-
1
-
-
84866851192
-
Concise review: Personalized human bone grafts for reconstructing head and face
-
Bhumiratana S, Vunjak-Novakovic G. Concise review: personalized human bone grafts for reconstructing head and face. Stem Cells Transl Med 2012;1:64-69.
-
(2012)
Stem Cells Transl Med
, vol.1
, pp. 64-69
-
-
Bhumiratana, S.1
Vunjak-Novakovic, G.2
-
2
-
-
33847651887
-
Bone grafts and bone graft substitutes in orthopaedic trauma surgery: A critical analysis
-
De Long WG Jr., Einhorn TA, Koval K, et al. Bone grafts and bone graft substitutes in orthopaedic trauma surgery: a critical analysis. J Bone Joint Surg 2007;89:649-658.
-
(2007)
J Bone Joint Surg
, vol.89
, pp. 649-658
-
-
De Long, W.G.1
Einhorn, T.A.2
Koval, K.3
-
3
-
-
84877852536
-
Bone graft substitutes currently available in orthopaedic practice: The evidence for their use
-
Kurien T, Pearson RG, Scammell BE. Bone graft substitutes currently available in orthopaedic practice: the evidence for their use. Bone Joint J 2013;95-B:583-597.
-
(2013)
Bone Joint J
, vol.95-B
, pp. 583-597
-
-
Kurien, T.1
Pearson, R.G.2
Scammell, B.E.3
-
4
-
-
84895067945
-
Calcium phosphate cements for bone substitution: Chemistry, handling and mechanical properties
-
Zhang J, Liu W, Schnitzler V, et al. Calcium phosphate cements for bone substitution: chemistry, handling and mechanical properties. Acta Biomater 2014;10:1035-1049.
-
(2014)
Acta Biomater
, vol.10
, pp. 1035-1049
-
-
Zhang, J.1
Liu, W.2
Schnitzler, V.3
-
5
-
-
22644442740
-
Technological issues for the development of more efficient calcium phosphate bone cements: A critical assessment
-
Bohner M, Gbureck U, Barralet J. Technological issues for the development of more efficient calcium phosphate bone cements: a critical assessment. Biomaterials 2005;26:6423-6429.
-
(2005)
Biomaterials
, vol.26
, pp. 6423-6429
-
-
Bohner, M.1
Gbureck, U.2
Barralet, J.3
-
7
-
-
0023442361
-
CT arthrography of the shoulder: Variations of the glenoid labrum
-
McNiesh LM, Callaghan JJ. CT arthrography of the shoulder: variations of the glenoid labrum. AJR Am J Roentgenol 1987;149:963-966.
-
(1987)
AJR Am J Roentgenol
, vol.149
, pp. 963-966
-
-
McNiesh, L.M.1
Callaghan, J.J.2
-
8
-
-
80555151152
-
Custom-made composite scaffolds for segmental defect repair in long bones
-
Reichert JC, Wullschleger ME, Cipitria A, et al. Custom-made composite scaffolds for segmental defect repair in long bones. Int Orthop 2011;35:1229-1236.
-
(2011)
Int Orthop
, vol.35
, pp. 1229-1236
-
-
Reichert, J.C.1
Wullschleger, M.E.2
Cipitria, A.3
-
9
-
-
84869876690
-
Additive manufacturing techniques for the production of tissue engineering constructs
-
Mota C, Puppi D, Chiellini F, Chiellini E. Additive manufacturing techniques for the production of tissue engineering constructs. J Tissue Eng Regen Med 2015;9:174-190.
-
(2015)
J Tissue Eng Regen Med
, vol.9
, pp. 174-190
-
-
Mota, C.1
Puppi, D.2
Chiellini, F.3
Chiellini, E.4
-
10
-
-
1042288112
-
Computer-aided tissue engineering: Overview, scope and challenges
-
Sun W, Darling A, Starly B, Nam J. Computer-aided tissue engineering: overview, scope and challenges. Biotechnol Appl Biochem 2004;39:29-47.
-
(2004)
Biotechnol Appl Biochem
, vol.39
, pp. 29-47
-
-
Sun, W.1
Darling, A.2
Starly, B.3
Nam, J.4
-
11
-
-
57449105202
-
CAD/CAM and rapid prototyped scaffold construction for bone regenerative medicine and surgical transfer of virtual planning: A pilot study
-
Ciocca L, De Crescenzio F, Fantini M, Scotti R. CAD/CAM and rapid prototyped scaffold construction for bone regenerative medicine and surgical transfer of virtual planning: a pilot study. Comput Med Imaging Graph 2009;33:58-62.
