메뉴 건너뛰기




Volumn 56, Issue 10, 2016, Pages 1936-1949

Computational Modeling of β-Secretase 1 (BACE-1) Inhibitors Using Ligand Based Approaches

Author keywords

[No Author keywords available]

Indexed keywords

BINDING ENERGY; COMPUTATIONAL CHEMISTRY; DEEP LEARNING; DEEP NEURAL NETWORKS; LIGANDS; MOLECULAR GRAPHICS; STATISTICAL TESTS;

EID: 84992694543     PISSN: 15499596     EISSN: 1549960X     Source Type: Journal    
DOI: 10.1021/acs.jcim.6b00290     Document Type: Article
Times cited : (268)

References (85)
  • 2
    • 34548304745 scopus 로고    scopus 로고
    • In silico Pharmacology for Drug Discovery: Methods for Virtual Ligand Screening and Profiling
    • Ekins, S.; Mestres, J.; Testa, B. In silico Pharmacology for Drug Discovery: Methods for Virtual Ligand Screening and Profiling Br. J. Pharmacol. 2007, 152, 9-20 10.1038/sj.bjp.0707305
    • (2007) Br. J. Pharmacol. , vol.152 , pp. 9-20
    • Ekins, S.1    Mestres, J.2    Testa, B.3
  • 3
    • 34548319111 scopus 로고    scopus 로고
    • In silico Pharmacology for Drug Discovery: Applications to Targets and beyond
    • Ekins, S.; Mestres, J.; Testa, B. In silico Pharmacology for Drug Discovery: Applications to Targets and Beyond Br. J. Pharmacol. 2007, 152, 21-37 10.1038/sj.bjp.0707306
    • (2007) Br. J. Pharmacol. , vol.152 , pp. 21-37
    • Ekins, S.1    Mestres, J.2    Testa, B.3
  • 4
    • 84941997753 scopus 로고    scopus 로고
    • Role of Computer-aided Drug Design in Modern Drug Discovery
    • Macalino, S. J. Y.; Gosu, V.; Hong, S.; Choi, S. Role of Computer-aided Drug Design in Modern Drug Discovery Arch. Pharmacal Res. 2015, 38, 1686-1702 10.1007/s12272-015-0640-5
    • (2015) Arch. Pharmacal Res. , vol.38 , pp. 1686-1702
    • Macalino, S.J.Y.1    Gosu, V.2    Hong, S.3    Choi, S.4
  • 5
    • 0141676629 scopus 로고    scopus 로고
    • The Process of Structure-Based Drug Design
    • Anderson, A. C. The Process of Structure-Based Drug Design Chem. Biol. 2003, 10, 787-797 10.1016/j.chembiol.2003.09.002
    • (2003) Chem. Biol. , vol.10 , pp. 787-797
    • Anderson, A.C.1
  • 6
    • 0020491251 scopus 로고
    • A Geometric Approach to Macromolecule-ligand Interactions
    • Kuntz, I. D.; Blaney, J. M.; Oatley, S. J.; Langridge, R.; Ferrin, T. E. A Geometric Approach to Macromolecule-ligand Interactions J. Mol. Biol. 1982, 161, 269-288 10.1016/0022-2836(82)90153-X
    • (1982) J. Mol. Biol. , vol.161 , pp. 269-288
    • Kuntz, I.D.1    Blaney, J.M.2    Oatley, S.J.3    Langridge, R.4    Ferrin, T.E.5
  • 7
    • 8844263008 scopus 로고    scopus 로고
    • Docking and Scoring in Virtual Screening for Drug Discovery: Methods and Applications
    • Kitchen, D. B.; Decornez, H.; Furr, J. R.; Bajorath, J. Docking and Scoring in Virtual Screening for Drug Discovery: Methods and Applications Nat. Rev. Drug Discovery 2004, 3, 935-949 10.1038/nrd1549
    • (2004) Nat. Rev. Drug Discovery , vol.3 , pp. 935-949
    • Kitchen, D.B.1    Decornez, H.2    Furr, J.R.3    Bajorath, J.4
  • 9
    • 84906222221 scopus 로고    scopus 로고
    • Binding Free Energy Calculations for Lead Optimization: Assesment of Their Accuracy in an Industrial Drug Design Context
    • Homeyer, N.; Stoll, F.; Hillisch, A.; Gohlke, H. Binding Free Energy Calculations for Lead Optimization: Assesment of Their Accuracy in an Industrial Drug Design Context J. Chem. Theory Comput. 2014, 10, 3331-3344 10.1021/ct5000296
    • (2014) J. Chem. Theory Comput. , vol.10 , pp. 3331-3344
    • Homeyer, N.1    Stoll, F.2    Hillisch, A.3    Gohlke, H.4
  • 10
    • 84923538660 scopus 로고    scopus 로고
    • Accurate and Reliable Prediction of Relative Ligand Binding Potency in Prospective Drug Discovery by Way of a Modern Free-Energy Calculation Protocol and Force Field
    • Wang, L.; Wu, Y.; Deng, Y.; Kim, B.; Pierce, L.; Krilov, G.; Lupyan, D.; Robinson, S.; Dahlgren, M. K.; Greenwood, J. et al. Accurate and Reliable Prediction of Relative Ligand Binding Potency in Prospective Drug Discovery by Way of a Modern Free-Energy Calculation Protocol and Force Field J. Am. Chem. Soc. 2015, 137, 2695-2703 10.1021/ja512751q
