메뉴 건너뛰기




Volumn 7, Issue , 2016, Pages

Stacking sequence and interlayer coupling in few-layer graphene revealed by in situ imaging

Author keywords

[No Author keywords available]

Indexed keywords

CARBON; GRAPHENE; GRAPHITE; NANOMATERIAL; PLATINUM;

EID: 84992129586     PISSN: None     EISSN: 20411723     Source Type: Journal    
DOI: 10.1038/ncomms13256     Document Type: Article
Times cited : (94)

References (51)
  • 2
    • 34547334459 scopus 로고    scopus 로고
    • Energy band-gap engineering of graphene nanoribbons
    • Han, M. Y., Ozyilmaz, B., Zhang, Y. B. & Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rew. Lett. 98, 206805 (2007).
    • (2007) Phys. Rew. Lett. , vol.98 , pp. 206805
    • Han, M.Y.1    Ozyilmaz, B.2    Zhang, Y.B.3    Kim, P.4
  • 3
    • 41549104214 scopus 로고    scopus 로고
    • Half-metallicity in edge-modified zigzag graphene nanoribbons
    • Kan, E. J., Li, Z. Y., Yang, J. L. & Hou, J. G. Half-metallicity in edge-modified zigzag graphene nanoribbons. J. Am. Chem. Soc. 130, 4224-4225 (2008).
    • (2008) J. Am. Chem. Soc. , vol.130 , pp. 4224-4225
    • Kan, E.J.1    Li, Z.Y.2    Yang, J.L.3    Hou, J.G.4
  • 4
    • 40949100799 scopus 로고    scopus 로고
    • Chemical dopinginduced gap opening and spin polarization in graphene
    • Zanella, I., Guerini, S., Fagan, S. B., Mendes, J. & Souza, A. G. Chemical dopinginduced gap opening and spin polarization in graphene. Phys. Rev. B 77, 073404 (2008).
    • (2008) Phys. Rev. B , vol.77 , pp. 073404
    • Zanella, I.1    Guerini, S.2    Fagan, S.B.3    Mendes, J.4    Souza, A.G.5
  • 5
    • 58049208431 scopus 로고    scopus 로고
    • Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening
    • Ni, Z. H. et al. Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening. Acs Nano 2, 2301-2305 (2008).
    • (2008) Acs Nano , vol.2 , pp. 2301-2305
    • Ni, Z.H.1
  • 6
    • 34848838046 scopus 로고    scopus 로고
    • Substrate-induced bandgap opening in epitaxial graphene
    • Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mater. 6, 770-775 (2007).
    • (2007) Nat. Mater. , vol.6 , pp. 770-775
    • Zhou, S.Y.1
  • 7
    • 67149121054 scopus 로고    scopus 로고
    • Direct observation of a widely tunable bandgap in bilayer graphene
    • Zhang, Y. B. et al. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820-823 (2009).
    • (2009) Nature , vol.459 , pp. 820-823
    • Zhang, Y.B.1
  • 8
    • 36249007086 scopus 로고    scopus 로고
    • Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect
    • Castro, E. V. et al. Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect. Phys. Rew. Lett. 99, 216802 (2007).
    • (2007) Phys. Rew. Lett. , vol.99 , pp. 216802
    • Castro, E.V.1
  • 9
    • 33747626322 scopus 로고    scopus 로고
    • Controlling the electronic structure of bilayer graphene
    • Ohta, T., Bostwick, A., Seyller, T., Horn, K. & Rotenberg, E. Controlling the electronic structure of bilayer graphene. Science 313, 951-954 (2006).
    • (2006) Science , vol.313 , pp. 951-954
    • Ohta, T.1    Bostwick, A.2    Seyller, T.3    Horn, K.4    Rotenberg, E.5
  • 10
    • 67649502407 scopus 로고    scopus 로고
    • Observation of an electric-fieldinduced band gap in bilayer graphene by infrared spectroscopy
    • Mak, K. F., Lui, C. H., Shan, J. & Heinz, T. F. Observation of an electric-fieldinduced band gap in bilayer graphene by infrared spectroscopy. Phys. Rew. Lett. 102, 256405 (2009).
