-
1
-
-
84891904880
-
Computational Methods in Drug Discovery
-
Sliwoski, G.; Kothiwale, S.; Meiler, J.; Lowe, E. W., Jr. Computational Methods in Drug Discovery Pharmacol. Rev. 2014, 66, 334-395 10.1124/pr.112.007336
-
(2014)
Pharmacol. Rev.
, vol.66
, pp. 334-395
-
-
Sliwoski, G.1
Kothiwale, S.2
Meiler, J.3
Lowe, Jr.E.W.4
-
2
-
-
34548304745
-
In silico Pharmacology for Drug Discovery: Methods for Virtual Ligand Screening and Profiling
-
Ekins, S.; Mestres, J.; Testa, B. In silico Pharmacology for Drug Discovery: Methods for Virtual Ligand Screening and Profiling Br. J. Pharmacol. 2007, 152, 9-20 10.1038/sj.bjp.0707305
-
(2007)
Br. J. Pharmacol.
, vol.152
, pp. 9-20
-
-
Ekins, S.1
Mestres, J.2
Testa, B.3
-
3
-
-
34548319111
-
In silico Pharmacology for Drug Discovery: Applications to Targets and beyond
-
Ekins, S.; Mestres, J.; Testa, B. In silico Pharmacology for Drug Discovery: Applications to Targets and Beyond Br. J. Pharmacol. 2007, 152, 21-37 10.1038/sj.bjp.0707306
-
(2007)
Br. J. Pharmacol.
, vol.152
, pp. 21-37
-
-
Ekins, S.1
Mestres, J.2
Testa, B.3
-
4
-
-
84941997753
-
Role of Computer-aided Drug Design in Modern Drug Discovery
-
Macalino, S. J. Y.; Gosu, V.; Hong, S.; Choi, S. Role of Computer-aided Drug Design in Modern Drug Discovery Arch. Pharmacal Res. 2015, 38, 1686-1702 10.1007/s12272-015-0640-5
-
(2015)
Arch. Pharmacal Res.
, vol.38
, pp. 1686-1702
-
-
Macalino, S.J.Y.1
Gosu, V.2
Hong, S.3
Choi, S.4
-
5
-
-
0141676629
-
The Process of Structure-Based Drug Design
-
Anderson, A. C. The Process of Structure-Based Drug Design Chem. Biol. 2003, 10, 787-797 10.1016/j.chembiol.2003.09.002
-
(2003)
Chem. Biol.
, vol.10
, pp. 787-797
-
-
Anderson, A.C.1
-
6
-
-
0020491251
-
A Geometric Approach to Macromolecule-ligand Interactions
-
Kuntz, I. D.; Blaney, J. M.; Oatley, S. J.; Langridge, R.; Ferrin, T. E. A Geometric Approach to Macromolecule-ligand Interactions J. Mol. Biol. 1982, 161, 269-288 10.1016/0022-2836(82)90153-X
-
(1982)
J. Mol. Biol.
, vol.161
, pp. 269-288
-
-
Kuntz, I.D.1
Blaney, J.M.2
Oatley, S.J.3
Langridge, R.4
Ferrin, T.E.5
-
7
-
-
8844263008
-
Docking and Scoring in Virtual Screening for Drug Discovery: Methods and Applications
-
Kitchen, D. B.; Decornez, H.; Furr, J. R.; Bajorath, J. Docking and Scoring in Virtual Screening for Drug Discovery: Methods and Applications Nat. Rev. Drug Discovery 2004, 3, 935-949 10.1038/nrd1549
-
(2004)
Nat. Rev. Drug Discovery
, vol.3
, pp. 935-949
-
-
Kitchen, D.B.1
Decornez, H.2
Furr, J.R.3
Bajorath, J.4
-
8
-
-
33749260698
-
A Critical Assessment of Docking Programs and Scoring Functions
-
Warren, G. L.; Andrews, C. W.; Capelli, A.-M.; Clarke, B.; LaLonde, J.; Lambert, M. H.; Lindvall, M.; Nevins, N.; Semus, S. F.; Senger, S. et al. A Critical Assessment of Docking Programs and Scoring Functions J. Med. Chem. 2006, 49, 5912-5931 10.1021/jm050362n
-
(2006)
J. Med. Chem.
, vol.49
, pp. 5912-5931
-
-
Warren, G.L.1
Andrews, C.W.2
Capelli, A.-M.3
Clarke, B.4
LaLonde, J.5
Lambert, M.H.6
Lindvall, M.7
Nevins, N.8
Semus, S.F.9
Senger, S.10
-
9
-
-
84906222221
-
Binding Free Energy Calculations for Lead Optimization: Assesment of Their Accuracy in an Industrial Drug Design Context
-
Homeyer, N.; Stoll, F.; Hillisch, A.; Gohlke, H. Binding Free Energy Calculations for Lead Optimization: Assesment of Their Accuracy in an Industrial Drug Design Context J. Chem. Theory Comput. 2014, 10, 3331-3344 10.1021/ct5000296
-
(2014)
J. Chem. Theory Comput.
, vol.10
, pp. 3331-3344
-
-
Homeyer, N.1
Stoll, F.2
Hillisch, A.3
Gohlke, H.4
-
10
-
-
84923538660
-
Accurate and Reliable Prediction of Relative Ligand Binding Potency in Prospective Drug Discovery by Way of a Modern Free-Energy Calculation Protocol and Force Field
-
Wang, L.; Wu, Y.; Deng, Y.; Kim, B.; Pierce, L.; Krilov, G.; Lupyan, D.; Robinson, S.; Dahlgren, M. K.; Greenwood, J. et al. Accurate and Reliable Prediction of Relative Ligand Binding Potency in Prospective Drug Discovery by Way of a Modern Free-Energy Calculation Protocol and Force Field J. Am. Chem. Soc. 2015, 137, 2695-2703 10.1021/ja512751q
-
(2015)
