메뉴 건너뛰기




Volumn 4, Issue , 2010, Pages 1258-1299

Majorization-minimization algorithms for nonsmoothly penalized objective functions

Author keywords

Convex optimization; Iterative soft thresholding; Lasso penalty; Minimax concave penalty; Non convex optimization; Smoothly clipped absolute deviation penalty

Indexed keywords


EID: 84993994068     PISSN: 19357524     EISSN: None     Source Type: Journal    
DOI: 10.1214/10-EJS582     Document Type: Article
Times cited : (31)

References (78)
  • 3
    • 0242693932 scopus 로고    scopus 로고
    • Multiple fuzzy neural network system for outcome prediction and classification of 220 lymphoma patients on the basis of molecular profiling
    • Ando, T., Suguro, M., Kobayashi, T., Seto, M. and Honda, H. (2003). Multiple fuzzy neural network system for outcome prediction and classification of 220 lymphoma patients on the basis of molecular profiling. Cancer Sci. 94 906-913.
    • (2003) Cancer Sci , vol.94 , pp. 906-913
    • Ando, T.1    Suguro, M.2    Kobayashi, T.3    Seto, M.4    Honda, H.5
  • 4
    • 62849108422 scopus 로고    scopus 로고
    • Iterative Bayesian Model Averaging: A method for the application of survival analysis to high-dimensional microarray data
    • Annest, A., Bumgarner, R., Raftery, A. and Yeung, K. Y. (2009). Iterative Bayesian Model Averaging: a method for the application of survival analysis to high-dimensional microarray data. BMC Bioinformatics 1072.
    • (2009) BMC Bioinformatics
    • Annest, A.1    Bumgarner, R.2    Raftery, A.3    Yeung, K.Y.4
  • 5
    • 79960104294 scopus 로고    scopus 로고
    • Penalized likelihood regression for generalized linear models with nonquadratic penalties
    • Antoniadis, A., Gijbels, I. and Nikolova, M. (2009). Penalized likelihood regression for generalized linear models with nonquadratic penalties. Ann. Inst. Statist. Math. 1-31. 10.1007/s10463-009-0242-4.
    • (2009) Ann. Inst. Statist. Math , pp. 1-31
    • Antoniadis, A.1    Gijbels, I.2    Nikolova, M.3
  • 7
    • 39449093646 scopus 로고    scopus 로고
    • Allowing for mandatory covariates in boosting estimation of sparse high-dimensional survival models
    • Binder, H. and Schumacher, M. (2008). Allowing for mandatory covariates in boosting estimation of sparse high-dimensional survival models. BMC Bioinformatics 9 14.
    • (2008) BMC Bioinformatics , vol.9
    • Binder, H.1    Schumacher, M.2
  • 8
    • 61449157892 scopus 로고    scopus 로고
    • Incorporating pathway information into boosting estimation of high-dimensional risk prediction models
    • Binder, H. and Schumacher, M. (2009). Incorporating pathway information into boosting estimation of high-dimensional risk prediction models. BMC Bioinformatics 10 18.
    • (2009) BMC Bioinformatics , vol.10
    • Binder, H.1    Schumacher, M.2
  • 9
    • 0037877567 scopus 로고
    • Monotonocity of Quadratic-Approximation Algorithms
    • Bohning, D. and Lindsay, B. (1988). Monotonocity of Quadratic-Approximation Algorithms. Ann. Inst. Statist. Math. 40 641-663.
    • (1988) Ann. Inst. Statist. Math , vol.40 , pp. 641-663
    • Bohning, D.1    Lindsay, B.2
  • 13
    • 30844438177 scopus 로고    scopus 로고
    • Signal Recovery by Proximal Forward-Backward Splitting
    • Combettes, P. L. and Wajs, V. R. (2005). Signal Recovery by Proximal Forward-Backward Splitting. Multiscale Model. Simul. 4 1168-1200.
