메뉴 건너뛰기




Volumn 114, Issue 4, 2017, Pages 843-851

Metabolic engineering of Escherichia coli for microbial production of L-methionine

Author keywords

competing pathway; Escherichia coli; import system; L methionine; Na2S2O3; W3110

Indexed keywords

BIOCHEMISTRY; ESCHERICHIA COLI; METABOLIC ENGINEERING; SODIUM;

EID: 84992315909     PISSN: 00063592     EISSN: 10970290     Source Type: Journal    
DOI: 10.1002/bit.26198     Document Type: Article
Times cited : (76)

References (32)
  • 1
    • 84867209510 scopus 로고    scopus 로고
    • Systems and synthetic metabolic engineering for amino acid production—The heartbeat of industrial strain development
    • Becker J, Wittmann C. 2012. Systems and synthetic metabolic engineering for amino acid production—The heartbeat of industrial strain development. Curr Opin Biotechnol 23(5):718–726.
    • (2012) Curr Opin Biotechnol , vol.23 , Issue.5 , pp. 718-726
    • Becker, J.1    Wittmann, C.2
  • 2
    • 0035856579 scopus 로고    scopus 로고
    • Metabolic flux response to phosphoglucose isomerase knock-out in Escherichia coli and impact of overexpression of the soluble transhydrogenase UdhA
    • Canonaco F, Hess T, Heri S, Wang T, Szyperski T, Sauer U. 2001. Metabolic flux response to phosphoglucose isomerase knock-out in Escherichia coli and impact of overexpression of the soluble transhydrogenase UdhA. FEMS Microbiol Lett 204(2):247–252.
    • (2001) FEMS Microbiol Lett , vol.204 , Issue.2 , pp. 247-252
    • Canonaco, F.1    Hess, T.2    Heri, S.3    Wang, T.4    Szyperski, T.5    Sauer, U.6
  • 3
    • 0026096889 scopus 로고
    • Control of methionine biosynthesis in Escherichia coli K12 —A closer study with anlog-resistant mutants
    • Chattopadhyay M, Ghosh A, Sengupta S. 1991. Control of methionine biosynthesis in Escherichia coli K12 —A closer study with anlog-resistant mutants. J Gen Microbiol 137(3):685–691.
    • (1991) J Gen Microbiol , vol.137 , Issue.3 , pp. 685-691
    • Chattopadhyay, M.1    Ghosh, A.2    Sengupta, S.3
  • 4
    • 79961098789 scopus 로고    scopus 로고
    • Production in Escherichia coli of poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) with differing monomer compositions from unrelated carbon sources
    • Chen Q, Wang Q, Wei Q, Liang Q, Qi Q. 2011. Production in Escherichia coli of poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) with differing monomer compositions from unrelated carbon sources. Appl Enveron Microbiol 77(14):4886–4893.
    • (2011) Appl Enveron Microbiol , vol.77 , Issue.14 , pp. 4886-4893
    • Chen, Q.1    Wang, Q.2    Wei, Q.3    Liang, Q.4    Qi, Q.5
  • 5
    • 84887997172 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli: A sustainable industrial platform for bio-based chemical production
    • Chen X, Zhou L, Tian K, Kumar A, Singh S, Prior B, Wang Z. 2013. Metabolic engineering of Escherichia coli: A sustainable industrial platform for bio-based chemical production. Biotechnol Adv 31(8):1200–1223.
    • (2013) Biotechnol Adv , vol.31 , Issue.8 , pp. 1200-1223
    • Chen, X.1    Zhou, L.2    Tian, K.3    Kumar, A.4    Singh, S.5    Prior, B.6    Wang, Z.7
  • 6
    • 84893649889 scopus 로고    scopus 로고
    • Production of shikimic acid from Escherichia coli through chemically inducible chromosomal evolution and cofactor metabolic engineering