    • (2015) J. Am. Chem. Soc. , vol.137 , pp. 2695-2703
    • Wang, L.1    Wu, Y.2    Deng, Y.3    Kim, B.4    Pierce, L.5    Krilov, G.6    Lupyan, D.7    Robinson, S.8    Dahlgren, M.K.9    Greenwood, J.10
  • 11
    • 84950303075 scopus 로고    scopus 로고
    • Accurate Calculation of the Absolute Free Energy of Binding for Drug Molecules
    • Aldeghi, M.; Heifetz, A.; Bodkin, M. J.; Knapp, S.; Biggin, P. Accurate Calculation of the Absolute Free Energy of Binding for Drug Molecules Chem. Sci. 2016, 7, 207-218 10.1039/C5SC02678D
    • (2016) Chem. Sci. , vol.7 , pp. 207-218
    • Aldeghi, M.1    Heifetz, A.2    Bodkin, M.J.3    Knapp, S.4    Biggin, P.5
  • 12
    • 84969122144 scopus 로고    scopus 로고
    • Role of Molecular Dynamics and Related Methods in Drug Discovery
    • De Vivo, M.; Masetti, M.; Bottegoni, G.; Cavalli, A. Role of Molecular Dynamics and Related Methods in Drug Discovery J. Med. Chem. 2016, 59, 4035-4061 10.1021/acs.jmedchem.5b01684
    • (2016) J. Med. Chem. , vol.59 , pp. 4035-4061
    • De Vivo, M.1    Masetti, M.2    Bottegoni, G.3    Cavalli, A.4
  • 13
    • 77951992987 scopus 로고    scopus 로고
    • Ensemble Docking into Multiple Crystallographically Derived Protein Structures: An Evaluation Based on the Statistical Analysis of Enrichments
    • Craig, I. R.; Essex, J. W.; Spiegel, K. Ensemble Docking into Multiple Crystallographically Derived Protein Structures: An Evaluation Based on the Statistical Analysis of Enrichments J. Chem. Inf. Model. 2010, 50, 511-524 10.1021/ci900407c
    • (2010) J. Chem. Inf. Model. , vol.50 , pp. 511-524
    • Craig, I.R.1    Essex, J.W.2    Spiegel, K.3
  • 15
    • 84969248247 scopus 로고    scopus 로고
    • Binding Mode and Induced Fit Predictions for Prospective Computational Drug Design
    • Grebner, C.; Iegre, J.; Ulander, J.; Edman, K.; Hogner, A.; Tyrchan, C. Binding Mode and Induced Fit Predictions for Prospective Computational Drug Design J. Chem. Inf. Model. 2016, 56, 774-787 10.1021/acs.jcim.5b00744
    • (2016) J. Chem. Inf. Model. , vol.56 , pp. 774-787
    • Grebner, C.1    Iegre, J.2    Ulander, J.3    Edman, K.4    Hogner, A.5    Tyrchan, C.6
  • 16
    • 84904130280 scopus 로고    scopus 로고
    • Practical Aspects of Free-energy Calculations: A Review
    • Hansen, N.; van Gunsteren, W. F. Practical Aspects of Free-energy Calculations: A Review J. Chem. Theory Comput. 2014, 10, 2632-47 10.1021/ct500161f
    • (2014) J. Chem. Theory Comput. , vol.10 , pp. 2632-2647
    • Hansen, N.1    Van Gunsteren, W.F.2
  • 17
    • 84954364815 scopus 로고    scopus 로고
    • High-resolution Crystal Structures Leverage Protein Binding Affinity Predictions
    • Marillet, S.; Boudinot, P.; Cazals, F. High-resolution Crystal Structures Leverage Protein Binding Affinity Predictions Proteins: Struct., Funct., Genet. 2016, 84, 9-20 10.1002/prot.24946
    • (2016) Proteins: Struct., Funct., Genet. , vol.84 , pp. 9-20
    • Marillet, S.1    Boudinot, P.2    Cazals, F.3
  • 18
    • 34447521097 scopus 로고
    • Correlation of Biological Activity of Phenoxyacetic Acids with Hammett Substituent Constants and Partition Coefficients
    • Hansch, C.; Maloney, P.; Fujita, T.; Muir, R. Correlation of Biological Activity of Phenoxyacetic Acids with Hammett Substituent Constants and Partition Coefficients Nature 1962, 194, 178-180 10.1038/194178b0
    • (1962) Nature , vol.194 , pp. 178-180
    • Hansch, C.1    Maloney, P.2    Fujita, T.3    Muir, R.4
  • 21
    • 84939863615 scopus 로고    scopus 로고
    • Pharmacophore Identification and Pseudo-receptor Modeling
    • Fourth ed. Wermuth, C. G. Aldous, D. Raboisson, P. Rognan, D. Academic Press: London, United Kingdom
    • Wolber, G.; Sippl, W. Pharmacophore Identification and Pseudo-receptor Modeling. In The Practice of Medicinal Chemistry, Fourth ed.; Wermuth, C. G.; Aldous, D.; Raboisson, P.; Rognan, D., Eds.; Academic Press: London, United Kingdom, 2015; pp 489-510.