    • (2005) Multiscale Model. Simul , vol.4 , pp. 1168-1200
    • Combettes, P.L.1    Wajs, V.R.2
  • 14
    • 0000336139 scopus 로고
    • Regression models and life-tables (With Discussion)
    • Cox, D. R. (1972). Regression models and life-tables (with Discussion). J. Roy. Statist. Soc. Ser. B 34 187-220.
    • (1972) J. Roy. Statist. Soc. Ser. B , vol.34 , pp. 187-220
    • Cox, D.R.1
  • 15
    • 0016794660 scopus 로고
    • Partial likelihood
    • Cox, D. R. (1975). Partial likelihood. Biometrika 62 269-276.
    • (1975) Biometrika , vol.62 , pp. 269-276
    • Cox, D.R.1
  • 16
    • 7044231546 scopus 로고    scopus 로고
    • An Iterative Thresholding Algorithm for Linear Inverse Problems with a Sparsity Constraint
    • Daubechies, I., Defreise, M. and De Mol, C. (2004). An Iterative Thresholding Algorithm for Linear Inverse Problems with a Sparsity Constraint. Commun. Pure Appl. Math. 1413-1457.
    • (2004) Commun. Pure Appl. Math , pp. 1413-1457
    • Daubechies, I.1    Defreise, M.2    De Mol, C.3
  • 18
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm (With discussion)
    • Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm (with discussion). J. Roy. Statist. Soc. Ser. B 39 1-38.
    • (1977) J. Roy. Statist. Soc. Ser. B , vol.39 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 20
    • 62449212467 scopus 로고    scopus 로고
    • Survival analysis with high-dimensional covariates: An application in microarray studies
    • Article
    • Engler, D. and Li, Y. (2009). Survival analysis with high-dimensional covariates: an application in microarray studies. Statist. Appl. Gen. Mol. Biol. 8 Article 14.
    • (2009) Statist. Appl. Gen. Mol. Biol. , vol.8
    • Engler, D.1    Li, Y.2
  • 21
    • 1542784498 scopus 로고    scopus 로고
    • Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties
    • Fan, J. and Li, R. (2001). Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties. J. Amer. Statist. Assoc. 96 1348-1360.
    • (2001) J. Amer. Statist. Assoc , vol.96 , pp. 1348-1360
    • Fan, J.1    Li, R.2
  • 23
    • 70449440300 scopus 로고    scopus 로고
    • Ultrahigh dimensional variable selection: Beyond the linear model
    • Fan, J., Samworth, R., and Wu, Y. (2009b). Ultrahigh dimensional variable selection: beyond the linear model. Journal of Machine Learning Research 10 1829-1853.
    • (2009) Journal of Machine Learning Research , vol.10 , pp. 1829-1853
    • Fan, J.1    Samworth, R.2    Wu, Y.3
  • 25
    • 21844504238 scopus 로고
    • Monotone estimating equations for censored data
    • Fygenson, M. and Ritov, Y. (1994). Monotone estimating equations for censored data. Ann. Statist. 22 732-746.
    • (1994) Ann. Statist , vol.22 , pp. 732-746
    • Fygenson, M.1    Ritov, Y.2
  • 26
    • 0026835074 scopus 로고
    • Constrained restoration and the recovery of discontinuities
    • Geman, D. and Reynolds, G. (1992). Constrained restoration and the recovery of discontinuities. IEEE Trans. Patt. Anal. Mach. Intell 14 367-383.
    • (1992) IEEE Trans. Patt. Anal. Mach. Intell , vol.14 , pp. 367-383
    • Geman, D.1    Reynolds, G.2
  • 27
    • 21444446838 scopus 로고    scopus 로고
    • Penalized Cox regression analysis in the high-dimensional and low-sample size settings, with applications to microarray gene expression data
    • Gui, J. and Li, H. (2005a). Penalized Cox regression analysis in the high-dimensional and low-sample size settings, with applications to microarray gene expression data. Bioinformatics 21 3001-3008.