    • Cui Y, Ling C, Zhang Y, Huang J, Liu J. 2014. Production of shikimic acid from Escherichia coli through chemically inducible chromosomal evolution and cofactor metabolic engineering. Microb Cell Fact 13:21–31.
    • (2014) Microb Cell Fact , vol.13 , pp. 21-31
    • Cui, Y.1    Ling, C.2    Zhang, Y.3    Huang, J.4    Liu, J.5
  • 7
    • 0034612342 scopus 로고    scopus 로고
    • One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products
    • Datsenko K, Wanner B. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97(12):6640–6645.
    • (2000) Proc Natl Acad Sci USA , vol.97 , Issue.12 , pp. 6640-6645
    • Datsenko, K.1    Wanner, B.2
  • 9
    • 6944224154 scopus 로고    scopus 로고
    • Metabolic gene-deletion strains of Escherichia coli evolve to computationally predicted growth phenotypes
    • Fang S, Palsson B. 2004. Metabolic gene-deletion strains of Escherichia coli evolve to computationally predicted growth phenotypes. Nat Genet 36(36):1056–1058.
    • (2004) Nat Genet , vol.36 , Issue.36 , pp. 1056-1058
    • Fang, S.1    Palsson, B.2
  • 11
    • 84943570374 scopus 로고    scopus 로고
    • Improved poly-γ-glutamic acid production in Bacillus amyloliquefaciens by modular pathway engineering
    • Feng J, Gu Y, Quan Y, Cao M, Gao W, Zhang W, Wang S, Yang C, Song C. 2015. Improved poly-γ-glutamic acid production in Bacillus amyloliquefaciens by modular pathway engineering. Metab Eng 32:106–115.
    • (2015) Metab Eng , vol.32 , pp. 106-115
    • Feng, J.1    Gu, Y.2    Quan, Y.3    Cao, M.4    Gao, W.5    Zhang, W.6    Wang, S.7    Yang, C.8    Song, C.9
  • 12
    • 34347332311 scopus 로고    scopus 로고
    • A genome-scale metabolic reconstruction of Escherichia coli K-12 MG1655 that account for 1260 ORFs and thermodynamic information
    • Feist A, Henry C, Reed J, Krummenacker M, Joyce A. 2007. A genome-scale metabolic reconstruction of Escherichia coli K-12 MG1655 that account for 1260 ORFs and thermodynamic information. Mol Syst Biol 3(1):121.
    • (2007) Mol Syst Biol , vol.3 , Issue.1 , pp. 121
    • Feist, A.1    Henry, C.2    Reed, J.3    Krummenacker, M.4    Joyce, A.5
  • 13
    • 18144400421 scopus 로고    scopus 로고
    • Production of L-methionine by submerged fermentaion: A review
    • Gomes J, Kumar D. 2005. Production of L-methionine by submerged fermentaion: A review. Enzyme Microb Technol 37(1):3–18.
    • (2005) Enzyme Microb Technol , vol.37 , Issue.1 , pp. 3-18
    • Gomes, J.1    Kumar, D.2
  • 14
    • 0345529074 scopus 로고    scopus 로고
    • Responses of the central metabolism in Escherichia coli to phosphoglucose isomerase and glucose-6-phosphate dehydrogenase knockouts
    • Hua Q, Yang C, Baba T, Mori H, Shimizu K. 2003. Responses of the central metabolism in Escherichia coli to phosphoglucose isomerase and glucose-6-phosphate dehydrogenase knockouts. J Bacteriol 185(25):7053–7067.
    • (2003) J Bacteriol , vol.185 , Issue.25 , pp. 7053-7067
    • Hua, Q.1    Yang, C.2    Baba, T.3    Mori, H.4    Shimizu, K.5
  • 15
    • 0016232314 scopus 로고
    • Methionine transport in Escherichia coli: Physiological and genetic evidence for two uptake systems
    • Kadner R, Watson W. 1974. Methionine transport in Escherichia coli: Physiological and genetic evidence for two uptake systems. J Bacteriol 119(2):401–409.
    • (1974) J Bacteriol , vol.119 , Issue.2 , pp. 401-409
    • Kadner, R.1    Watson, W.2
  • 16