    • (2015) The Practice of Medicinal Chemistry , pp. 489-510
    • Wolber, G.1    Sippl, W.2
  • 22
    • 0023751431 scopus 로고
    • Comparative Molecular Field Analysis (CoMFA). 1. Effect of Shape on Binding of Steroids to Carrier Proteins
    • Cramer, R. D., III; Patterson, D. E.; Bunce, J. D. Comparative Molecular Field Analysis (CoMFA). 1. Effect of Shape on Binding of Steroids to Carrier Proteins J. Am. Chem. Soc. 1988, 110, 5959-5967 10.1021/ja00226a005
    • (1988) J. Am. Chem. Soc. , vol.110 , pp. 5959-5967
    • Cramer, R.D.1    Patterson, D.E.2    Bunce, J.D.3
  • 23
    • 84879242302 scopus 로고    scopus 로고
    • Combination of Ligand- and Structure-based Methods in Virtual Screening
    • Drwal, M. N.; Griffith, R. Combination of Ligand- and Structure-based Methods in Virtual Screening Drug Discovery Today: Technol. 2013, 10, e395-e401 10.1016/j.ddtec.2013.02.002
    • (2013) Drug Discovery Today: Technol. , vol.10 , pp. e395-e401
    • Drwal, M.N.1    Griffith, R.2
  • 24
    • 84903312601 scopus 로고    scopus 로고
    • Best of Both Worlds: On the Complementarity of Ligand-based and Structure-based Virtual Screening
    • Broccatelli, F.; Brown, N. Best of Both Worlds: On the Complementarity of Ligand-based and Structure-based Virtual Screening J. Chem. Inf. Model. 2014, 54, 1634-1641 10.1021/ci5001604
    • (2014) J. Chem. Inf. Model. , vol.54 , pp. 1634-1641
    • Broccatelli, F.1    Brown, N.2
  • 25
    • 84976522772 scopus 로고    scopus 로고
    • HybridDock: A Hybrid Protein-Ligand Docking Protocol Integrating Protein- and Ligand-based Approaches
    • Huang, S.-Y.; Li, M.; Wang, J.; Pan, Y. HybridDock: A Hybrid Protein-Ligand Docking Protocol Integrating Protein- and Ligand-based Approaches J. Chem. Inf. Model. 2016, 56, 1078-1087 10.1021/acs.jcim.5b00275
    • (2016) J. Chem. Inf. Model. , vol.56 , pp. 1078-1087
    • Huang, S.-Y.1    Li, M.2    Wang, J.3    Pan, Y.4
  • 26
    • 84976394415 scopus 로고    scopus 로고
    • Integration of Ligand and Structure Based Approaches for CSAR-2014
    • Prathipati, P.; Mizuguchi, K. Integration of Ligand and Structure Based Approaches for CSAR-2014 J. Chem. Inf. Model. 2016, 56, 974-987 10.1021/acs.jcim.5b00477
    • (2016) J. Chem. Inf. Model. , vol.56 , pp. 974-987
    • Prathipati, P.1    Mizuguchi, K.2
  • 27
    • 0033022163 scopus 로고    scopus 로고
    • Comparative Molecular Similarity Index Analysis (CoMSIA) to Study Hydrogen-bonding Properties and to Score Combinatorial Libraries
    • Klebe, G.; Abraham, U. Comparative Molecular Similarity Index Analysis (CoMSIA) to Study Hydrogen-bonding Properties and to Score Combinatorial Libraries J. Comput.-Aided Mol. Des. 1999, 13, 1-10 10.1023/A:1008047919606
    • (1999) J. Comput.-Aided Mol. Des. , vol.13 , pp. 1-10
    • Klebe, G.1    Abraham, U.2
  • 28
    • 84922102617 scopus 로고    scopus 로고
    • Exploring Conformational Search Protocols for Ligand-based Virtual Screening and 3-D QSAR Modeling
    • Cappel, D.; Dixon, S. L.; Sherman, W.; Duan, J. Exploring Conformational Search Protocols for Ligand-based Virtual Screening and 3-D QSAR Modeling J. Comput.-Aided Mol. Des. 2015, 29, 165-182 10.1007/s10822-014-9813-4
    • (2015) J. Comput.-Aided Mol. Des. , vol.29 , pp. 165-182
    • Cappel, D.1    Dixon, S.L.2    Sherman, W.3    Duan, J.4
  • 29
    • 84855794457 scopus 로고    scopus 로고
    • An Integrated Computational Workflow for Efficient and Quantitative Modeling of Renin Inhibitors
    • Subramanian, G.; Rao, S. N. An Integrated Computational Workflow for Efficient and Quantitative Modeling of Renin Inhibitors Bioorg. Med. Chem. 2012, 20, 851-858 10.1016/j.bmc.2011.11.063
    • (2012) Bioorg. Med. Chem. , vol.20 , pp. 851-858