J. Am. Chem. Soc.
, vol.137
, pp. 2695-2703
-
-
Wang, L.1
Wu, Y.2
Deng, Y.3
Kim, B.4
Pierce, L.5
Krilov, G.6
Lupyan, D.7
Robinson, S.8
Dahlgren, M.K.9
Greenwood, J.10
-
11
-
-
84950303075
-
Accurate Calculation of the Absolute Free Energy of Binding for Drug Molecules
-
Aldeghi, M.; Heifetz, A.; Bodkin, M. J.; Knapp, S.; Biggin, P. Accurate Calculation of the Absolute Free Energy of Binding for Drug Molecules Chem. Sci. 2016, 7, 207-218 10.1039/C5SC02678D
-
(2016)
Chem. Sci.
, vol.7
, pp. 207-218
-
-
Aldeghi, M.1
Heifetz, A.2
Bodkin, M.J.3
Knapp, S.4
Biggin, P.5
-
12
-
-
84969122144
-
Role of Molecular Dynamics and Related Methods in Drug Discovery
-
De Vivo, M.; Masetti, M.; Bottegoni, G.; Cavalli, A. Role of Molecular Dynamics and Related Methods in Drug Discovery J. Med. Chem. 2016, 59, 4035-4061 10.1021/acs.jmedchem.5b01684
-
(2016)
J. Med. Chem.
, vol.59
, pp. 4035-4061
-
-
De Vivo, M.1
Masetti, M.2
Bottegoni, G.3
Cavalli, A.4
-
13
-
-
77951992987
-
Ensemble Docking into Multiple Crystallographically Derived Protein Structures: An Evaluation Based on the Statistical Analysis of Enrichments
-
Craig, I. R.; Essex, J. W.; Spiegel, K. Ensemble Docking into Multiple Crystallographically Derived Protein Structures: An Evaluation Based on the Statistical Analysis of Enrichments J. Chem. Inf. Model. 2010, 50, 511-524 10.1021/ci900407c
-
(2010)
J. Chem. Inf. Model.
, vol.50
, pp. 511-524
-
-
Craig, I.R.1
Essex, J.W.2
Spiegel, K.3
-
14
-
-
84861499934
-
Potential and Limitations of Ensemble Docking
-
Korb, O.; Olsson, T. S. G.; Bowden, S. J.; Hall, R. J.; Verdonk, M. L.; Liebeschuetz, J. W.; Cole, J. C. Potential and Limitations of Ensemble Docking J. Chem. Inf. Model. 2012, 52, 1262-1274 10.1021/ci2005934
-
(2012)
J. Chem. Inf. Model.
, vol.52
, pp. 1262-1274
-
-
Korb, O.1
Olsson, T.S.G.2
Bowden, S.J.3
Hall, R.J.4
Verdonk, M.L.5
Liebeschuetz, J.W.6
Cole, J.C.7
-
15
-
-
84969248247
-
Binding Mode and Induced Fit Predictions for Prospective Computational Drug Design
-
Grebner, C.; Iegre, J.; Ulander, J.; Edman, K.; Hogner, A.; Tyrchan, C. Binding Mode and Induced Fit Predictions for Prospective Computational Drug Design J. Chem. Inf. Model. 2016, 56, 774-787 10.1021/acs.jcim.5b00744
-
(2016)
J. Chem. Inf. Model.
, vol.56
, pp. 774-787
-
-
Grebner, C.1
Iegre, J.2
Ulander, J.3
Edman, K.4
Hogner, A.5
Tyrchan, C.6
-
16
-
-
84904130280
-
Practical Aspects of Free-energy Calculations: A Review
-
Hansen, N.; van Gunsteren, W. F. Practical Aspects of Free-energy Calculations: A Review J. Chem. Theory Comput. 2014, 10, 2632-47 10.1021/ct500161f
-
(2014)
J. Chem. Theory Comput.
, vol.10
, pp. 2632-2647
-
-
Hansen, N.1
Van Gunsteren, W.F.2
-
17
-
-
84954364815
-
High-resolution Crystal Structures Leverage Protein Binding Affinity Predictions
-
Marillet, S.; Boudinot, P.; Cazals, F. High-resolution Crystal Structures Leverage Protein Binding Affinity Predictions Proteins: Struct., Funct., Genet. 2016, 84, 9-20 10.1002/prot.24946
-
(2016)
Proteins: Struct., Funct., Genet.
, vol.84
, pp. 9-20
-
-
Marillet, S.1
Boudinot, P.2
Cazals, F.3
-
18
-
-
34447521097
-
Correlation of Biological Activity of Phenoxyacetic Acids with Hammett Substituent Constants and Partition Coefficients
-
Hansch, C.; Maloney, P.; Fujita, T.; Muir, R. Correlation of Biological Activity of Phenoxyacetic Acids with Hammett Substituent Constants and Partition Coefficients Nature 1962, 194, 178-180 10.1038/194178b0
-
(1962)
Nature
, vol.194
, pp. 178-180
-
-
Hansch, C.1
Maloney, P.2
Fujita, T.3
Muir, R.4
-
19
-
-
84899881824
-
QSAR Modeling: Where Have you Been? Where are you Going to
-
Cherkasov, A.; Muratov, E. N.; Fourches, D.; Varnek, A.; Baskin, I. I.; Cronin, M.; Dearden, J.; Gramatica, P.; Martin, Y. C.; Todeschini, R. et al. QSAR Modeling: Where Have you Been? Where are you Going to J. Med. Chem. 2014, 57, 4977-5010 10.1021/jm4004285
-
(2014)