    • (2005) Bioinformatics , vol.21 , pp. 3001-3008
    • Gui, J.1    Li, H.2
  • 28
    • 15944409959 scopus 로고    scopus 로고
    • Threshold Gradient Descent Method for Censored Data Regression with Applications in Pharmacogenomics
    • Gui, J. and Li, H. (2005b). Threshold Gradient Descent Method for Censored Data Regression with Applications in Pharmacogenomics. Pacific Symposium on Biocomputing 10 272-283.
    • (2005) Pacific Symposium on Biocomputing , vol.10 , pp. 272-283
    • Gui, J.1    Li, H.2
  • 29
    • 69649095451 scopus 로고    scopus 로고
    • 1-minimization: Methodology and Convergence
    • 1-minimization: Methodology and Convergence. SIAM J. Optim. 19 1107-1130.
    • (2008) SIAM J. Optim , vol.19 , pp. 1107-1130
    • Hale, E.T.1    Yin, W.2    Zhang, Y.3
  • 32
    • 1342332031 scopus 로고    scopus 로고
    • A tutorial on MM algorithms
    • Hunter, D. R. and Lange, K. (2004). A tutorial on MM algorithms. Amer. Statist. 58 30-37.
    • (2004) Amer. Statist , vol.58 , pp. 30-37
    • Hunter, D.R.1    Lange, K.2
  • 33
    • 26444617168 scopus 로고    scopus 로고
    • Variable Selection Using MM Algorithms
    • Hunter, D. and Li, R. (2005). Variable Selection Using MM Algorithms. Ann. Statist. 33 1617-1643.
    • (2005) Ann. Statist , vol.33 , pp. 1617-1643
    • Hunter, D.1    Li, R.2
  • 34
    • 49549107073 scopus 로고    scopus 로고
    • Penalized estimating functions and variable selection in semiparametric regression problems
    • Johnson, B. A., Lin, D.-Y. and Zeng, D. (2008). Penalized estimating functions and variable selection in semiparametric regression problems. J. Amer. Statist. Assoc. 103 672-680.
    • (2008) J. Amer. Statist. Assoc , vol.103 , pp. 672-680
    • Johnson, B.A.1    Lin, D.-Y.2    Zeng, D.3
  • 35
    • 69249198546 scopus 로고    scopus 로고
    • Induced smoothing for the semiparametric accelerated failure time model: Asymptotics and extensions to clustered data
    • Johnson, L. M. and Strawderman, R. L. (2009). Induced smoothing for the semiparametric accelerated failure time model: asymptotics and extensions to clustered data. Biometrika 96 577-590.
    • (2009) Biometrika , vol.96 , pp. 577-590
    • Johnson, L.M.1    Strawderman, R.L.2
  • 36
    • 77949349770 scopus 로고    scopus 로고
    • Smoothly Clipped Absolute Deviation on High Dimensions
    • Kim, Y., Choi, H. and Oh, H.-S. (2008). Smoothly Clipped Absolute Deviation on High Dimensions. J. Amer. Statist. Assoc. 103 1665-1673.
    • (2008) J. Amer. Statist. Assoc , vol.103 , pp. 1665-1673
    • Kim, Y.1    Choi, H.2    Oh, H.-S.3
  • 37
    • 0000808747 scopus 로고
    • A Gradient Algorithm Locally Equivalent to the EM Algorithm
    • Lange, K. (1995). A Gradient Algorithm Locally Equivalent to the EM Algorithm. J. Roy. Statist. Soc. Ser. B 57 425-437.
    • (1995) J. Roy. Statist. Soc. Ser. B , vol.57 , pp. 425-437
    • Lange, K.1
  • 38
    • 1342322973 scopus 로고    scopus 로고
    • Springer, New York, USA
    • Lange, K. (2004). Optimization. Springer, New York, USA.
    • (2004) Optimization.
    • Lange, K.1
  • 39
    • 77950023906 scopus 로고    scopus 로고
    • Optimization Transfer Using Surrogate Objective Functions
    • Lange, K., Hunter, D. and Yang, I. (2000). Optimization Transfer Using Surrogate Objective Functions. J. Of Comp. Graph. Statist. 9 1-20.