-
(2009)
Comput Med Imaging Graph
, vol.33
, pp. 58-62
-
-
Ciocca, L.1
De Crescenzio, F.2
Fantini, M.3
Scotti, R.4
-
12
-
-
0036191695
-
The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques
-
Yang S, Leong K, Du Z, Chua C. The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques. Tissue Eng 2002;8:1-11.
-
(2002)
Tissue Eng
, vol.8
, pp. 1-11
-
-
Yang, S.1
Leong, K.2
Du, Z.3
Chua, C.4
-
13
-
-
23044436691
-
Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering
-
Seitz H, Rieder W, Irsen S, et al. Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering. J Biomed Mater Res B Appl Biomater 2005;74:782-788.
-
(2005)
J Biomed Mater Res B Appl Biomater
, vol.74
, pp. 782-788
-
-
Seitz, H.1
Rieder, W.2
Irsen, S.3
-
14
-
-
29144502979
-
Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing
-
Leukers B, Gulkan H, Irsen SH, et al. Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing. J Mater Sci Mater Med 2005;16:1121-1124.
-
(2005)
J Mater Sci Mater Med
, vol.16
, pp. 1121-1124
-
-
Leukers, B.1
Gulkan, H.2
Irsen, S.H.3
-
16
-
-
3042782581
-
Scaffold-based tissue engineering: Rationale for computer-aided design and solid free-form fabrication systems
-
Hutmacher DW, Sittinger M, Risbud MV. Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol 2004;22:354-362.
-
(2004)
Trends Biotechnol
, vol.22
, pp. 354-362
-
-
Hutmacher, D.W.1
Sittinger, M.2
Risbud, M.V.3
-
17
-
-
84922739314
-
Three-dimensional printing of nanomaterial scaffolds for complex tissue regeneration
-
O'Brien CM, Holmes B, Faucett S, Zhang LG. Three-dimensional printing of nanomaterial scaffolds for complex tissue regeneration. Tissue Eng Part B Rev 2015;21:103-114.
-
(2015)
Tissue Eng Part B Rev
, vol.21
, pp. 103-114
-
-
O'Brien, C.M.1
Holmes, B.2
Faucett, S.3
Zhang, L.G.4
-
18
-
-
84855396802
-
Biofabrication of osteochondral tissue equivalents by printing topologically defined, cell-laden hydrogel scaffolds
-
Fedorovich NE, Schuurman W, Wijnberg HM, et al. Biofabrication of osteochondral tissue equivalents by printing topologically defined, cell-laden hydrogel scaffolds. Tissue Eng Part C Methods 2011;18:33-44.
-
(2011)
Tissue Eng Part C Methods
, vol.18
, pp. 33-44
-
-
Fedorovich, N.E.1
Schuurman, W.2
Wijnberg, H.M.3
-
19
-
-
79251632163
-
Structural and material approaches to bone tissue engineering in powder-based three-dimensional printing
-
Butscher A, Bohner M, Hofmann S, et al. Structural and material approaches to bone tissue engineering in powder-based three-dimensional printing. Acta Biomater 2011;7:907-920.
-
(2011)
Acta Biomater
, vol.7
, pp. 907-920
-
-
Butscher, A.1
Bohner, M.2
Hofmann, S.3
-
20
-
-
0003691544
-
Inventors; Massachusetts Institute of Technology, Cambridge, Massachusetts, assignee
-
Patent
-
Cima MJ, Haggerty JS, Sachs EM, Williams PA, inventors; Massachusetts Institute of Technology, Cambridge, Massachusetts, assignee. Three-dimensional printing techniques. Patent US5204055 A. 1993.
-
(1993)
Three-dimensional Printing Techniques
-
-
Cima, M.J.1
Haggerty, J.S.2
Sachs, E.M.3
Williams, P.A.4
-
21
-
-
84855956567
-
Printability of calcium phosphate powders for three-dimensional printing of tissue engineering scaffolds
-
Butscher A, Bohner M, Roth C, et al. Printability of calcium phosphate powders for three-dimensional printing of tissue engineering scaffolds. Acta Biomater 2012;8:373-385.