    • Subramanian, G.1    Rao, S.N.2
  • 30
    • 84879592971 scopus 로고    scopus 로고
    • X-ray Crystallographic Structures as a Source of Ligand Alignment in 3D-QSAR
    • Urniaz, R. D.; Jóźwiak, K. X-ray Crystallographic Structures as a Source of Ligand Alignment in 3D-QSAR J. Chem. Inf. Model. 2013, 53, 1406-1414 10.1021/ci400004e
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 1406-1414
    • Urniaz, R.D.1    Jóźwiak, K.2
  • 31
    • 84894679841 scopus 로고    scopus 로고
    • Multiple e-Pharmacophore Modeling, 3D-QSAR, and High-throughput Virtual Screening of Hepatitis C Virus NS5B Polymerase Inhibitors
    • Therese, P. J.; Manvar, D.; Kondepudi, S.; Battu, M. B.; Sriram, D.; Basu, A.; Yogeeswari, P.; Kaushik-Basu, N. Multiple e-Pharmacophore Modeling, 3D-QSAR, and High-throughput Virtual Screening of Hepatitis C Virus NS5B Polymerase Inhibitors J. Chem. Inf. Model. 2014, 54, 539-552 10.1021/ci400644r
    • (2014) J. Chem. Inf. Model. , vol.54 , pp. 539-552
    • Therese, P.J.1    Manvar, D.2    Kondepudi, S.3    Battu, M.B.4    Sriram, D.5    Basu, A.6    Yogeeswari, P.7    Kaushik-Basu, N.8
  • 32
    • 84894656990 scopus 로고    scopus 로고
    • Template CoMFA: The 3D-QSAR Grail?
    • Cramer, R. D.; Wendt, B. Template CoMFA: The 3D-QSAR Grail? J. Chem. Inf. Model. 2014, 54, 660-671 10.1021/ci400696v
    • (2014) J. Chem. Inf. Model. , vol.54 , pp. 660-671
    • Cramer, R.D.1    Wendt, B.2
  • 33
    • 84904977282 scopus 로고    scopus 로고
    • Template CoMFA Applied to 116 Biological Targets
    • Cramer, R. D. Template CoMFA Applied to 116 Biological Targets J. Chem. Inf. Model. 2014, 54, 2147-2156 10.1021/ci500230a
    • (2014) J. Chem. Inf. Model. , vol.54 , pp. 2147-2156
    • Cramer, R.D.1
  • 34
    • 33847662852 scopus 로고    scopus 로고
    • Soluble Protein Oligomers in Neurodegenaration: Lessons from the Alzheimer's Amyloid beta-peptide
    • Haass, C.; Selkoe, D. J. Soluble Protein Oligomers in Neurodegenaration: Lessons from the Alzheimer's Amyloid beta-peptide Nat. Rev. Mol. Cell Biol. 2007, 8, 101-112 10.1038/nrm2101
    • (2007) Nat. Rev. Mol. Cell Biol. , vol.8 , pp. 101-112
    • Haass, C.1    Selkoe, D.J.2
  • 35
    • 34248190279 scopus 로고    scopus 로고
    • A beta Oligomers - A Decade of Discovery
    • Walsh, D. M.; Selkoe, D. J. A beta Oligomers-a Decade of Discovery J. Neurochem. 2007, 101, 1172-1184 10.1111/j.1471-4159.2006.04426.x
    • (2007) J. Neurochem. , vol.101 , pp. 1172-1184
    • Walsh, D.M.1    Selkoe, D.J.2
  • 36
    • 84903947419 scopus 로고    scopus 로고
    • Alzheimer's Disease Drug-development Pipeline: Few Candidates, Frequent Failures
    • Cummings, J. L.; Morstorf, T.; Zhong, K. Alzheimer's Disease Drug-development Pipeline: Few Candidates, Frequent Failures Alzheimer's Res. Ther. 2014, 6, 37 10.1186/alzrt269
    • (2014) Alzheimer's Res. Ther. , vol.6 , pp. 37
    • Cummings, J.L.1    Morstorf, T.2    Zhong, K.3
  • 37
    • 84948736158 scopus 로고    scopus 로고
    • Alzheimer's Next Chapter
    • Jarvis, L. M. Alzheimer's Next Chapter Chem. Eng. News 2015, 93 (22) 11-15 10.1021/cen-09322-cover
    • (2015) Chem. Eng. News , vol.93 , Issue.22 , pp. 11-15
    • Jarvis, L.M.1
  • 38
    • 0034613320 scopus 로고    scopus 로고
    • Structure of the Protease Domain of Memapsin 2 (β-secretase) Complexed with Inhibitor
    • Hong, L.; Koelsch, G.; Lin, X.; Wu, S.; Terzyan, S.; Ghosh, A. K.; Zhang, X. C.; Tang, J. Structure of the Protease Domain of Memapsin 2 (β-secretase) Complexed with Inhibitor Science 2000, 290, 150-153 10.1126/science.290.5489.150
    • (2000) Science , vol.290 , pp. 150-153
    • Hong, L.1    Koelsch, G.2    Lin, X.3    Wu, S.4    Terzyan, S.5    Ghosh, A.K.6    Zhang, X.C.7    Tang, J.8