J. Med. Chem.
, vol.57
, pp. 4977-5010
-
-
Cherkasov, A.1
Muratov, E.N.2
Fourches, D.3
Varnek, A.4
Baskin, I.I.5
Cronin, M.6
Dearden, J.7
Gramatica, P.8
Martin, Y.C.9
Todeschini, R.10
-
20
-
-
84862848179
-
Comparative Analysis of Pharmacophore Screening Tools
-
Sanders, M. P. A.; Barbosa, A. J. M.; Zarzycka, B.; Nicolaes, G. A. F.; Klomp, J. P. G.; Vlieg, J.; Rio, A. D. Comparative Analysis of Pharmacophore Screening Tools J. Chem. Inf. Model. 2012, 52, 1607-1620 10.1021/ci2005274
-
(2012)
J. Chem. Inf. Model.
, vol.52
, pp. 1607-1620
-
-
Sanders, M.P.A.1
Barbosa, A.J.M.2
Zarzycka, B.3
Nicolaes, G.A.F.4
Klomp, J.P.G.5
Vlieg, J.6
Rio, A.D.7
-
21
-
-
84939863615
-
Pharmacophore Identification and Pseudo-receptor Modeling
-
Fourth ed. Wermuth, C. G. Aldous, D. Raboisson, P. Rognan, D. Academic Press: London, United Kingdom
-
Wolber, G.; Sippl, W. Pharmacophore Identification and Pseudo-receptor Modeling. In The Practice of Medicinal Chemistry, Fourth ed.; Wermuth, C. G.; Aldous, D.; Raboisson, P.; Rognan, D., Eds.; Academic Press: London, United Kingdom, 2015; pp 489-510.
-
(2015)
The Practice of Medicinal Chemistry
, pp. 489-510
-
-
Wolber, G.1
Sippl, W.2
-
22
-
-
0023751431
-
Comparative Molecular Field Analysis (CoMFA). 1. Effect of Shape on Binding of Steroids to Carrier Proteins
-
Cramer, R. D., III; Patterson, D. E.; Bunce, J. D. Comparative Molecular Field Analysis (CoMFA). 1. Effect of Shape on Binding of Steroids to Carrier Proteins J. Am. Chem. Soc. 1988, 110, 5959-5967 10.1021/ja00226a005
-
(1988)
J. Am. Chem. Soc.
, vol.110
, pp. 5959-5967
-
-
Cramer, R.D.1
Patterson, D.E.2
Bunce, J.D.3
-
23
-
-
84879242302
-
Combination of Ligand- and Structure-based Methods in Virtual Screening
-
Drwal, M. N.; Griffith, R. Combination of Ligand- and Structure-based Methods in Virtual Screening Drug Discovery Today: Technol. 2013, 10, e395-e401 10.1016/j.ddtec.2013.02.002
-
(2013)
Drug Discovery Today: Technol.
, vol.10
, pp. e395-e401
-
-
Drwal, M.N.1
Griffith, R.2
-
24
-
-
84903312601
-
Best of Both Worlds: On the Complementarity of Ligand-based and Structure-based Virtual Screening
-
Broccatelli, F.; Brown, N. Best of Both Worlds: On the Complementarity of Ligand-based and Structure-based Virtual Screening J. Chem. Inf. Model. 2014, 54, 1634-1641 10.1021/ci5001604
-
(2014)
J. Chem. Inf. Model.
, vol.54
, pp. 1634-1641
-
-
Broccatelli, F.1
Brown, N.2
-
25
-
-
84976522772
-
HybridDock: A Hybrid Protein-Ligand Docking Protocol Integrating Protein- and Ligand-based Approaches
-
Huang, S.-Y.; Li, M.; Wang, J.; Pan, Y. HybridDock: A Hybrid Protein-Ligand Docking Protocol Integrating Protein- and Ligand-based Approaches J. Chem. Inf. Model. 2016, 56, 1078-1087 10.1021/acs.jcim.5b00275
-
(2016)
J. Chem. Inf. Model.
, vol.56
, pp. 1078-1087
-
-
Huang, S.-Y.1
Li, M.2
Wang, J.3
Pan, Y.4
-
26
-
-
84976394415
-
Integration of Ligand and Structure Based Approaches for CSAR-2014
-
Prathipati, P.; Mizuguchi, K. Integration of Ligand and Structure Based Approaches for CSAR-2014 J. Chem. Inf. Model. 2016, 56, 974-987 10.1021/acs.jcim.5b00477
-
(2016)
J. Chem. Inf. Model.
, vol.56
, pp. 974-987
-
-
Prathipati, P.1
Mizuguchi, K.2
-
27
-
-
0033022163
-
Comparative Molecular Similarity Index Analysis (CoMSIA) to Study Hydrogen-bonding Properties and to Score Combinatorial Libraries
-
Klebe, G.; Abraham, U. Comparative Molecular Similarity Index Analysis (CoMSIA) to Study Hydrogen-bonding Properties and to Score Combinatorial Libraries J. Comput.-Aided Mol. Des. 1999, 13, 1-10 10.1023/A:1008047919606
-
(1999)
J. Comput.-Aided Mol. Des.
, vol.13
, pp. 1-10
-
-
Klebe, G.1
Abraham, U.2
-
28
-
-
84922102617
-
Exploring Conformational Search Protocols for Ligand-based Virtual Screening and 3-D QSAR Modeling
-
Cappel, D.; Dixon, S. L.; Sherman, W.; Duan, J. Exploring Conformational Search Protocols for Ligand-based Virtual Screening and 3-D QSAR Modeling J. Comput.-Aided Mol. Des. 2015, 29, 165-182 10.1007/s10822-014-9813-4
-
(2015)
J. Comput.-Aided Mol. Des.
, vol.29
, pp. 165-182
-
-
Cappel, D.1
Dixon, S.L.2
Sherman, W.3
Duan, J.4
-
29
-
-
84855794457
-
An Integrated Computational Workflow for Efficient and Quantitative Modeling of Renin Inhibitors
-
Subramanian, G.; Rao, S. N. An Integrated Computational Workflow for Efficient and Quantitative Modeling of Renin Inhibitors Bioorg. Med. Chem. 2012, 20, 851-858 10.1016/j.bmc.2011.11.063
-
(2012)
Bioorg. Med. Chem.