-
(2012)
Acta Biomater
, vol.8
, pp. 373-385
-
-
Butscher, A.1
Bohner, M.2
Roth, C.3
-
22
-
-
67149115153
-
Different calcium phosphate granules for 3-D printing of bone tissue engineering scaffolds
-
Seitz H, Deisinger U, Leukers B, et al. Different calcium phosphate granules for 3-D printing of bone tissue engineering scaffolds. Adv Eng Mater 2009;11: B41-B46.
-
(2009)
Adv Eng Mater
, vol.11
, pp. B41-B46
-
-
Seitz, H.1
Deisinger, U.2
Leukers, B.3
-
23
-
-
84896792598
-
Direct 3D powder printing of biphasic calcium phosphate scaffolds for substitution of complex bone defects
-
Castilho M, Moseke C, Ewald A, et al. Direct 3D powder printing of biphasic calcium phosphate scaffolds for substitution of complex bone defects. Biofabrication 2014;6:015006.
-
(2014)
Biofabrication
, vol.6
, pp. 015006
-
-
Castilho, M.1
Moseke, C.2
Ewald, A.3
-
24
-
-
70350035472
-
Endocultivation: 3D printed customized porous scaffolds for heterotopic bone induction
-
Becker ST, Bolte H, Krapf O, et al. Endocultivation: 3D printed customized porous scaffolds for heterotopic bone induction. Oral Oncol 2009;45:e181-e188.
-
(2009)
Oral Oncol
, vol.45
, pp. e181-e188
-
-
Becker, S.T.1
Bolte, H.2
Krapf, O.3
-
25
-
-
77949503635
-
Ceramic scaffolds produced by computer-assisted 3D printing and sintering: Characterization and biocompatibility investigations
-
Warnke PH, Seitz H, Warnke F, et al. Ceramic scaffolds produced by computer-assisted 3D printing and sintering: characterization and biocompatibility investigations. J Biomed Mater Res Part B Appl Biomater 2010;93:212-217.
-
(2010)
J Biomed Mater Res Part B Appl Biomater
, vol.93
, pp. 212-217
-
-
Warnke, P.H.1
Seitz, H.2
Warnke, F.3
-
26
-
-
58149499444
-
3D powder printing of β-tricalcium phosphate ceramics using different strategies
-
Vorndran E, Klarner M, Klammert U, et al. 3D powder printing of β-tricalcium phosphate ceramics using different strategies. Adv Eng Mater 2008;10: B67-B71.
-
(2008)
Adv Eng Mater
, vol.10
, pp. B67-B71
-
-
Vorndran, E.1
Klarner, M.2
Klammert, U.3
-
27
-
-
84872059849
-
Moisture based three-dimensional printing of calcium phosphate structures for scaffold engineering
-
Butscher A, Bohner M, Doebelin N, et al. Moisture based three-dimensional printing of calcium phosphate structures for scaffold engineering. Acta Biomater 2013;9:5369-5378.
-
(2013)
Acta Biomater
, vol.9
, pp. 5369-5378
-
-
Butscher, A.1
Bohner, M.2
Doebelin, N.3
-
28
-
-
34248562050
-
Development of a new calcium phosphate powder-binder system for the 3D printing of patient specific implants
-
Khalyfa A, Vogt S, Weisser J, et al. Development of a new calcium phosphate powder-binder system for the 3D printing of patient specific implants. J Mater Sci Mater Med 2007; 18:909-916.
-
(2007)
J Mater Sci Mater Med
, vol.18
, pp. 909-916
-
-
Khalyfa, A.1
Vogt, S.2
Weisser, J.3
-
29
-
-
67749142428
-
Development of a biomimetic collagen-hydroxyapatite scaffold for bone tissue engineering using a SBF immersion technique
-
Al-Munajjed AA, Plunkett NA, Gleeson JP, et al. Development of a biomimetic collagen-hydroxyapatite scaffold for bone tissue engineering using a SBF immersion technique. J Biomed Mater Res Part B Appl Biomater 2009;90:584-591.
-
(2009)
J Biomed Mater Res Part B Appl Biomater
, vol.90
, pp. 584-591
-
-
Al-Munajjed, A.A.1
Plunkett, N.A.2
Gleeson, J.P.3
-
30
-
-
0347384083
-
Performance of hydroxyapatite bone repair scaffolds created via three-dimensional fabrication techniques
-
Dutta Roy T, Simon JL, Ricci JL, et al. Performance of hydroxyapatite bone repair scaffolds created via three-dimensional fabrication techniques. J Biomed Mater Res Part A 2003;67A: 1228-1237.