    • (2009) Phys. Rew. Lett. , vol.102 , pp. 256405
    • Mak, K.F.1    Lui, C.H.2    Shan, J.3    Heinz, T.F.4
  • 11
    • 0000521551 scopus 로고
    • Energy of cohesion, compressibility, and the potential energy functions of the graphite system
    • Girifalco, L. A. & Lad, R. A. Energy of cohesion, compressibility, and the potential energy functions of the graphite system. J. Chem. Phys. 25, 693-697 (1956).
    • (1956) J. Chem. Phys. , vol.25 , pp. 693-697
    • Girifalco, L.A.1    Lad, R.A.2
  • 12
    • 0032540059 scopus 로고    scopus 로고
    • Microscopic determination of the interlayer binding energy in graphite
    • Benedict, L. X. et al. Microscopic determination of the interlayer binding energy in graphite. Chem. Phys. Lett. 286, 490-496 (1998).
    • (1998) Chem. Phys. Lett. , vol.286 , pp. 490-496
    • Benedict, L.X.1
  • 13
    • 37649031058 scopus 로고    scopus 로고
    • Semiempirical approach to the energetics of interlayer binding in graphite
    • Hasegawa, M. & Nishidate, K. Semiempirical approach to the energetics of interlayer binding in graphite. Phys. Rev. B 70, 205431 (2004).
    • (2004) Phys. Rev. B , vol.70 , pp. 205431
    • Hasegawa, M.1    Nishidate, K.2
  • 14
    • 70450064260 scopus 로고    scopus 로고
    • Nature and strength of interlayer binding in graphite
    • Spanu, L., Sorella, S. & Galli, G. Nature and strength of interlayer binding in graphite. Phys. Rew. Lett. 103, 196401 (2009).
    • (2009) Phys. Rew. Lett. , vol.103 , pp. 196401
    • Spanu, L.1    Sorella, S.2    Galli, G.3
  • 16
    • 79952585226 scopus 로고    scopus 로고
    • Formation of bilayer bernal graphene: Layer-by-layer epitaxy via chemical vapor deposition
    • Yan, K., Peng, H. L., Zhou, Y., Li, H. & Liu, Z. F. Formation of bilayer bernal graphene: layer-by-layer epitaxy via chemical vapor deposition. Nano Lett. 11, 1106-1110 (2011).
    • (2011) Nano Lett. , vol.11 , pp. 1106-1110
    • Yan, K.1    Peng, H.L.2    Zhou, Y.3    Li, H.4    Liu, Z.F.5
  • 17
    • 80052806168 scopus 로고    scopus 로고
    • Synthesis and characterization of large-area graphene and graphite films on commercial Cu-Ni alloy foils
    • Chen, S. S. et al. Synthesis and characterization of large-area graphene and graphite films on commercial Cu-Ni alloy foils. Nano Lett. 11, 3519-3525 (2011).
    • (2011) Nano Lett. , vol.11 , pp. 3519-3525
    • Chen, S.S.1
  • 18
    • 77954692376 scopus 로고    scopus 로고
    • Graphene on Pt(111): Growth and substrate interaction
    • Sutter, P., Sadowski, J. T. & Sutter, E. Graphene on Pt(111): growth and substrate interaction. Phys. Rev. B 80, 245411 (2009).
    • (2009) Phys. Rev. B , vol.80 , pp. 245411
    • Sutter, P.1    Sadowski, J.T.2    Sutter, E.3
  • 20
    • 79952912426 scopus 로고    scopus 로고
    • Growth from below: Graphene bilayers on Ir(111)
    • Nie, S. et al. Growth from below: graphene bilayers on Ir(111). ACS Nano 5, 2298-2306 (2011).
    • (2011) ACS Nano , vol.5 , pp. 2298-2306
    • Nie, S.1
  • 21
    • 84875657464 scopus 로고    scopus 로고
    • Twisting bilayer graphene superlattices
    • Lu, C. C. et al. Twisting bilayer graphene superlattices. ACS Nano 7, 2587-2594 (2013).
    • (2013) ACS Nano , vol.7 , pp. 2587-2594
    • Lu, C.C.1
  • 22
    • 84866661741 scopus 로고    scopus 로고
    • Growth mechanism and controlled synthesis of AB-stacked bilayer graphene on Cu-Ni alloy foils
    • Wu, Y. et al. Growth mechanism and controlled synthesis of AB-stacked bilayer graphene on Cu-Ni alloy foils. ACS Nano 6, 7731-7738 (2012).