, vol.20
, pp. 851-858
-
-
Subramanian, G.1
Rao, S.N.2
-
30
-
-
84879592971
-
X-ray Crystallographic Structures as a Source of Ligand Alignment in 3D-QSAR
-
Urniaz, R. D.; Jóźwiak, K. X-ray Crystallographic Structures as a Source of Ligand Alignment in 3D-QSAR J. Chem. Inf. Model. 2013, 53, 1406-1414 10.1021/ci400004e
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 1406-1414
-
-
Urniaz, R.D.1
Jóźwiak, K.2
-
31
-
-
84894679841
-
Multiple e-Pharmacophore Modeling, 3D-QSAR, and High-throughput Virtual Screening of Hepatitis C Virus NS5B Polymerase Inhibitors
-
Therese, P. J.; Manvar, D.; Kondepudi, S.; Battu, M. B.; Sriram, D.; Basu, A.; Yogeeswari, P.; Kaushik-Basu, N. Multiple e-Pharmacophore Modeling, 3D-QSAR, and High-throughput Virtual Screening of Hepatitis C Virus NS5B Polymerase Inhibitors J. Chem. Inf. Model. 2014, 54, 539-552 10.1021/ci400644r
-
(2014)
J. Chem. Inf. Model.
, vol.54
, pp. 539-552
-
-
Therese, P.J.1
Manvar, D.2
Kondepudi, S.3
Battu, M.B.4
Sriram, D.5
Basu, A.6
Yogeeswari, P.7
Kaushik-Basu, N.8
-
32
-
-
84894656990
-
Template CoMFA: The 3D-QSAR Grail?
-
Cramer, R. D.; Wendt, B. Template CoMFA: The 3D-QSAR Grail? J. Chem. Inf. Model. 2014, 54, 660-671 10.1021/ci400696v
-
(2014)
J. Chem. Inf. Model.
, vol.54
, pp. 660-671
-
-
Cramer, R.D.1
Wendt, B.2
-
33
-
-
84904977282
-
Template CoMFA Applied to 116 Biological Targets
-
Cramer, R. D. Template CoMFA Applied to 116 Biological Targets J. Chem. Inf. Model. 2014, 54, 2147-2156 10.1021/ci500230a
-
(2014)
J. Chem. Inf. Model.
, vol.54
, pp. 2147-2156
-
-
Cramer, R.D.1
-
34
-
-
33847662852
-
Soluble Protein Oligomers in Neurodegenaration: Lessons from the Alzheimer's Amyloid beta-peptide
-
Haass, C.; Selkoe, D. J. Soluble Protein Oligomers in Neurodegenaration: Lessons from the Alzheimer's Amyloid beta-peptide Nat. Rev. Mol. Cell Biol. 2007, 8, 101-112 10.1038/nrm2101
-
(2007)
Nat. Rev. Mol. Cell Biol.
, vol.8
, pp. 101-112
-
-
Haass, C.1
Selkoe, D.J.2
-
35
-
-
34248190279
-
A beta Oligomers - A Decade of Discovery
-
Walsh, D. M.; Selkoe, D. J. A beta Oligomers-a Decade of Discovery J. Neurochem. 2007, 101, 1172-1184 10.1111/j.1471-4159.2006.04426.x
-
(2007)
J. Neurochem.
, vol.101
, pp. 1172-1184
-
-
Walsh, D.M.1
Selkoe, D.J.2
-
36
-
-
84903947419
-
Alzheimer's Disease Drug-development Pipeline: Few Candidates, Frequent Failures
-
Cummings, J. L.; Morstorf, T.; Zhong, K. Alzheimer's Disease Drug-development Pipeline: Few Candidates, Frequent Failures Alzheimer's Res. Ther. 2014, 6, 37 10.1186/alzrt269
-
(2014)
Alzheimer's Res. Ther.
, vol.6
, pp. 37
-
-
Cummings, J.L.1
Morstorf, T.2
Zhong, K.3
-
37
-
-
84948736158
-
Alzheimer's Next Chapter
-
Jarvis, L. M. Alzheimer's Next Chapter Chem. Eng. News 2015, 93 (22) 11-15 10.1021/cen-09322-cover
-
(2015)
Chem. Eng. News
, vol.93
, Issue.22
, pp. 11-15
-
-
Jarvis, L.M.1
-
38
-
-
0034613320
-
Structure of the Protease Domain of Memapsin 2 (β-secretase) Complexed with Inhibitor
-
Hong, L.; Koelsch, G.; Lin, X.; Wu, S.; Terzyan, S.; Ghosh, A. K.; Zhang, X. C.; Tang, J. Structure of the Protease Domain of Memapsin 2 (β-secretase) Complexed with Inhibitor Science 2000, 290, 150-153 10.1126/science.290.5489.150
-
(2000)
Science
, vol.290
, pp. 150-153
-
-
Hong, L.1
Koelsch, G.2
Lin, X.3
Wu, S.4
Terzyan, S.5
Ghosh, A.K.6
Zhang, X.C.7
Tang, J.8
-
39
-
-
84863275812
-
Flexibility of the Flap in the Active Site of BACE1 as Revealed by Crystal Structures and Molecular Dynamics Simulations
-
Xu, Y.; Li, M. J.; Greenblatt, H.; Chen, W.; Paz, A.; Dym, O.; Peleg, Y.; Chen, T.; Shen, X.; He, J. et al. Flexibility of the Flap in the Active Site of BACE1 as Revealed by Crystal Structures and Molecular Dynamics Simulations Acta Crystallogr., Sect. D: Biol. Crystallogr. 2012, D68, 13-25 10.1107/S0907444911047251
-
(2012)
Acta Crystallogr., Sect. D: Biol. Crystallogr.