    • (2000) J. Of Comp. Graph. Statist , vol.9 , pp. 1-20
    • Lange, K.1    Hunter, D.2    Yang, I.3
  • 40
    • 12744266814 scopus 로고    scopus 로고
    • Partial Cox regression analysis for high-dimensional microarray gene expression data
    • Li, H. and Gui, J. (2004). Partial Cox regression analysis for high-dimensional microarray gene expression data. Bioinformatics 20 Suppl. 1, i208-215.
    • (2004) Bioinformatics , vol.20
    • Li, H.1    Gui, J.2
  • 41
    • 19544378196 scopus 로고    scopus 로고
    • Boosting proportional hazards models using smoothing splines, with applications to high-dimensional microarray data
    • Li, H. and Luan, Y. (2005). Boosting proportional hazards models using smoothing splines, with applications to high-dimensional microarray data. Bioinformatics 21 2403-2409.
    • (2005) Bioinformatics , vol.21 , pp. 2403-2409
    • Li, H.1    Luan, Y.2
  • 43
    • 34347398269 scopus 로고    scopus 로고
    • Additive risk survival model with microarray data
    • Ma, S. and Huang, J. (2007). Additive risk survival model with microarray data. BMC Bioinformatics 8 192.
    • (2007) BMC Bioinformatics , vol.8
    • Ma, S.1    Huang, J.2
  • 47
    • 0016923670 scopus 로고
    • Sufficient conditions for the convergence of monotonic mathematical programming algorithms
    • Meyer, R. R. (1976). Sufficient conditions for the convergence of monotonic mathematical programming algorithms. J. Comput. System. Sci. 12 108-121.
    • (1976) J. Comput. System. Sci , vol.12 , pp. 108-121
    • Meyer, R.R.1
  • 48
    • 0010723011 scopus 로고
    • A comparison of the forcing function and point-to-set mapping approaches to convergence analysis
    • Meyer, R. R. (1977). A comparison of the forcing function and point-to-set mapping approaches to convergence analysis. SIAM J. Control Optimization 15 699-715.
    • (1977) SIAM J. Control Optimization , vol.15 , pp. 699-715
    • Meyer, R.R.1
  • 49
    • 0142176890 scopus 로고    scopus 로고
    • Local strong homogeneity of a regularized estimator
    • Nikolova, M. (2000). Local strong homogeneity of a regularized estimator. SIAM J. Appl. Math. 61 633-658.
    • (2000) SIAM J. Appl. Math , vol.61 , pp. 633-658
    • Nikolova, M.1
  • 51
    • 34547849507 scopus 로고    scopus 로고
    • L1-regularization path algorithm for generalized linear models
    • Park, M. Y. and Hastie, T. (2007). L1-regularization path algorithm for generalized linear models. J. Roy. Statist. Soc. Ser. B 69 659-677.
    • (2007) J. Roy. Statist. Soc. Ser. B , vol.69 , pp. 659-677
    • Park, M.Y.1    Hastie, T.2
  • 52
    • 0023314734 scopus 로고
    • On the mathematical foundations of nondifferentiable optimization in engineering design
    • Polak, E. (1987). On the mathematical foundations of nondifferentiable optimization in engineering design. SIAM Rev. 29 21-89.
    • (1987) SIAM Rev , vol.29 , pp. 21-89
    • Polak, E.1
  • 53
    • 23144444952 scopus 로고    scopus 로고
    • New iterative schemes for nonlinear fixed point problems, with applications to problems with bifurcations and incomplete-data problems
    • Roland, C. and Varadhan, R. (2005). New iterative schemes for nonlinear fixed point problems, with applications to problems with bifurcations and incomplete-data problems. Appl. Numer. Math. 55 215-226.
    • (2005) Appl. Numer. Math , vol.55 , pp. 215-226
    • Roland, C.1    Varadhan, R.2
  • 55
    • 34548452938 scopus 로고    scopus 로고
    • Piecewise linear regularized solution paths
    • Rosset, S. and Zhu, J. (2007). Piecewise linear regularized solution paths. Ann. Statist. 35 1012-1030.