  • 40
    • 44349184966 scopus 로고    scopus 로고
    • Crystal Structure of an Active Form of BACE1, an Enzyme Responsible for Amyloid β Protein Production
    • Shimizu, H.; Tosaki, A.; Kaneko, K.; Hisano, T.; Sakurai, T.; Nukina, N. Crystal Structure of an Active Form of BACE1, an Enzyme Responsible for Amyloid β Protein Production Mol. Cell. Biol. 2008, 28, 3663-3671 10.1128/MCB.02185-07
    • (2008) Mol. Cell. Biol. , vol.28 , pp. 3663-3671
    • Shimizu, H.1    Tosaki, A.2    Kaneko, K.3    Hisano, T.4    Sakurai, T.5    Nukina, N.6
  • 41
    • 84934892563 scopus 로고    scopus 로고
    • Target Specific Proteochemometric Model Development for BACE1 - Protein Flexibility and Structural Water are Critical in Virtual Screening
    • Manoharan, P.; Chennoju, K.; Ghoshal, N. Target Specific Proteochemometric Model Development for BACE1-Protein Flexibility and Structural Water are Critical in Virtual Screening Mol. BioSyst. 2015, 11, 1955-1972 10.1039/C5MB00088B
    • (2015) Mol. BioSyst. , vol.11 , pp. 1955-1972
    • Manoharan, P.1    Chennoju, K.2    Ghoshal, N.3
  • 43
    • 84938841587 scopus 로고    scopus 로고
    • PH-Dependent Population Shift Regulates BACE1 Activity and Inhibition
    • Ellis, C. R.; Shen, J. pH-Dependent Population Shift Regulates BACE1 Activity and Inhibition J. Am. Chem. Soc. 2015, 137, 9543-9546 10.1021/jacs.5b05891
    • (2015) J. Am. Chem. Soc. , vol.137 , pp. 9543-9546
    • Ellis, C.R.1    Shen, J.2
  • 44
    • 84940501243 scopus 로고    scopus 로고
    • Ligand Binding Thermodynamics in Drug Discovery: Still a Hot Tip?
    • Geschwindner, S.; Ulander, J.; Johansson, P. Ligand Binding Thermodynamics in Drug Discovery: Still a Hot Tip? J. Med. Chem. 2015, 58, 6321-6335 10.1021/jm501511f
    • (2015) J. Med. Chem. , vol.58 , pp. 6321-6335
    • Geschwindner, S.1    Ulander, J.2    Johansson, P.3
  • 45
    • 84992688082 scopus 로고    scopus 로고
    • RCSB Protein Data Bank. (accessed Jan 30)
    • RCSB Protein Data Bank. http://www.rcsb.org/ (accessed Jan 30, 2014).
    • (2014)
  • 46
    • 84982813794 scopus 로고    scopus 로고
    • A Comprehensive Company Database Analysis of Biological Assay Variability
    • Kramer, C.; Dahl, G.; Tyrchan, C.; Ulander, J. A Comprehensive Company Database Analysis of Biological Assay Variability Drug Discovery Today 2016, 21, 1213-1221 10.1016/j.drudis.2016.03.015
    • (2016) Drug Discovery Today , vol.21 , pp. 1213-1221
    • Kramer, C.1    Dahl, G.2    Tyrchan, C.3    Ulander, J.4
  • 47
    • 84992691386 scopus 로고    scopus 로고
    • ChEMBL. (accessed Mar 30)
    • ChEMBL. https://www.ebi.ac.uk/chembl (accessed Mar 30, 2014).
    • (2014)
  • 48
    • 84992734475 scopus 로고    scopus 로고
    • DeepChem datasets. (accessed May 3)
    • DeepChem datasets. https://github.com/deepchem/deepchem/tree/master/datasets (accessed May 3, 2016).
    • (2016)
  • 49
    • 84992693872 scopus 로고    scopus 로고
    • BIOVIA Pipeline Pilot. (accessed May 3)
    • BIOVIA Pipeline Pilot. http://accelrys.com/products/collaborative-science/biovia-pipeline-pilot/ (accessed May 3, 2016).
    • (2016)
  • 50
    • 77957682613 scopus 로고    scopus 로고
    • Ligand Efficiency Indices for Effective mapping of Chemico-biological Space: The concept of an Atlas-like Representation
    • Abad-Zapatero, C. et al. Ligand Efficiency Indices for Effective mapping of Chemico-biological Space: The concept of an Atlas-like Representation Drug Discovery Today 2010, 15, 804-811 10.1016/j.drudis.2010.08.004
    • (2010) Drug Discovery Today , vol.15 , pp. 804-811
    • Abad-Zapatero, C.1
  • 51
    • 84992688098 scopus 로고    scopus 로고
    • Schrödinger, LLC: New York, NY, USA
    • MAESTRO; Schrödinger, LLC: New York, NY, USA, 2014.