, vol.68
, pp. 13-25
-
-
Xu, Y.1
Li, M.J.2
Greenblatt, H.3
Chen, W.4
Paz, A.5
Dym, O.6
Peleg, Y.7
Chen, T.8
Shen, X.9
He, J.10
-
40
-
-
44349184966
-
Crystal Structure of an Active Form of BACE1, an Enzyme Responsible for Amyloid β Protein Production
-
Shimizu, H.; Tosaki, A.; Kaneko, K.; Hisano, T.; Sakurai, T.; Nukina, N. Crystal Structure of an Active Form of BACE1, an Enzyme Responsible for Amyloid β Protein Production Mol. Cell. Biol. 2008, 28, 3663-3671 10.1128/MCB.02185-07
-
(2008)
Mol. Cell. Biol.
, vol.28
, pp. 3663-3671
-
-
Shimizu, H.1
Tosaki, A.2
Kaneko, K.3
Hisano, T.4
Sakurai, T.5
Nukina, N.6
-
41
-
-
84934892563
-
Target Specific Proteochemometric Model Development for BACE1 - Protein Flexibility and Structural Water are Critical in Virtual Screening
-
Manoharan, P.; Chennoju, K.; Ghoshal, N. Target Specific Proteochemometric Model Development for BACE1-Protein Flexibility and Structural Water are Critical in Virtual Screening Mol. BioSyst. 2015, 11, 1955-1972 10.1039/C5MB00088B
-
(2015)
Mol. BioSyst.
, vol.11
, pp. 1955-1972
-
-
Manoharan, P.1
Chennoju, K.2
Ghoshal, N.3
-
42
-
-
77956013896
-
Effect of the Protonation State of the Titratable Residues on the Inhibitor Affinity of BACE-1
-
Dominguez, J. L.; Christopeit, T.; Villaverde, M. C.; Gossas, T.; Otero, J. M.; Nyström, S.; Baraznenok, V.; Lindström, E.; Danielson, U. H.; Sussman, F. Effect of the Protonation State of the Titratable Residues on the Inhibitor Affinity of BACE-1 Biochemistry 2010, 49, 7255-7263 10.1021/bi100637n
-
(2010)
Biochemistry
, vol.49
, pp. 7255-7263
-
-
Dominguez, J.L.1
Christopeit, T.2
Villaverde, M.C.3
Gossas, T.4
Otero, J.M.5
Nyström, S.6
Baraznenok, V.7
Lindström, E.8
Danielson, U.H.9
Sussman, F.10
-
43
-
-
84938841587
-
PH-Dependent Population Shift Regulates BACE1 Activity and Inhibition
-
Ellis, C. R.; Shen, J. pH-Dependent Population Shift Regulates BACE1 Activity and Inhibition J. Am. Chem. Soc. 2015, 137, 9543-9546 10.1021/jacs.5b05891
-
(2015)
J. Am. Chem. Soc.
, vol.137
, pp. 9543-9546
-
-
Ellis, C.R.1
Shen, J.2
-
44
-
-
84940501243
-
Ligand Binding Thermodynamics in Drug Discovery: Still a Hot Tip?
-
Geschwindner, S.; Ulander, J.; Johansson, P. Ligand Binding Thermodynamics in Drug Discovery: Still a Hot Tip? J. Med. Chem. 2015, 58, 6321-6335 10.1021/jm501511f
-
(2015)
J. Med. Chem.
, vol.58
, pp. 6321-6335
-
-
Geschwindner, S.1
Ulander, J.2
Johansson, P.3
-
45
-
-
84992688082
-
-
RCSB Protein Data Bank. (accessed Jan 30)
-
RCSB Protein Data Bank. http://www.rcsb.org/ (accessed Jan 30, 2014).
-
(2014)
-
-
-
46
-
-
84982813794
-
A Comprehensive Company Database Analysis of Biological Assay Variability
-
Kramer, C.; Dahl, G.; Tyrchan, C.; Ulander, J. A Comprehensive Company Database Analysis of Biological Assay Variability Drug Discovery Today 2016, 21, 1213-1221 10.1016/j.drudis.2016.03.015
-
(2016)
Drug Discovery Today
, vol.21
, pp. 1213-1221
-
-
Kramer, C.1
Dahl, G.2
Tyrchan, C.3
Ulander, J.4
-
47
-
-
84992691386
-
-
ChEMBL. (accessed Mar 30)
-
ChEMBL. https://www.ebi.ac.uk/chembl (accessed Mar 30, 2014).
-
(2014)
-
-
-
48
-
-
84992734475
-
-
DeepChem datasets. (accessed May 3)
-
DeepChem datasets. https://github.com/deepchem/deepchem/tree/master/datasets (accessed May 3, 2016).
-
(2016)
-
-
-
49
-
-
84992693872
-
-
BIOVIA Pipeline Pilot. (accessed May 3)
-
BIOVIA Pipeline Pilot. http://accelrys.com/products/collaborative-science/biovia-pipeline-pilot/ (accessed May 3, 2016).