    • 43549127287 scopus 로고    scopus 로고
    • Structure and function of NAD kinase and NADP phosphatase: Key enzymes that regulate the intracellular balance of NAD(H) and NADP(H)
    • Kawai S, Murata K. 2008. Structure and function of NAD kinase and NADP phosphatase: Key enzymes that regulate the intracellular balance of NAD(H) and NADP(H). Biosci Biotechnol Biochem 72(4):919–930.
    • (2008) Biosci Biotechnol Biochem , vol.72 , Issue.4 , pp. 919-930
    • Kawai, S.1    Murata, K.2
  • 17
    • 33745136489 scopus 로고    scopus 로고
    • Metabolic pathway analysis for rational design of L-methionine production by Escherichia coli and Corynebacterium glutamicum
    • Kromer J, Wittmann C, Schroder H, Heinzle E. 2006. Metabolic pathway analysis for rational design of L-methionine production by Escherichia coli and Corynebacterium glutamicum. Metab Eng 8(4):353–369.
    • (2006) Metab Eng , vol.8 , Issue.4 , pp. 353-369
    • Kromer, J.1    Wittmann, C.2    Schroder, H.3    Heinzle, E.4
  • 18
    • 16644396671 scopus 로고    scopus 로고
    • Methionine production by fermentation
    • Kumar D, Gomes J. 2005. Methionine production by fermentation. Biotechnol Adv 23(1):41–61.
    • (2005) Biotechnol Adv , vol.23 , Issue.1 , pp. 41-61
    • Kumar, D.1    Gomes, J.2
  • 19
    • 36849002434 scopus 로고    scopus 로고
    • Systems metabolic engineering of Escherichia coli for L-threonine production
    • Lee K, Park J, Kim T, Kim H, Lee S. 2007. Systems metabolic engineering of Escherichia coli for L-threonine production. Mol Syst Biol 3(1):1581–1589.
    • (2007) Mol Syst Biol , vol.3 , Issue.1 , pp. 1581-1589
    • Lee, K.1    Park, J.2    Kim, T.3    Kim, H.4    Lee, S.5
  • 21
    • 85013293423 scopus 로고    scopus 로고
    • Method for fermentative production of L-methionine. Patent US20090298135
    • Maier T, Winterhalter C, Pfeiffer K. 2004. Method for fermentative production of L-methionine. Patent no. US20090298135.
    • (2004)
    • Maier, T.1    Winterhalter, C.2    Pfeiffer, K.3
  • 22
    • 0036322165 scopus 로고    scopus 로고
    • Development of dynamic kinetic resolution process for resolution process for biocatalytic production of natural and nonnatural L-amino acids
    • May O, Verseck S, Bommarius A, Drauz K. 2002. Development of dynamic kinetic resolution process for resolution process for biocatalytic production of natural and nonnatural L-amino acids. Org Process Res Dev 6:452–457.
    • (2002) Org Process Res Dev , vol.6 , pp. 452-457
    • May, O.1    Verseck, S.2    Bommarius, A.3    Drauz, K.4
  • 23
    • 0036776777 scopus 로고    scopus 로고
    • The Escherichia coli metD locus encodes an ABC transporter which includes abc (MetN), YaeE (MetI), and YaeC (MetQ)
    • Merlin C, Gardiner G, Durand S, Masters M. 2002. The Escherichia coli metD locus encodes an ABC transporter which includes abc (MetN), YaeE (MetI), and YaeC (MetQ). J Bacteriol 184(19):5513–5517.
    • (2002) J Bacteriol , vol.184 , Issue.19 , pp. 5513-5517
    • Merlin, C.1    Gardiner, G.2    Durand, S.3    Masters, M.4
  • 24
    • 0032850364 scopus 로고    scopus 로고
    • Mechanism of L-methionine overproduction by Escherichia coli: The replacement of Ser-54 by Asn in the MetJ protein causes the derepression of L-methionine biosynthetic enzymes