    • (2012) ACS Nano , vol.6 , pp. 7731-7738
    • Wu, Y.1
  • 23
    • 84896877634 scopus 로고    scopus 로고
    • Role of hydrogen in graphene chemical vapor deposition growth on a copper surface
    • Zhang, X. Y., Wang, L., Xin, J., Yakobson, B. I. & Ding, F. Role of hydrogen in graphene chemical vapor deposition growth on a copper surface. J. Am. Chem. Soc. 136, 3040-3047 (2014).
    • (2014) J. Am. Chem. Soc. , vol.136 , pp. 3040-3047
    • Zhang, X.Y.1    Wang, L.2    Xin, J.3    Yakobson, B.I.4    Ding, F.5
  • 24
    • 84873656360 scopus 로고    scopus 로고
    • Growth of adlayer graphene on Cu studied by carbon isotope labeling
    • Li, Q. et al. Growth of adlayer graphene on Cu studied by carbon isotope labeling. Nano Lett. 13, 486-490 (2013).
    • (2013) Nano Lett. , vol.13 , pp. 486-490
    • Li, Q.1
  • 25
    • 84899635843 scopus 로고    scopus 로고
    • Growth mechanism of graphene on platinum: Surface catalysis and carbon segregation
    • Sun, J. et al. Growth mechanism of graphene on platinum: Surface catalysis and carbon segregation. Appl. Phys. Lett. 104, 152107 (2014).
    • (2014) Appl. Phys. Lett. , vol.104 , pp. 152107
    • Sun, J.1
  • 26
    • 84923451478 scopus 로고    scopus 로고
    • Direct observation of graphene growth and associated copper substrate dynamics by in situ scanning electron microscopy
    • Wang, Z.-J. et al. Direct observation of graphene growth and associated copper substrate dynamics by in situ scanning electron microscopy. ACS Nano 9, 1506-1519 (2015).
    • (2015) ACS Nano , vol.9 , pp. 1506-1519
    • Wang, Z.-J.1
  • 27
    • 25544446522 scopus 로고
    • Interaction of hydrogen with Pt (111)-role of atomic steps
    • Christmann, K. & Ertl, G. Interaction of hydrogen with Pt (111)-role of atomic steps. Surf. Sci. 60, 365-384 (1976).
    • (1976) Surf. Sci. , vol.60 , pp. 365-384
    • Christmann, K.1    Ertl, G.2
  • 28
    • 84882453778 scopus 로고    scopus 로고
    • Thickness contrast of few-layered graphene in SEM
    • Park, M.-H., Kim, T.-H. & Yang, C.-W. Thickness contrast of few-layered graphene in SEM. Surf. Interface Anal. 44, 1538-1541 (2012).
    • (2012) Surf. Interface Anal. , vol.44 , pp. 1538-1541
    • Park, M.-H.1    Kim, T.-H.2    Yang, C.-W.3
  • 29
    • 77956734872 scopus 로고    scopus 로고
    • Determination of the number of graphene layers: Discrete distribution of the secondary electron intensity stemming from individual graphene layers
    • Hiura, H., Miyazaki, H. & Tsukagoshi, K. Determination of the number of graphene layers: discrete distribution of the secondary electron intensity stemming from individual graphene layers. Appl. Phys. Express 3, 095101 (2010).
    • (2010) Appl. Phys. Express , vol.3 , pp. 095101
    • Hiura, H.1    Miyazaki, H.2    Tsukagoshi, K.3
  • 30
    • 84908433127 scopus 로고    scopus 로고
    • Growth and raman spectra of single-crystal trilayer graphene with different stacking orientations
    • Zhao, H. M. et al. Growth and raman spectra of single-crystal trilayer graphene with different stacking orientations. ACS Nano 8, 10766-10773 (2014).
    • (2014) ACS Nano , vol.8 , pp. 10766-10773
    • Zhao, H.M.1
  • 31
    • 0001165919 scopus 로고    scopus 로고
    • Decay of isolated surface features driven by the Gibbs-Thomson effect in an analytic model and a simulation
    • McLean, J. G. et al. Decay of isolated surface features driven by the Gibbs-Thomson effect in an analytic model and a simulation. Phys. Rev. B 55, 1811-1823 (1997).