    • (2014) MAESTRO
  • 52
    • 84992693896 scopus 로고    scopus 로고
    • Chemical Computing Group: Montreal, Canada
    • MOE; Chemical Computing Group: Montreal, Canada, 2014.
    • (2014) MOE
  • 53
    • 84992721470 scopus 로고    scopus 로고
    • Schrödinger, LLC: New York, NY, USA
    • Canvas; Schrödinger, LLC: New York, NY, USA, 2014.
    • (2014) Canvas
  • 54
    • 77952780755 scopus 로고    scopus 로고
    • Large-Scale Systematic Analysis of 2D Fingerprint Methods and Parameters to Improve Virtual Screening Enrichments
    • Sastry, M.; Lowrie, J. F.; Dixon, S. L.; Sherman, W. Large-Scale Systematic Analysis of 2D Fingerprint Methods and Parameters to Improve Virtual Screening Enrichments J. Chem. Inf. Model. 2010, 50, 771-784 10.1021/ci100062n
    • (2010) J. Chem. Inf. Model. , vol.50 , pp. 771-784
    • Sastry, M.1    Lowrie, J.F.2    Dixon, S.L.3    Sherman, W.4
  • 55
    • 84884549795 scopus 로고    scopus 로고
    • Kernel-based Partial Least Squares: Application to Fingerprint-based QSAR with Model Visualization
    • An, Y.; Sherman, W.; Dixon, S. L. Kernel-based Partial Least Squares: Application to Fingerprint-based QSAR with Model Visualization J. Chem. Inf. Model. 2013, 53, 2312-2321 10.1021/ci400250c
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 2312-2321
    • An, Y.1    Sherman, W.2    Dixon, S.L.3
  • 57
    • 84935007308 scopus 로고    scopus 로고
    • The Relative Importance of Domain Applicability Metrics for Estimating Prediction Errors in QSAR Varies with Training Set Diversity
    • Sheridan, R. P. The Relative Importance of Domain Applicability Metrics for Estimating Prediction Errors in QSAR Varies with Training Set Diversity J. Chem. Inf. Model. 2015, 55, 1098-1107 10.1021/acs.jcim.5b00110
    • (2015) J. Chem. Inf. Model. , vol.55 , pp. 1098-1107
    • Sheridan, R.P.1
  • 58
    • 77952772341 scopus 로고    scopus 로고
    • Extended-connectivity Fingerprints
    • Rogers, D.; Hahn, M. Extended-connectivity Fingerprints J. Chem. Inf. Model. 2010, 50, 742-754 10.1021/ci100050t
    • (2010) J. Chem. Inf. Model. , vol.50 , pp. 742-754
    • Rogers, D.1    Hahn, M.2
  • 59
    • 0029894013 scopus 로고    scopus 로고
    • The Properties of Known Drugs. 1. Molecular Frameworks
    • Bemis, B. W.; Murcko, M. A. The Properties of Known Drugs. 1. Molecular Frameworks J. Med. Chem. 1996, 39, 2887-2893 10.1021/jm9602928
    • (1996) J. Med. Chem. , vol.39 , pp. 2887-2893
    • Bemis, B.W.1    Murcko, M.A.2
  • 60
  • 62
    • 84923328756 scopus 로고    scopus 로고
    • DataWarrior: An Open-source Program for Chemistry Aware Data Visualization and Analysis
    • Sander, T.; Freyss, J.; von Korff, M.; Rufener, C. DataWarrior: An Open-source Program for Chemistry Aware Data Visualization and Analysis J. Chem. Inf. Model. 2015, 55, 460-473 10.1021/ci500588j
    • (2015) J. Chem. Inf. Model. , vol.55 , pp. 460-473
    • Sander, T.1    Freyss, J.2    Von Korff, M.3    Rufener, C.4
  • 63
    • 42149090634 scopus 로고    scopus 로고
    • Structure-activity Landscape Index: Identifying and Quantifying Activity Cliffs
    • Guha, R.; van Drie, J. H. Structure-activity Landscape Index: Identifying and Quantifying Activity Cliffs J. Chem. Inf. Model. 2008, 48, 646-658 10.1021/ci7004093
    • (2008) J. Chem. Inf. Model. , vol.48 , pp. 646-658
    • Guha, R.1    Van Drie, J.H.2
  • 64
    • 84992744276 scopus 로고    scopus 로고
    • Deepchem Home Page. (accessed May 3)
    • Deepchem Home Page. https://github.com/deepchem/deepchem (accessed May 3, 2016).