-
(2003)
J Biomed Mater Res Part A
, vol.67 A
, pp. 1228-1237
-
-
Dutta Roy, T.1
Simon, J.L.2
Ricci, J.L.3
-
31
-
-
84880702026
-
Microwave-sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering
-
Tarafder S, Balla VK, Davies NM, et al. Microwave-sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering. J Tissue Eng Regen Med 2013;7:631-641.
-
(2013)
J Tissue Eng Regen Med
, vol.7
, pp. 631-641
-
-
Tarafder, S.1
Balla, V.K.2
Davies, N.M.3
-
32
-
-
67349217990
-
Mechanical and in vitro performance of apatite-wollastonite glass ceramic reinforced hydroxyapatite composite fabricated by 3D-printing
-
Suwanprateeb J, Sanngam R, Suvannapruk W, Panyathanmaporn T. Mechanical and in vitro performance of apatite-wollastonite glass ceramic reinforced hydroxyapatite composite fabricated by 3D-printing. J Mater Sci Mater Med 2009;20:1281-1289.
-
(2009)
J Mater Sci Mater Med
, vol.20
, pp. 1281-1289
-
-
Suwanprateeb, J.1
Sanngam, R.2
Suvannapruk, W.3
Panyathanmaporn, T.4
-
33
-
-
38049110241
-
Resorbable dicalcium phosphate bone substitutes prepared by 3D powder printing
-
Gbureck U, Holzel T, Klammert U, et al. Resorbable dicalcium phosphate bone substitutes prepared by 3D powder printing. Adv Funct Mater 2007;17:3940-3945.
-
(2007)
Adv Funct Mater
, vol.17
, pp. 3940-3945
-
-
Gbureck, U.1
Holzel, T.2
Klammert, U.3
-
35
-
-
78049528486
-
3D powder printed calcium phosphate implants for reconstruction of cranial and maxillofacial defects
-
Klammert U, Gbureck U, Vorndran E, et al. 3D powder printed calcium phosphate implants for reconstruction of cranial and maxillofacial defects. J Craniomaxillofac Surg 2010;38:565-570.
-
(2010)
J Craniomaxillofac Surg
, vol.38
, pp. 565-570
-
-
Klammert, U.1
Gbureck, U.2
Vorndran, E.3
-
36
-
-
0036333586
-
Preshaped hydroxyapatite tricalcium-phosphate implant using three-dimensional computed tomography in the reconstruction of bone deformities of craniomaxillofacial region
-
Tada H, Hatoko M, Tanaka A, et al. Preshaped hydroxyapatite tricalcium-phosphate implant using three-dimensional computed tomography in the reconstruction of bone deformities of craniomaxillofacial region. J Craniofac Surg 2002;13:287-292.
-
(2002)
J Craniofac Surg
, vol.13
, pp. 287-292
-
-
Tada, H.1
Hatoko, M.2
Tanaka, A.3
-
37
-
-
84911805552
-
Engineering anatomically shaped vascularized bone grafts with hASCs and 3D-printed PCL scaffolds
-
Temple JP, Hutton DL, Hung BP, et al. Engineering anatomically shaped vascularized bone grafts with hASCs and 3D-printed PCL scaffolds. J Biomed Mater Res Part A 2014;102: 4317-4325.
-
(2014)
J Biomed Mater Res Part A
, vol.102
, pp. 4317-4325
-
-
Temple, J.P.1
Hutton, D.L.2
Hung, B.P.3
-
39
-
-
77951254874
-
Biocompatibility of individually designed scaffolds with human periosteum for use in tissue engineering
-
Becker ST, Douglas T, Acil Y, et al. Biocompatibility of individually designed scaffolds with human periosteum for use in tissue engineering. J Mater Sci Mater Med 2010;21:1255-1262.
-
(2010)
J Mater Sci Mater Med
, vol.21
, pp. 1255-1262
-
-
Becker, S.T.1
Douglas, T.2
Acil, Y.3
-
40
-
-
84896715739
-
3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration
-
Inzana JA, Olvera D, Fuller SM, et al. 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration. Biomaterials 2014;35:4026-4034.
