메뉴 건너뛰기




Volumn 1, Issue 4, 2013, Pages 215-226

Predictive modeling with big data: Is bigger really better?

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84991624961     PISSN: 21676461     EISSN: 2167647X     Source Type: Journal    
DOI: 10.1089/big.2013.0037     Document Type: Article
Times cited : (154)

References (34)
  • 1
    • 0141771188 scopus 로고    scopus 로고
    • A survey of methods for scaling up inductive algorithms
    • Provost F, Kolluri V. A survey of methods for scaling up inductive algorithms. Data Mining Knowledge Discov 1999; 3: 131-169.
    • (1999) Data Mining Knowledge Discov , vol.3 , pp. 131-169
    • Provost, F.1    Kolluri, V.2
  • 4
    • 33748544940 scopus 로고    scopus 로고
    • Network-based marketing: Identifying likely adopters via consumer networks
    • Hill S, Provost F, Volinsky C. Network-based marketing: Identifying likely adopters via consumer networks. Stat Sci 2006; 22: 256-276.
    • (2006) Stat Sci , vol.22 , pp. 256-276
    • Hill, S.1    Provost, F.2    Volinsky, C.3
  • 5
    • 34447292534 scopus 로고    scopus 로고
    • Comprehensible credit scoring models using rule extraction from support vector machines
    • Martens D, Baesens B, Van Gestel T, Vanthienen J. Comprehensible credit scoring models using rule extraction from support vector machines. Eur J Oper Res 2007; 183: 1466-1476.
    • (2007) Eur J Oper Res , vol.183 , pp. 1466-1476
    • Martens, D.1    Baesens, B.2    Van Gestel, T.3    Vanthienen, J.4
  • 6
    • 84991648254 scopus 로고    scopus 로고
    • Social network analysis for customer churn prediction
    • in press
    • Verbeke W, Martens D, Baesens B. Social network analysis for customer churn prediction. Appl Soft Comput 2013 [in press].
    • (2013) Appl Soft Comput
    • Verbeke, W.1    Martens, D.2    Baesens, B.3
  • 7
    • 28444470190 scopus 로고    scopus 로고
    • RFM, and CLV: Using iso-value curves for customer base analysis
    • Fader PS, Hardie BGS, Ka Lok L. RFM, and CLV: Using iso-value curves for customer base analysis. J Mark Res 2005; 42: 415-430.
    • (2005) J Mark Res , vol.42 , pp. 415-430
    • Fader, P.S.1    Hardie, B.G.S.2    Ka Lok, L.3
  • 9
    • 84897110594 scopus 로고    scopus 로고
    • Machine learning for targeted display advertising: Transfer learning in action
    • Published online; to appear in print
    • Perlich C, Dalessandro B, Raeder T, Stitelman O, Provost F. Machine learning for targeted display advertising: Transfer learning in action. Machine Learning 2013. Published online; to appear in print. DOI 10.1007/.s10994-013-5375-2.
    • (2013) Machine Learning
    • Perlich, C.1    Dalessandro, B.2    Raeder, T.3    Stitelman, O.4    Provost, F.5
  • 13
    • 32044451133 scopus 로고    scopus 로고
    • Distribution-based aggregation for relational learning from identifier attributes
    • Perlich, C, Provost F. Distribution-based aggregation for relational learning from identifier attributes. Machine Learning 2006; 62(1/2): 65-105.
    • (2006) Machine Learning , vol.62 , Issue.1-2 , pp. 65-105
    • Perlich, C.1    Provost, F.2
  • 15
    • 1242268938 scopus 로고    scopus 로고
    • Tree induction vs. Logistic regression: A learning-curve analysis
    • Perlich C, Provost F, Simonoff JS. Tree induction vs. logistic regression: A learning-curve analysis. JMLR 2003; 4: 211-255.
    • (2003) JMLR , vol.4 , pp. 211-255
    • Perlich, C.1    Provost, F.2    Simonoff, J.S.3
  • 16
    • 0030127467 scopus 로고    scopus 로고
    • Scaling up inductive learning with massive parallelism
    • Provost F, Aronis J. Scaling up inductive learning with massive parallelism. Machine Learning 1996; 23: 33-46.