-
(2016)
-
-
-
50
-
-
77957682613
-
Ligand Efficiency Indices for Effective mapping of Chemico-biological Space: The concept of an Atlas-like Representation
-
Abad-Zapatero, C. et al. Ligand Efficiency Indices for Effective mapping of Chemico-biological Space: The concept of an Atlas-like Representation Drug Discovery Today 2010, 15, 804-811 10.1016/j.drudis.2010.08.004
-
(2010)
Drug Discovery Today
, vol.15
, pp. 804-811
-
-
Abad-Zapatero, C.1
-
51
-
-
84992688098
-
-
Schrödinger, LLC: New York, NY, USA
-
MAESTRO; Schrödinger, LLC: New York, NY, USA, 2014.
-
(2014)
MAESTRO
-
-
-
52
-
-
84992693896
-
-
Chemical Computing Group: Montreal, Canada
-
MOE; Chemical Computing Group: Montreal, Canada, 2014.
-
(2014)
MOE
-
-
-
53
-
-
84992721470
-
-
Schrödinger, LLC: New York, NY, USA
-
Canvas; Schrödinger, LLC: New York, NY, USA, 2014.
-
(2014)
Canvas
-
-
-
54
-
-
77952780755
-
Large-Scale Systematic Analysis of 2D Fingerprint Methods and Parameters to Improve Virtual Screening Enrichments
-
Sastry, M.; Lowrie, J. F.; Dixon, S. L.; Sherman, W. Large-Scale Systematic Analysis of 2D Fingerprint Methods and Parameters to Improve Virtual Screening Enrichments J. Chem. Inf. Model. 2010, 50, 771-784 10.1021/ci100062n
-
(2010)
J. Chem. Inf. Model.
, vol.50
, pp. 771-784
-
-
Sastry, M.1
Lowrie, J.F.2
Dixon, S.L.3
Sherman, W.4
-
55
-
-
84884549795
-
Kernel-based Partial Least Squares: Application to Fingerprint-based QSAR with Model Visualization
-
An, Y.; Sherman, W.; Dixon, S. L. Kernel-based Partial Least Squares: Application to Fingerprint-based QSAR with Model Visualization J. Chem. Inf. Model. 2013, 53, 2312-2321 10.1021/ci400250c
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 2312-2321
-
-
An, Y.1
Sherman, W.2
Dixon, S.L.3
-
56
-
-
84992691445
-
Massively Multitask Networks for Drug Discovery
-
(accessed May 3)
-
Ramsundar, B.; Kearnes, S.; Riley, P.; Webster, D.; Konerding, D.; Pande, V. Massively Multitask Networks for Drug Discovery. Cornell University Library. http://arxiv.org/abs/1502.02072 (accessed May 3, 2016).
-
(2016)
Cornell University Library
-
-
Ramsundar, B.1
Kearnes, S.2
Riley, P.3
Webster, D.4
Konerding, D.5
Pande, V.6
-
57
-
-
84935007308
-
The Relative Importance of Domain Applicability Metrics for Estimating Prediction Errors in QSAR Varies with Training Set Diversity
-
Sheridan, R. P. The Relative Importance of Domain Applicability Metrics for Estimating Prediction Errors in QSAR Varies with Training Set Diversity J. Chem. Inf. Model. 2015, 55, 1098-1107 10.1021/acs.jcim.5b00110
-
(2015)
J. Chem. Inf. Model.
, vol.55
, pp. 1098-1107
-
-
Sheridan, R.P.1
-
58
-
-
77952772341
-
Extended-connectivity Fingerprints
-
Rogers, D.; Hahn, M. Extended-connectivity Fingerprints J. Chem. Inf. Model. 2010, 50, 742-754 10.1021/ci100050t
-
(2010)
J. Chem. Inf. Model.
, vol.50
, pp. 742-754
-
-
Rogers, D.1
Hahn, M.2
-
59
-
-
0029894013
-
The Properties of Known Drugs. 1. Molecular Frameworks
-
Bemis, B. W.; Murcko, M. A. The Properties of Known Drugs. 1. Molecular Frameworks J. Med. Chem. 1996, 39, 2887-2893 10.1021/jm9602928
-
(1996)
J. Med. Chem.
, vol.39
, pp. 2887-2893
-
-
Bemis, B.W.1
Murcko, M.A.2
-
61
-
-
84938914158
-
Progress in Visual Representations of Chemical Space
-
Osolodkin, D. I.; Radchenko, E. V.; Orlov, A. A.; Voronkov, A. E.; Palyulin, V. A.; Zefirov, N. S. Progress in Visual Representations of Chemical Space Expert Opin. Drug Discovery 2015, 10, 959-973 10.1517/17460441.2015.1060216
-
(2015)
Expert Opin. Drug Discovery
, vol.10
, pp. 959-973
-
-
Osolodkin, D.I.1
Radchenko, E.V.2
Orlov, A.A.3
Voronkov, A.E.4
Palyulin, V.A.5
Zefirov, N.S.6
-
62
-
-
84923328756
-
DataWarrior: An Open-source Program for Chemistry Aware Data Visualization and Analysis
-
Sander, T.; Freyss, J.; von Korff, M.; Rufener, C. DataWarrior: An Open-source Program for Chemistry Aware Data Visualization and Analysis J. Chem. Inf. Model. 2015, 55, 460-473 10.1021/ci500588j
-
(2015)
J. Chem. Inf. Model.
, vol.55
, pp. 460-473
-
-
Sander, T.1
Freyss, J.2
Von Korff, M.3
Rufener, C.4
-
63
-
-
42149090634
-
Structure-activity Landscape Index: Identifying and Quantifying Activity Cliffs
-
Guha, R.; van Drie, J. H. Structure-activity Landscape Index: Identifying and Quantifying Activity Cliffs J. Chem. Inf. Model. 2008, 48, 646-658 10.1021/ci7004093
-
(2008)
J. Chem. Inf. Model.
, vol.48
, pp. 646-658
-
-
Guha, R.1
Van Drie, J.H.2
-
64
-
-
84992744276
-
-
Deepchem Home Page. (accessed May 3)
-
Deepchem Home Page. https://github.com/deepchem/deepchem (accessed May 3, 2016).
