugs , vol.18 , pp. 477-485
    • Rupp, U.1    Schoendorf-Holland, E.2    Eichbaum, M.3
  • 65
    • 84937401317 scopus 로고    scopus 로고
    • Smart nanoparticles based on hyaluronic acid for redox-responsive and CD44 receptor-mediated targeting of tumor
    • [65] Park, H.K., Lee, S.J., Oh, J.S., et al. Smart nanoparticles based on hyaluronic acid for redox-responsive and CD44 receptor-mediated targeting of tumor. Nanoscale Res Lett, 10, 2015, 981.
    • (2015) Nanoscale Res Lett , vol.10 , pp. 981
    • Park, H.K.1    Lee, S.J.2    Oh, J.S.3
  • 66
    • 51049098968 scopus 로고    scopus 로고
    • Anticancer therapeutics: targeting macromolecules and nanocarriers to hyaluronan or CD44, a hyaluronan receptor
    • [66] Platt, V.M., Szoka, F.C. Jr., Anticancer therapeutics: targeting macromolecules and nanocarriers to hyaluronan or CD44, a hyaluronan receptor. Mol Pharm 5 (2008), 474–486.
    • (2008) Mol Pharm , vol.5 , pp. 474-486
    • Platt, V.M.1    Szoka, F.C.2
  • 67
    • 84932121396 scopus 로고    scopus 로고
    • Hyaluronan-based nanocarriers with CD44-overexpressed cancer cell targeting
    • [67] Song, S., Qi, H., Xu, J., et al. Hyaluronan-based nanocarriers with CD44-overexpressed cancer cell targeting. Pharm Res 31 (2014), 2988–3005.
    • (2014) Pharm Res , vol.31 , pp. 2988-3005
    • Song, S.1    Qi, H.2    Xu, J.3
  • 68
    • 84890294900 scopus 로고    scopus 로고
    • Time trends in glioblastoma multiforme survival: the role of temozolomide
    • [68] Dubrow, R., Darefsky, A.S., Jacobs, D.I., et al. Time trends in glioblastoma multiforme survival: the role of temozolomide. Neuro Oncol 15 (2013), 1750–1761.
    • (2013) Neuro Oncol , vol.15 , pp. 1750-1761
    • Dubrow, R.1    Darefsky, A.S.2    Jacobs, D.I.3
  • 69
    • 20044372154 scopus 로고    scopus 로고
    • MGMT gene silencing and benefit from temozolomide in glioblastoma
    • [69] Hegi, M.E., Diserens, A.C., Gorlia, T., et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352 (2005), 997–1003.
    • (2005) N Engl J Med , vol.352 , pp. 997-1003
    • Hegi, M.E.1    Diserens, A.C.2    Gorlia, T.3
  • 70
    • 84861312943 scopus 로고    scopus 로고
    • Molecular mechanisms of temozolomide resistance in glioblastoma multiforme
    • [70] Johannessen, T.C., Bjerkvig, R., Molecular mechanisms of temozolomide resistance in glioblastoma multiforme. Expert Rev Anticancer Ther 12 (2012), 635–642.
    • (2012) Expert Rev Anticancer Ther , vol.12 , pp. 635-642
    • Johannessen, T.C.1    Bjerkvig, R.2
  • 71
    • 85015481036 scopus 로고    scopus 로고
    • Advances and challenges in the molecular biology and treatment of glioblastoma-is there any hope for the future?
    • [71] Veliz, I., Loo, Y., Castillo, O., et al. Advances and challenges in the molecular biology and treatment of glioblastoma-is there any hope for the future?. Ann Transl Med, 3, 2015, 7.
    • (2015) Ann Transl Med , vol.3 , pp. 7
    • Veliz, I.1    Loo, Y.2    Castillo, O.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.