    • (1996) Machine Learning , vol.23 , pp. 33-46
    • Provost, F.1    Aronis, J.2
  • 17
    • 84991693451 scopus 로고    scopus 로고
    • Machine learning, and algorithms: Agile development
    • Langford J, Ortega R. Machine learning, and algorithms: Agile development. Commun ACM 2012; 55: 10-11.
    • (2012) Commun ACM , vol.55 , pp. 10-11
    • Langford, J.1    Ortega, R.2
  • 19
    • 84991746870 scopus 로고    scopus 로고
    • Bring the noise: Embracing randomness is the key to scaling up machine learning algorithms
    • Dalessandro B. Bring the noise: Embracing randomness is the key to scaling up machine learning algorithms. Big Data J 2013; 1: 105-109.
    • (2013) Big Data J , vol.1 , pp. 105-109
    • Dalessandro, B.1
  • 20
    • 59549087165 scopus 로고    scopus 로고
    • On discriminative vs. Generative classifiers: A comparison of logistic regression, and Naive Bayes
    • Ng A, Jordan M. On discriminative vs. generative classifiers: A comparison of logistic regression, and Naive Bayes. Adv Neural Inf Process Syst 2002; 14: 841.
    • (2002) Adv Neural Inf Process Syst , vol.14 , pp. 841
    • Ng, A.1    Jordan, M.2
  • 21
    • 84887588389 scopus 로고    scopus 로고
    • Data Science for Business-What you need to know about data mining, and data-Analytic thinking
    • Provost F, Fawcett T. Data Science for Business-What you need to know about data mining, and data-Analytic thinking. O'Reilly Media, 2013.
    • (2013) O'Reilly Media
    • Provost, F.1    Fawcett, T.2
  • 22
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi R, John GH. Wrappers for feature subset selection. Artif Intell 1997; 97: 273-324.
    • (1997) Artif Intell , vol.97 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 23
    • 44949274046 scopus 로고
    • The theory of planned behavior
    • Ajzen I. The theory of planned behavior. Theor Cogn Self Regul 1991; 50: 179-211.
    • (1991) Theor Cogn Self Regul , vol.50 , pp. 179-211
    • Ajzen, I.1
  • 24
    • 0016220640 scopus 로고
    • Attitudes towards objects as predictors of single, and multiple behavioral criteria
    • Fishbein M, Ajzen I. Attitudes towards objects as predictors of single, and multiple behavioral criteria. Psychol Rev 1974; 81: 59-74.
    • (1974) Psychol Rev , vol.81 , pp. 59-74
    • Fishbein, M.1    Ajzen, I.2
  • 32
    • 84991572246 scopus 로고    scopus 로고
    • May 8 2013). Management Science, Forthcoming. Available at SSRN
    • Tambe, P. Big Data Investment, Skills, and Firm Value (May 8, 2013). Management Science, Forthcoming. Available at SSRN: http://ssrn.com/abstract=2294077 or http://.dx.doi.org/10.2139/ssrn.2294077
    • Big Data Investment Skills Firm Value
    • Tambe, P.1
  • 33
    • 84991650406 scopus 로고    scopus 로고
    • Fast Company, September 16, 2013. Last accessed on October 1, 2013
    • Gray T. 2013. Dstillery is Picasso in the dark art of digital advertising. Fast Company, September 16, 2013. www.fastcompany.com/3017495/dstillery-is-picasso-in-Thedark-Art-of-digital-Advertising. (Last accessed on October 1, 2013
    • (2013) Dstillery Is Picasso in the Dark Art of Digital Advertising
    • Gray, T.1
  • 34
    • 33745156863 scopus 로고    scopus 로고
    • Some theory for Fisher's linear discriminant function, naive Bayes, and some alternatives when there are many more variables than observations
    • Bickel PJ, Levina E. Some theory for Fisher's linear discriminant function, naive Bayes, and some alternatives when there are many more variables than observations. Bernoulli 2004; 10: 989-1010.
    • (2004) Bernoulli , vol.10 , pp. 989-1010
    • Bickel, P.J.1    Levina, E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.