    • (2007) Ann. Statist , vol.35 , pp. 1012-1030
    • Rosset, S.1    Zhu, J.2
  • 56
    • 0038275858 scopus 로고    scopus 로고
    • The B cell-specific major raft protein, Raftlin, is necessary for the integrity of lipid raft and BCR signal transduction
    • Saeki, K., Miura, Y., Aki, D., Kurosaki, T. and Yoshimura, A. (2003). The B cell-specific major raft protein, Raftlin, is necessary for the integrity of lipid raft and BCR signal transduction. EMBO J. 22 3015-3026.
    • (2003) EMBO J , vol.22 , pp. 3015-3026
    • Saeki, K.1    Miura, Y.2    Aki, D.3    Kurosaki, T.4    Yoshimura, A.5
  • 58
    • 33748686773 scopus 로고    scopus 로고
    • Bayesian variable selection for the analysis of microarray data with censored outcomes
    • Sha, N., Tadesse, M. G. and Vannucci, M. (2006). Bayesian variable selection for the analysis of microarray data with censored outcomes. Bioinformatics 22 2262-2268.
    • (2006) Bioinformatics , vol.22 , pp. 2262-2268
    • Sha, N.1    Tadesse, M.G.2    Vannucci, M.3
  • 59
    • 79952701411 scopus 로고    scopus 로고
    • Thresholding-based Iterative Selection Procedures for Model Selection and Shrinkage
    • She, Y. (2009). Thresholding-based Iterative Selection Procedures for Model Selection and Shrinkage. Electronic Journal of Statistics 3 384-415.
    • (2009) Electronic Journal of Statistics , vol.3 , pp. 384-415
    • She, Y.1
  • 61
    • 67649855127 scopus 로고    scopus 로고
    • Gradient lasso for Cox proportional hazards model
    • Sohn, I., Kim, J., Jung, S. H. and Park, C. (2009). Gradient lasso for Cox proportional hazards model. Bioinformatics 25 1775-1781.
    • (2009) Bioinformatics , vol.25 , pp. 1775-1781
    • Sohn, I.1    Kim, J.2    Jung, S.H.3    Park, C.4
  • 62
    • 0001287271 scopus 로고    scopus 로고
    • Regression Shrinkage and Selection via the Lasso
    • Tibshirani, R. (1996). Regression Shrinkage and Selection via the Lasso. J. Roy. Statist. Soc. Ser. B 58 267-288.
    • (1996) J. Roy. Statist. Soc. Ser. B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 63
    • 67249151397 scopus 로고    scopus 로고
    • Univariate shrinkage in the cox model for high dimensional data
    • Article
    • Tibshirani, R. J. (2009). Univariate shrinkage in the cox model for high dimensional data. Statist. Appl. Gen. Mol. Biol. 8 Article21.
    • (2009) Statist. Appl. Gen. Mol. Biol , vol.8
    • Tibshirani, R.J.1
  • 64
    • 4043069783 scopus 로고    scopus 로고
    • An analysis of the EM algorithm and entropy-like proximal point methods
    • Tseng, P. (2004). An analysis of the EM algorithm and entropy-like proximal point methods. Mathematics of Operations Research 29 27-44.
    • (2004) Mathematics of Operations Research , vol.29 , pp. 27-44
    • Tseng, P.1
  • 65
    • 46749146509 scopus 로고    scopus 로고
    • A coordinate gradient descent method for nonsmooth separable minimization
    • Tseng, P. and Yun, S. (2009). A coordinate gradient descent method for nonsmooth separable minimization. Mathematical Programming B 117 387-423.
    • (2009) Mathematical Programming B , vol.117 , pp. 387-423
    • Tseng, P.1    Yun, S.2
  • 66
    • 26844582271 scopus 로고    scopus 로고
    • Parameter convergence for EM and MM algorithms
    • Vaida, F. (2005). Parameter convergence for EM and MM algorithms. Statist. Sinica 15 831-840.