    • (1997) Phys. Rev. B , vol.55 , pp. 1811-1823
    • McLean, J.G.1
  • 32
    • 42749102313 scopus 로고    scopus 로고
    • Interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons
    • Zacharia, R., Ulbricht, H. & Hertel, T. Interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons. Phys. Rev. B 69, 155406 (2004).
    • (2004) Phys. Rev. B , vol.69 , pp. 155406
    • Zacharia, R.1    Ulbricht, H.2    Hertel, T.3
  • 33
    • 84912569345 scopus 로고    scopus 로고
    • The influence of intercalated oxygen on the properties of graphene on polycrystalline Cu under various environmental conditions
    • Blume, R. et al. The influence of intercalated oxygen on the properties of graphene on polycrystalline Cu under various environmental conditions. Phys. Chem. Chem. Phys. 16, 25989-26003 (2014).
    • (2014) Phys. Chem. Chem. Phys. , vol.16 , pp. 25989-26003
    • Blume, R.1
  • 34
    • 52649155090 scopus 로고    scopus 로고
    • Unit cell of graphene on Ru(0001): A 25-25 supercell with 1250 carbon atoms
    • Martoccia, D. et al. Unit cell of graphene on Ru(0001): a 25-25 supercell with 1250 carbon atoms. Phys. Rew. Lett. 101, 126102 (2008).
    • (2008) Phys. Rew. Lett. , vol.101 , pp. 126102
    • Martoccia, D.1
  • 35
    • 79955912578 scopus 로고    scopus 로고
    • Single terrace growth of graphene on a metal surface
    • Guenther, S. et al. Single terrace growth of graphene on a metal surface. Nano Lett. 11, 1895-1900 (2011).
    • (2011) Nano Lett. , vol.11 , pp. 1895-1900
    • Guenther, S.1
  • 36
    • 0000781318 scopus 로고    scopus 로고
    • Edge state in graphene ribbons: Nanometer size effect and edge shape dependence
    • Nakada, K., Fujita, M., Dresselhaus, G. & Dresselhaus, M. S. Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys. Rev. B 54, 17954-17961 (1996).
    • (1996) Phys. Rev. B , vol.54 , pp. 17954-17961
    • Nakada, K.1    Fujita, M.2    Dresselhaus, G.3    Dresselhaus, M.S.4
  • 37
    • 84990210832 scopus 로고    scopus 로고
    • Edge-catalyst wetting and orientation control of graphene growth by chemical vapor deposition growth
    • Yuan, Q., Yakobson, B. I. & Ding, F. Edge-catalyst wetting and orientation control of graphene growth by chemical vapor deposition growth. J. Phys. Chem. Lett. 5, 3093-3099 (2014).
    • (2014) J. Phys. Chem. Lett. , vol.5 , pp. 3093-3099
    • Yuan, Q.1    Yakobson, B.I.2    Ding, F.3
  • 38
    • 84899423691 scopus 로고    scopus 로고
    • Sublattice localized electronic states in atomically resolved graphene-Pt(111) edge-boundaries
    • Merino, P. et al. Sublattice localized electronic states in atomically resolved graphene-Pt(111) edge-boundaries. ACS Nano 8, 3590-3596 (2014).
    • (2014) ACS Nano , vol.8 , pp. 3590-3596
    • Merino, P.1
  • 39
    • 84866536055 scopus 로고    scopus 로고
    • Equilibrium at the edge and atomistic mechanisms of graphene growth
    • Artyukhov, V. I., Liu, Y. & Yakobson, B. I. Equilibrium at the edge and atomistic mechanisms of graphene growth. Proc. Natl Acad. Sci. USA 109, 15136-15140 (2012).
    • (2012) Proc. Natl Acad. Sci. USA , vol.109 , pp. 15136-15140
    • Artyukhov, V.I.1    Liu, Y.2    Yakobson, B.I.3
  • 40
    • 62449178502 scopus 로고    scopus 로고
    • Dislocation theory of chiralitycontrolled nanotube growth
    • Ding, F., Harutyunyan, A. R. & Yakobson, B. I. Dislocation theory of chiralitycontrolled nanotube growth. Proc. Natl Acad. Sci. USA 106, 2506-2509 (2009).