    • (2016)
  • 65
    • 84857855190 scopus 로고    scopus 로고
    • Random Search for Hyper-Parameter Optimization
    • Bergstra, J.; Bengio, Y. Random Search for Hyper-Parameter Optimization J. Machine Learn. Res. 2012, 12, 281-305
    • (2012) J. Machine Learn. Res. , vol.12 , pp. 281-305
    • Bergstra, J.1    Bengio, Y.2
  • 66
    • 17044403086 scopus 로고    scopus 로고
    • Ligand Efficiency Indices as Guideposts for Drug Discovery
    • Abad-Zapatero, C.; Metz, J. T. Ligand Efficiency Indices as Guideposts for Drug Discovery Drug Discovery Today 2005, 10, 464-469 10.1016/S1359-6446(05)03386-6
    • (2005) Drug Discovery Today , vol.10 , pp. 464-469
    • Abad-Zapatero, C.1    Metz, J.T.2
  • 67
    • 34447548576 scopus 로고    scopus 로고
    • Ligand Efficiency Indices for Effective Drug Discovery
    • Abad-Zapatero, C. Ligand Efficiency Indices for Effective Drug Discovery Expert Opin. Drug Discovery 2007, 2, 469-488 10.1517/17460441.2.4.469
    • (2007) Expert Opin. Drug Discovery , vol.2 , pp. 469-488
    • Abad-Zapatero, C.1
  • 68
    • 84962925987 scopus 로고    scopus 로고
    • Compound High-quality Criteria: A New Vision to Guide the Development of Drugs, Current Situation
    • Mignani, S.; Huber, S.; Tomás, H.; Rodrigues, J.; Majoral, J.-P. Compound High-quality Criteria: A New Vision to Guide the Development of Drugs, Current Situation Drug Discovery Today 2016, 21, 573-584 10.1016/j.drudis.2016.01.005
    • (2016) Drug Discovery Today , vol.21 , pp. 573-584
    • Mignani, S.1    Huber, S.2    Tomás, H.3    Rodrigues, J.4    Majoral, J.-P.5
  • 70
    • 84961589594 scopus 로고    scopus 로고
    • Improving Quantitative Structure-activity Relationship Models using Artificial Neural Networks Trained with Dropout
    • Mendenhall, J.; Meiler, J. Improving Quantitative Structure-activity Relationship Models using Artificial Neural Networks Trained with Dropout J. Comput.-Aided Mol. Des. 2016, 30, 177-189 10.1007/s10822-016-9895-2
    • (2016) J. Comput.-Aided Mol. Des. , vol.30 , pp. 177-189
    • Mendenhall, J.1    Meiler, J.2
  • 71
    • 79551667504 scopus 로고    scopus 로고
    • In-silico ADME Models: A General Assessment of their Utility in Drug Discovery Applications
    • Gleeson, M. P.; Hersey, A.; Hannongbua, S. In-silico ADME Models: A General Assessment of their Utility in Drug Discovery Applications Curr. Top. Med. Chem. 2011, 11, 358-381 10.2174/156802611794480927
    • (2011) Curr. Top. Med. Chem. , vol.11 , pp. 358-381
    • Gleeson, M.P.1    Hersey, A.2    Hannongbua, S.3
  • 72
    • 84867931355 scopus 로고    scopus 로고
    • Computational Tools and Resources for Metabolism-related Property Predictions. 1. Overview of Publicly Available (free and commercial) Databases and Software
    • Peach, M. L.; Zakharov, A. V.; Liu, R.; Pugliese, A.; Tawa, G.; Wallqvist, A.; Nicklaus, M. C. Computational Tools and Resources for Metabolism-related Property Predictions. 1. Overview of Publicly Available (free and commercial) Databases and Software Future Med. Chem. 2012, 4, 1907-1932 10.4155/fmc.12.150
    • (2012) Future Med. Chem. , vol.4 , pp. 1907-1932
    • Peach, M.L.1    Zakharov, A.V.2    Liu, R.3    Pugliese, A.4    Tawa, G.5    Wallqvist, A.6    Nicklaus, M.C.7
  • 73
    • 0021097529 scopus 로고
    • How Good are Predictions of Protein Secondary Structure?