-
(2016)
-
-
-
65
-
-
84857855190
-
Random Search for Hyper-Parameter Optimization
-
Bergstra, J.; Bengio, Y. Random Search for Hyper-Parameter Optimization J. Machine Learn. Res. 2012, 12, 281-305
-
(2012)
J. Machine Learn. Res.
, vol.12
, pp. 281-305
-
-
Bergstra, J.1
Bengio, Y.2
-
66
-
-
17044403086
-
Ligand Efficiency Indices as Guideposts for Drug Discovery
-
Abad-Zapatero, C.; Metz, J. T. Ligand Efficiency Indices as Guideposts for Drug Discovery Drug Discovery Today 2005, 10, 464-469 10.1016/S1359-6446(05)03386-6
-
(2005)
Drug Discovery Today
, vol.10
, pp. 464-469
-
-
Abad-Zapatero, C.1
Metz, J.T.2
-
67
-
-
34447548576
-
Ligand Efficiency Indices for Effective Drug Discovery
-
Abad-Zapatero, C. Ligand Efficiency Indices for Effective Drug Discovery Expert Opin. Drug Discovery 2007, 2, 469-488 10.1517/17460441.2.4.469
-
(2007)
Expert Opin. Drug Discovery
, vol.2
, pp. 469-488
-
-
Abad-Zapatero, C.1
-
68
-
-
84962925987
-
Compound High-quality Criteria: A New Vision to Guide the Development of Drugs, Current Situation
-
Mignani, S.; Huber, S.; Tomás, H.; Rodrigues, J.; Majoral, J.-P. Compound High-quality Criteria: A New Vision to Guide the Development of Drugs, Current Situation Drug Discovery Today 2016, 21, 573-584 10.1016/j.drudis.2016.01.005
-
(2016)
Drug Discovery Today
, vol.21
, pp. 573-584
-
-
Mignani, S.1
Huber, S.2
Tomás, H.3
Rodrigues, J.4
Majoral, J.-P.5
-
69
-
-
84904163933
-
Dropout: A Simple Way to Prevent Neural Networks from Overfitting
-
Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks from Overfitting J. Mach. Learn. Res. 2014, 15, 1929-1958
-
(2014)
J. Mach. Learn. Res.
, vol.15
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
70
-
-
84961589594
-
Improving Quantitative Structure-activity Relationship Models using Artificial Neural Networks Trained with Dropout
-
Mendenhall, J.; Meiler, J. Improving Quantitative Structure-activity Relationship Models using Artificial Neural Networks Trained with Dropout J. Comput.-Aided Mol. Des. 2016, 30, 177-189 10.1007/s10822-016-9895-2
-
(2016)
J. Comput.-Aided Mol. Des.
, vol.30
, pp. 177-189
-
-
Mendenhall, J.1
Meiler, J.2
-
71
-
-
79551667504
-
In-silico ADME Models: A General Assessment of their Utility in Drug Discovery Applications
-
Gleeson, M. P.; Hersey, A.; Hannongbua, S. In-silico ADME Models: A General Assessment of their Utility in Drug Discovery Applications Curr. Top. Med. Chem. 2011, 11, 358-381 10.2174/156802611794480927
-
(2011)
Curr. Top. Med. Chem.
, vol.11
, pp. 358-381
-
-
Gleeson, M.P.1
Hersey, A.2
Hannongbua, S.3
-
72
-
-
84867931355
-
Computational Tools and Resources for Metabolism-related Property Predictions. 1. Overview of Publicly Available (free and commercial) Databases and Software
-
Peach, M. L.; Zakharov, A. V.; Liu, R.; Pugliese, A.; Tawa, G.; Wallqvist, A.; Nicklaus, M. C. Computational Tools and Resources for Metabolism-related Property Predictions. 1. Overview of Publicly Available (free and commercial) Databases and Software Future Med. Chem. 2012, 4, 1907-1932 10.4155/fmc.12.150
-
(2012)
Future Med. Chem.
, vol.4
, pp. 1907-1932
-
-
Peach, M.L.1
Zakharov, A.V.2
Liu, R.3
Pugliese, A.4
Tawa, G.5
Wallqvist, A.6
Nicklaus, M.C.7
-
73
-
-
0021097529
-
How Good are Predictions of Protein Secondary Structure?
-
Kabsch, W.; Sander, C. How Good are Predictions of Protein Secondary Structure? FEBS Lett. 1983, 155, 179-182 10.1016/0014-5793(82)80597-8
-
(1983)
FEBS Lett.
, vol.155
, pp. 179-182
-
-
Kabsch, W.1
Sander, C.2
-
74
-
-
84979854249
-
JPred4: A protein Secondary Structure Prediction Server
-
Drozdetskiy, A.; Cole, C.; Procter, J.; Barton, G. J. JPred4: a protein Secondary Structure Prediction Server Nucleic Acids Res. 2015, 43, W389-W394 10.1093/nar/gkv332
-
(2015)
Nucleic Acids Res.