    • (2005) Statist. Sinica , vol.15 , pp. 831-840
    • Vaida, F.1
  • 67
    • 43749120067 scopus 로고    scopus 로고
    • Simple and Globally Convergent Methods for Accelerating the Convergence of Any EM Algorithm
    • Varadhan, R. and Roland, C. (2008). Simple and Globally Convergent Methods for Accelerating the Convergence of Any EM Algorithm. Scand. J. Statist. 35 335-353.
    • (2008) Scand. J. Statist , vol.35 , pp. 335-353
    • Varadhan, R.1    Roland, C.2
  • 68
    • 0002210265 scopus 로고
    • On the convergence properties of the EM algorithm
    • Wu, C. F. J. (1983). On the convergence properties of the EM algorithm. Ann. Statist. 11 95-103.
    • (1983) Ann. Statist , vol.11 , pp. 95-103
    • Wu, C.F.J.1
  • 69
    • 84863879353 scopus 로고    scopus 로고
    • Coordinate descent algorithms for lasso penalized regression
    • Wu, T. T. and Lange, K. (2008). Coordinate descent algorithms for lasso penalized regression. Ann. Appl. Stat. 2 224-244.
    • (2008) Ann. Appl. Stat , vol.2 , pp. 224-244
    • Wu, T.T.1    Lange, K.2
  • 71
    • 51049101956 scopus 로고    scopus 로고
    • Discussion of “One-step sparse estimates in nonconcave penalized likelihood models”
    • by H. Zou and R. Li
    • Zhang, C.-H. (2008). Discussion of “One-step sparse estimates in nonconcave penalized likelihood models” by H. Zou and R. Li. Ann. Statist. 36 1553-1560.
    • (2008) Ann. Statist , vol.36 , pp. 1553-1560
    • Zhang, C.-H.1
  • 72
    • 77649284492 scopus 로고    scopus 로고
    • Nearly Unbiased Variable Selection Under Minimax Concave Penalty
    • Zhang, C.-H. (2010). Nearly Unbiased Variable Selection Under Minimax Concave Penalty. Ann. Statist. 38 894-942.
    • (2010) Ann. Statist , vol.38 , pp. 894-942
    • Zhang, C.-H.1
  • 73
    • 33846910488 scopus 로고    scopus 로고
    • Bayesian profiling of molecular signatures to predict event times
    • Zhang, D. and Zhang, M. (2007). Bayesian profiling of molecular signatures to predict event times. Theor. Biol. Med. Model. 4 3.
    • (2007) Theor. Biol. Med. Model , vol.4
    • Zhang, D.1    Zhang, M.2
  • 74
    • 33846114377 scopus 로고    scopus 로고
    • The Adaptive Lasso and Its Oracle Properties
    • Zou, H. (2006). The Adaptive Lasso and Its Oracle Properties. J. Amer. Statist. Assoc. 101 1418-1429.
    • (2006) J. Amer. Statist. Assoc , vol.101 , pp. 1418-1429
    • Zou, H.1
  • 75
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net. J. Roy. Statist. Soc. Ser. B 67 301-320.
    • (2005) J. Roy. Statist. Soc. Ser. B , vol.67 , pp. 301-320
    • Zou, H.1    Hastie, T.2
  • 77
    • 51049104549 scopus 로고    scopus 로고
    • One-step sparse estimates in nonconcave penalized likelihood models
    • Zou, H. and Li, R. (2008). One-step sparse estimates in nonconcave penalized likelihood models. Ann. Statist. 36 1509-1533.
    • (2008) Ann. Statist , vol.36 , pp. 1509-1533
    • Zou, H.1    Li, R.2
  • 78
    • 62549126570 scopus 로고    scopus 로고
    • On the adaptive elastic-net with a diverging number of parameters
    • Zou, H. and Zhang, H. H. (2009). On the adaptive elastic-net with a diverging number of parameters. Ann. Statist. 34 1733-1751.
    • (2009) Ann. Statist , vol.34 , pp. 1733-1751
    • Zou, H.1    Zhang, H.H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.