    • Kabsch, W.; Sander, C. How Good are Predictions of Protein Secondary Structure? FEBS Lett. 1983, 155, 179-182 10.1016/0014-5793(82)80597-8
    • (1983) FEBS Lett. , vol.155 , pp. 179-182
    • Kabsch, W.1    Sander, C.2
  • 74
    • 84979854249 scopus 로고    scopus 로고
    • JPred4: A protein Secondary Structure Prediction Server
    • Drozdetskiy, A.; Cole, C.; Procter, J.; Barton, G. J. JPred4: a protein Secondary Structure Prediction Server Nucleic Acids Res. 2015, 43, W389-W394 10.1093/nar/gkv332
    • (2015) Nucleic Acids Res. , vol.43 , pp. W389-W394
    • Drozdetskiy, A.1    Cole, C.2    Procter, J.3    Barton, G.J.4
  • 75
    • 0015967881 scopus 로고
    • Conformational Parameters for Amino Acids in Helical, β-sheet, and Random Coil Regions Calculated from Proteins
    • Chou, P. Y.; Fasman, G. D. Conformational Parameters for Amino Acids in Helical, β-sheet, and Random Coil Regions Calculated from Proteins Biochemistry 1974, 13, 211-222 10.1021/bi00699a001
    • (1974) Biochemistry , vol.13 , pp. 211-222
    • Chou, P.Y.1    Fasman, G.D.2
  • 76
    • 84901272158 scopus 로고    scopus 로고
    • Advances in Quantitative Structure-activity relationship models of anti-Alzheimer's Agents
    • references cited therein
    • Ambure, P.; Roy, K. Advances in Quantitative Structure-activity relationship models of anti-Alzheimer's Agents Expert Opin. Drug Discovery 2014, 9, 697-723 and references cited therein 10.1517/17460441.2014.909404
    • (2014) Expert Opin. Drug Discovery , vol.9 , pp. 697-723
    • Ambure, P.1    Roy, K.2
  • 77
    • 84962090078 scopus 로고    scopus 로고
    • Interaction mechanism Exploration of HEA Derivatives as BACE1 Inhibitors by in silico Analysis
    • references cited therein
    • Wu, Q.; Li, X.; Gao, Q.; Wang, J.; Li, Y.; Yang, L. Interaction mechanism Exploration of HEA Derivatives as BACE1 Inhibitors by in silico Analysis Mol. BioSyst. 2016, 12, 1151-1165 and references cited therein 10.1039/C5MB00859J
    • (2016) Mol. BioSyst. , vol.12 , pp. 1151-1165
    • Wu, Q.1    Li, X.2    Gao, Q.3    Wang, J.4    Li, Y.5    Yang, L.6
  • 78
    • 84935518395 scopus 로고    scopus 로고
    • Template CoMFA Generates Single 3D-QSAR models that, for Twelve of Twelve Biological Targets, predict All ChEMBL-Tabulated Affinities
    • Cramer, R. D. Template CoMFA Generates Single 3D-QSAR models that, for Twelve of Twelve Biological Targets, predict All ChEMBL-Tabulated Affinities PLoS One 2015, 10, e0129307 10.1371/journal.pone.0129307
    • (2015) PLoS One , vol.10 , pp. e0129307
    • Cramer, R.D.1
  • 80
    • 84945557463 scopus 로고    scopus 로고
    • Deep Learning for Drug-induced Liver Injury
    • Xu, Y.; Dai, Z.; Chen, F.; Gao, S.; Pei, J.; Lai, L. Deep Learning for Drug-induced Liver Injury J. Chem. Inf. Model. 2015, 55, 2085-2093 10.1021/acs.jcim.5b00238
    • (2015) J. Chem. Inf. Model. , vol.55 , pp. 2085-2093
    • Xu, Y.1    Dai, Z.2    Chen, F.3    Gao, S.4    Pei, J.5    Lai, L.6
  • 81
    • 84954372459 scopus 로고    scopus 로고
    • Deep Learning in Drug Discovery
    • Gawehn, E.; Hiss, J. A.; Schneider, G. Deep Learning in Drug Discovery Mol. Inf. 2016, 35, 3-14 10.1002/minf.201501008
    • (2016) Mol. Inf. , vol.35 , pp. 3-14
    • Gawehn, E.1    Hiss, J.A.2    Schneider, G.3
  • 82
    • 84968861400 scopus 로고    scopus 로고
    • Applications of Deep Learning in Biomedicine
    • Mamoshina, P.; Vieira, A.; Putin, E.; Zhavoronkov, A. Applications of Deep Learning in Biomedicine Mol. Pharmaceutics 2016, 13, 1445-1454 10.1021/acs.molpharmaceut.5b00982
    • (2016) Mol. Pharmaceutics , vol.13 , pp. 1445-1454
    • Mamoshina, P.1    Vieira, A.2    Putin, E.3    Zhavoronkov, A.4
  • 83
    • 84961133262 scopus 로고    scopus 로고
    • Understanding the Roles of the "two QSARs
    • Fujita, T.; Winkler, D. A. Understanding the Roles of the "Two QSARs J. Chem. Inf. Model. 2016, 56, 269-274 10.1021/acs.jcim.5b00229
    • (2016) J. Chem. Inf. Model. , vol.56 , pp. 269-274
    • Fujita, T.1    Winkler, D.A.2
  • 84
    • 84945557463 scopus 로고    scopus 로고
    • Deep Learning for Drug-Induced Liver Injury
    • Xu, Y.; Dai, Z.; Chen, F.; Gao, S.; Pei, J.; Lai, L. Deep Learning for Drug-Induced Liver Injury J. Chem. Inf. Model. 2015, 55, 2085-2093 10.1021/acs.jcim.5b00238
    • (2015) J. Chem. Inf. Model. , vol.55 , pp. 2085-2093
    • Xu, Y.1    Dai, Z.2    Chen, F.3    Gao, S.4    Pei, J.5    Lai, L.6
  • 85
    • 84969508669 scopus 로고    scopus 로고
    • Avoiding Missed Opportunities by Analyzing the Sensitivity of Our Decisions
    • Segall, M. D.; Yusof, I.; Champness, E. J. Avoiding Missed Opportunities by Analyzing the Sensitivity of Our Decisions J. Med. Chem. 2016, 59, 4267-4277 10.1021/acs.jmedchem.5b01921
    • (2016) J. Med. Chem. , vol.59 , pp. 4267-4277
    • Segall, M.D.1    Yusof, I.2    Champness, E.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.