-
(2014)
Biomaterials
, vol.35
, pp. 4026-4034
-
-
Inzana, J.A.1
Olvera, D.2
Fuller, S.M.3
-
41
-
-
80051550066
-
In vitro: Osteoclastic activity studies on surfaces of 3D printed calcium phosphate scaffolds
-
Detsch R, Schaefer S, Deisinger U, et al. In vitro : osteoclastic activity studies on surfaces of 3D printed calcium phosphate scaffolds. J Biomater Appl 2011;26:359-380.
-
(2011)
J Biomater Appl
, vol.26
, pp. 359-380
-
-
Detsch, R.1
Schaefer, S.2
Deisinger, U.3
-
42
-
-
84931424245
-
Tissue-Engineered Bone with 3-Dimensionally Printed β-Tricalcium Phosphate and Polycaprolactone Scaffolds and Early Implantation: An in Vivo Pilot Study in a Porcine Mandible Model
-
Konopnicki S, Sharaf B, Resnick C, et al. Tissue-Engineered Bone With 3-Dimensionally Printed β-Tricalcium Phosphate and Polycaprolactone Scaffolds and Early Implantation: An In Vivo Pilot Study in a Porcine Mandible Model. J Oral Maxillofac Surg 2015;73:1016.e1-1016.e11.
-
(2015)
J Oral Maxillofac Surg
, vol.73
, pp. 1016e1-1016e11
-
-
Konopnicki, S.1
Sharaf, B.2
Resnick, C.3
-
43
-
-
72949120803
-
Fabrication of bioactive hydroxyapatite/bis-GMA based composite via three dimensional printing
-
Suwanprateeb J, Sanngam R, Suwanpreuk W. Fabrication of bioactive hydroxyapatite/bis-GMA based composite via three dimensional printing. J Mater Sci Mater Med 2008;19:2637-2645.
-
(2008)
J Mater Sci Mater Med
, vol.19
, pp. 2637-2645
-
-
Suwanprateeb, J.1
Sanngam, R.2
Suwanpreuk, W.3
-
44
-
-
80053185358
-
Optimizing the osteogenic potential of adult stem cells for skeletal regeneration
-
Lim JY, Loiselle AE, Lee JS, et al. Optimizing the osteogenic potential of adult stem cells for skeletal regeneration. J Orthopaed Res 2011;29: 1627-1633.
-
(2011)
J Orthopaed Res
, vol.29
, pp. 1627-1633
-
-
Lim, J.Y.1
Loiselle, A.E.2
Lee, J.S.3
-
45
-
-
34547931491
-
Influence of substratum surface chemistry/energy and topography on the human fetal osteoblastic cell line hFOB 1.19: Phenotypic and genotypic responses observed in vitro
-
Liu X, Lim JY, Donahue HJ, et al. Influence of substratum surface chemistry/energy and topography on the human fetal osteoblastic cell line hFOB 1.19: phenotypic and genotypic responses observed in vitro. Biomaterials 2007;28:4535-4550.
-
(2007)
Biomaterials
, vol.28
, pp. 4535-4550
-
-
Liu, X.1
Lim, J.Y.2
Donahue, H.J.3
-
46
-
-
84879675064
-
Specific biomimetic hydroxyapatite nanotopographies enhance osteoblastic differentiation and bone graft osteointegration
-
Loiselle AE, Wei L, Faryad M, et al. Specific biomimetic hydroxyapatite nanotopographies enhance osteoblastic differentiation and bone graft osteointegration. Tissue Eng Part A 2013;19:1704-1712.
-
(2013)
Tissue Eng Part A
, vol.19
, pp. 1704-1712
-
-
Loiselle, A.E.1
Wei, L.2
Faryad, M.3
-
47
-
-
58149333664
-
Lost mold rapid infiltration forming of mesoscale ceramics: Part 1, fabrication
-
Antolino NE, et al. Lost mold rapid infiltration forming of mesoscale ceramics: part 1, fabrication. J Am Ceramic Soc 2009;92.s1:S63-S69.
-
(2009)
J Am Ceramic Soc
, vol.92
, Issue.S1
, pp. S63-S69
-
-
Antolino, N.E.1
-
48
-
-
84991630403
-
Lost mold-rapid infiltration forming: Strength control in mesoscale 3Y-TZP ceramics
-
The Pennsylvania State University, University Park, PA
-
Antolino N. Lost mold-rapid infiltration forming: strength control in mesoscale 3Y-TZP ceramics. Dissertation. The Pennsylvania State University, University Park, PA, 2010.
-
(2010)
Dissertation.
-
-
Antolino, N.1
|