, vol.43
, pp. W389-W394
-
-
Drozdetskiy, A.1
Cole, C.2
Procter, J.3
Barton, G.J.4
-
75
-
-
0015967881
-
Conformational Parameters for Amino Acids in Helical, β-sheet, and Random Coil Regions Calculated from Proteins
-
Chou, P. Y.; Fasman, G. D. Conformational Parameters for Amino Acids in Helical, β-sheet, and Random Coil Regions Calculated from Proteins Biochemistry 1974, 13, 211-222 10.1021/bi00699a001
-
(1974)
Biochemistry
, vol.13
, pp. 211-222
-
-
Chou, P.Y.1
Fasman, G.D.2
-
76
-
-
84901272158
-
Advances in Quantitative Structure-activity relationship models of anti-Alzheimer's Agents
-
references cited therein
-
Ambure, P.; Roy, K. Advances in Quantitative Structure-activity relationship models of anti-Alzheimer's Agents Expert Opin. Drug Discovery 2014, 9, 697-723 and references cited therein 10.1517/17460441.2014.909404
-
(2014)
Expert Opin. Drug Discovery
, vol.9
, pp. 697-723
-
-
Ambure, P.1
Roy, K.2
-
77
-
-
84962090078
-
Interaction mechanism Exploration of HEA Derivatives as BACE1 Inhibitors by in silico Analysis
-
references cited therein
-
Wu, Q.; Li, X.; Gao, Q.; Wang, J.; Li, Y.; Yang, L. Interaction mechanism Exploration of HEA Derivatives as BACE1 Inhibitors by in silico Analysis Mol. BioSyst. 2016, 12, 1151-1165 and references cited therein 10.1039/C5MB00859J
-
(2016)
Mol. BioSyst.
, vol.12
, pp. 1151-1165
-
-
Wu, Q.1
Li, X.2
Gao, Q.3
Wang, J.4
Li, Y.5
Yang, L.6
-
78
-
-
84935518395
-
Template CoMFA Generates Single 3D-QSAR models that, for Twelve of Twelve Biological Targets, predict All ChEMBL-Tabulated Affinities
-
Cramer, R. D. Template CoMFA Generates Single 3D-QSAR models that, for Twelve of Twelve Biological Targets, predict All ChEMBL-Tabulated Affinities PLoS One 2015, 10, e0129307 10.1371/journal.pone.0129307
-
(2015)
PLoS One
, vol.10
, pp. e0129307
-
-
Cramer, R.D.1
-
79
-
-
84988851134
-
Application of Free Energy Perturbation for the Design of BACE1 Inhibitors
-
Ciordia, M.; Perez-Benito, L.; Delgado, F.; Trabanco, A. A.; Tresadern, G. Application of Free Energy Perturbation for the Design of BACE1 Inhibitors J. Chem. Inf. Model. 2016, 56, 1856 10.1021/acs.jcim.6b00220
-
(2016)
J. Chem. Inf. Model.
, vol.56
, pp. 1856
-
-
Ciordia, M.1
Perez-Benito, L.2
Delgado, F.3
Trabanco, A.A.4
Tresadern, G.5
-
80
-
-
84945557463
-
Deep Learning for Drug-induced Liver Injury
-
Xu, Y.; Dai, Z.; Chen, F.; Gao, S.; Pei, J.; Lai, L. Deep Learning for Drug-induced Liver Injury J. Chem. Inf. Model. 2015, 55, 2085-2093 10.1021/acs.jcim.5b00238
-
(2015)
J. Chem. Inf. Model.
, vol.55
, pp. 2085-2093
-
-
Xu, Y.1
Dai, Z.2
Chen, F.3
Gao, S.4
Pei, J.5
Lai, L.6
-
81
-
-
84954372459
-
Deep Learning in Drug Discovery
-
Gawehn, E.; Hiss, J. A.; Schneider, G. Deep Learning in Drug Discovery Mol. Inf. 2016, 35, 3-14 10.1002/minf.201501008
-
(2016)
Mol. Inf.
, vol.35
, pp. 3-14
-
-
Gawehn, E.1
Hiss, J.A.2
Schneider, G.3
-
82
-
-
84968861400
-
Applications of Deep Learning in Biomedicine
-
Mamoshina, P.; Vieira, A.; Putin, E.; Zhavoronkov, A. Applications of Deep Learning in Biomedicine Mol. Pharmaceutics 2016, 13, 1445-1454 10.1021/acs.molpharmaceut.5b00982
-
(2016)
Mol. Pharmaceutics
, vol.13
, pp. 1445-1454
-
-
Mamoshina, P.1
Vieira, A.2
Putin, E.3
Zhavoronkov, A.4
-
83
-
-
84961133262
-
Understanding the Roles of the "two QSARs
-
Fujita, T.; Winkler, D. A. Understanding the Roles of the "Two QSARs J. Chem. Inf. Model. 2016, 56, 269-274 10.1021/acs.jcim.5b00229
-
(2016)
J. Chem. Inf. Model.
, vol.56
, pp. 269-274
-
-
Fujita, T.1
Winkler, D.A.2
-
84
-
-
84945557463
-
Deep Learning for Drug-Induced Liver Injury
-
Xu, Y.; Dai, Z.; Chen, F.; Gao, S.; Pei, J.; Lai, L. Deep Learning for Drug-Induced Liver Injury J. Chem. Inf. Model. 2015, 55, 2085-2093 10.1021/acs.jcim.5b00238
-
(2015)
J. Chem. Inf. Model.
, vol.55
, pp. 2085-2093
-
-
Xu, Y.1
Dai, Z.2
Chen, F.3
Gao, S.4
Pei, J.5
Lai, L.6
-
85
-
-
84969508669
-
Avoiding Missed Opportunities by Analyzing the Sensitivity of Our Decisions
-
Segall, M. D.; Yusof, I.; Champness, E. J. Avoiding Missed Opportunities by Analyzing the Sensitivity of Our Decisions J. Med. Chem. 2016, 59, 4267-4277 10.1021/acs.jmedchem.5b01921
-
(2016)
J. Med. Chem.
, vol.59
, pp. 4267-4277
-
-
Segall, M.D.1
Yusof, I.2
Champness, E.J.3
|