    • (2009) Proc. Natl Acad. Sci. USA , vol.106 , pp. 2506-2509
    • Ding, F.1    Harutyunyan, A.R.2    Yakobson, B.I.3
  • 41
    • 84860383309 scopus 로고    scopus 로고
    • Edge structural stability and kinetics of graphene chemical vapor deposition growth
    • Shu, H., Chen, X., Tao, X. & Ding, F. Edge structural stability and kinetics of graphene chemical vapor deposition growth. ACS Nano 6, 3243-3250 (2012).
    • (2012) ACS Nano , vol.6 , pp. 3243-3250
    • Shu, H.1    Chen, X.2    Tao, X.3    Ding, F.4
  • 42
    • 84908456747 scopus 로고    scopus 로고
    • The edge termination controlled kinetics in graphene chemical vapor deposition growth
    • Shu, H., Chen, X. & Ding, F. The edge termination controlled kinetics in graphene chemical vapor deposition growth. Chem. Sci. 5, 4639-4645 (2014).
    • (2014) Chem. Sci. , vol.5 , pp. 4639-4645
    • Shu, H.1    Chen, X.2    Ding, F.3
  • 43
    • 84890832123 scopus 로고    scopus 로고
    • Edge-controlled growth and kinetics of single-crystal graphene domains by chemical vapor deposition
    • Ma, T. et al. Edge-controlled growth and kinetics of single-crystal graphene domains by chemical vapor deposition. Proc. Natl Acad. Sci. USA 110, 20386-20391 (2013).
    • (2013) Proc. Natl Acad. Sci. USA , vol.110 , pp. 20386-20391
    • Ma, T.1
  • 44
    • 84925874043 scopus 로고    scopus 로고
    • Breaking of symmetry in graphene growth on metal substrates
    • Artyukhov, V. I., Hao, Y., Ruoff, R. S. & Yakobson, B. I. Breaking of symmetry in graphene growth on metal substrates. Phys. Rev. Lett. 114, 115502 (2015).
    • (2015) Phys. Rev. Lett. , vol.114 , pp. 115502
    • Artyukhov, V.I.1    Hao, Y.2    Ruoff, R.S.3    Yakobson, B.I.4
  • 45
    • 25444467189 scopus 로고    scopus 로고
    • Equilibrium and growth shapes of crystals: How do they differ and why should we care?
    • Sekerka, R. F. Equilibrium and growth shapes of crystals: how do they differ and why should we care? Cryst. Res. Technol. 40, 291-306 (2005).
    • (2005) Cryst. Res. Technol. , vol.40 , pp. 291-306
    • Sekerka, R.F.1
  • 47
    • 33750559983 scopus 로고    scopus 로고
    • Semiempirical GGA-type density functional constructed with a long-range dispersion correction
    • Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787-1799 (2006).
    • (2006) J. Comput. Chem. , vol.27 , pp. 1787-1799
    • Grimme, S.1
  • 48
    • 35949007146 scopus 로고
    • Ab initio molecular dynamics for open-shell transition metals
    • Kresse, G. & Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 48, 13115-13118 (1993).
    • (1993) Phys. Rev. B , vol.48 , pp. 13115-13118
    • Kresse, G.1    Hafner, J.2
  • 49
    • 0030190741 scopus 로고    scopus 로고
    • Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
    • Kresse, G. & Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15-50 (1996).
    • (1996) Comput. Mater. Sci. , vol.6 , pp. 15-50
    • Kresse, G.1    Furthmuller, J.2
  • 50
    • 26144450583 scopus 로고
    • Self-interaction correction to density-functional approximations for many-electron systems
    • Perdew, J. P. & Zunger, A. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B. 23, 5048-5079 (1981).
    • (1981) Phys. Rev. B. , vol.23 , pp. 5048-5079
    • Perdew, J.P.1    Zunger, A.2
  • 51
    • 0011236321 scopus 로고    scopus 로고
    • From ultrasoft pseudopotentials to the projector augmented-wave method
    • Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758-1775 (1999).
    • (1999) Phys. Rev. B , vol.59 , pp. 1758-1775
    • Kresse, G.1    Joubert, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.