    • Nakamori S, Kobayashi S, Nishimura T, Takagi H. 1999. Mechanism of L-methionine overproduction by Escherichia coli: The replacement of Ser-54 by Asn in the MetJ protein causes the derepression of L-methionine biosynthetic enzymes. Appl Microbiol Biotechnol 52(2):179–185.
    • (1999) Appl Microbiol Biotechnol , vol.52 , Issue.2 , pp. 179-185
    • Nakamori, S.1    Kobayashi, S.2    Nishimura, T.3    Takagi, H.4
  • 26
    • 84960907446 scopus 로고    scopus 로고
    • Pathway construction and metabolic engineering for fermentative production of ectoine in Escherichia coli
    • Ning Y, Wu X, Zhang C, Xu Q, Chen N, Xie X. 2016. Pathway construction and metabolic engineering for fermentative production of ectoine in Escherichia coli. Metab Eng 36:10–18.
    • (2016) Metab Eng , vol.36 , pp. 10-18
    • Ning, Y.1    Wu, X.2    Zhang, C.3    Xu, Q.4    Chen, N.5    Xie, X.6
  • 27
    • 85013283387 scopus 로고    scopus 로고
    • L-methionine producing microorganism and method of producing L-methionine using the microorganism. Patent US7790424B2
    • Park Y, Cho K, Shin Y, Um H. 2010. L-methionine producing microorganism and method of producing L-methionine using the microorganism. Patent no. US7790424:B2.
    • (2010)
    • Park, Y.1    Cho, K.2    Shin, Y.3    Um, H.4
  • 28
    • 84930936873 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for the production of 3-aminopropionic acid
    • Song C, Lee J, Ko Y, Lee S. 2015. Metabolic engineering of Escherichia coli for the production of 3-aminopropionic acid. Metab Eng 30:121–129.
    • (2015) Metab Eng , vol.30 , pp. 121-129
    • Song, C.1    Lee, J.2    Ko, Y.3    Lee, S.4
  • 29
    • 0030002968 scopus 로고    scopus 로고
    • Overexpression of the gene for N-acylamino acid racemase from Amycolatopsis sp. TS-1-60 in Escherichia coli and continuous production of optically active methionine by a bioreactor
    • Tokuyama S, Hatano K. 1996. Overexpression of the gene for N-acylamino acid racemase from Amycolatopsis sp. TS-1-60 in Escherichia coli and continuous production of optically active methionine by a bioreactor. Appl Microbiol Biotechnol 44(6):774–777.
    • (1996) Appl Microbiol Biotechnol , vol.44 , Issue.6 , pp. 774-777
    • Tokuyama, S.1    Hatano, K.2
  • 30
    • 21144443562 scopus 로고    scopus 로고
    • Homocystine toxicity in Escherichia coli is caused by a perturbation of branched-chain amino acid biosynthesis
    • Tuite N, Fraser K, O'Byrne C. 2005. Homocystine toxicity in Escherichia coli is caused by a perturbation of branched-chain amino acid biosynthesis. J Bacteriol 187(13):4362–4371.
    • (2005) J Bacteriol , vol.187 , Issue.13 , pp. 4362-4371
    • Tuite, N.1    Fraser, K.2    O'Byrne, C.3
  • 31
    • 20444412257 scopus 로고    scopus 로고
    • Effects of deregulation of methionine biosynthesis on methionine excretion in Escherichia coli
    • Usuda Y, Kurahashi O. 2005. Effects of deregulation of methionine biosynthesis on methionine excretion in Escherichia coli. Appl Environ Microbiol 71(6):3228–3234.
    • (2005) Appl Environ Microbiol , vol.71 , Issue.6 , pp. 3228-3234
    • Usuda, Y.1    Kurahashi, O.2
  • 32
    • 84916878676 scopus 로고    scopus 로고
    • Methionine productiona critical review
    • Willke T. 2014. Methionine productiona critical review. Appl Microbiol Biotechnol 98(24):9893–9914.
    • (2014) Appl Microbiol Biotechnol , vol.98 , Issue.24 , pp. 9893-9914
    • Willke, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.