-
1
-
-
0025863508
-
Molecular chaperones
-
Ellis RJ, van der Vies SM. 1991. Molecular chaperones. Annu Rev Biochem 60:321-347. http://dx.doi.org/10.1146/annurev.bi.60.070191.001541.
-
(1991)
Annu Rev Biochem
, vol.60
, pp. 321-347
-
-
Ellis, R.J.1
van der Vies, S.M.2
-
2
-
-
84878948560
-
Molecular chaperone functions in protein folding and proteostasis
-
Kim YE, Hipp MS, Bracher A, Hayer-Hartl M, Hartl FU. 2013. Molecular chaperone functions in protein folding and proteostasis. Annu Rev Biochem 82:323-355. http://dx.doi.org/10.1146/annurev-biochem-060208-092442.
-
(2013)
Annu Rev Biochem
, vol.82
, pp. 323-355
-
-
Kim, Y.E.1
Hipp, M.S.2
Bracher, A.3
Hayer-Hartl, M.4
Hartl, F.U.5
-
3
-
-
84886412961
-
Chaperone machines for protein folding, unfolding and disaggregation
-
Saibil H. 2013. Chaperone machines for protein folding, unfolding and disaggregation. Nat Rev Mol Cell Biol 14:630-642. http://dx.doi.org/10.1038/nrm3658.
-
(2013)
Nat Rev Mol Cell Biol
, vol.14
, pp. 630-642
-
-
Saibil, H.1
-
4
-
-
84942293085
-
Dynamics, flexibility, and allostery in molecular chaperonins
-
Skjaerven L, Cuellar J, Martinez A, Valpuesta JM. 2015. Dynamics, flexibility, and allostery in molecular chaperonins. FEBS Lett 589:2522-2532. http://dx.doi.org/10.1016/j.febslet.2015.06.019.
-
(2015)
FEBS Lett
, vol.589
, pp. 2522-2532
-
-
Skjaerven, L.1
Cuellar, J.2
Martinez, A.3
Valpuesta, J.M.4
-
5
-
-
36949033246
-
Two families of chaperonin: physiology and mechanism
-
Horwich AL, Fenton WA, Chapman E, Farr GW. 2007. Two families of chaperonin: physiology and mechanism. Annu Rev Cell Dev Biol 23:115-145. http://dx.doi.org/10.1146/annurev.cellbio.23.090506.123555.
-
(2007)
Annu Rev Cell Dev Biol
, vol.23
, pp. 115-145
-
-
Horwich, A.L.1
Fenton, W.A.2
Chapman, E.3
Farr, G.W.4
-
6
-
-
84876395977
-
Structure and allostery of the chaperonin GroEL
-
Saibil HR, Fenton WA, Clare DK, Horwich AL. 2013. Structure and allostery of the chaperonin GroEL. J Mol Biol 425:1476-1487. http://dx.doi.org/10.1016/j.jmb.2012.11.028.
-
(2013)
J Mol Biol
, vol.425
, pp. 1476-1487
-
-
Saibil, H.R.1
Fenton, W.A.2
Clare, D.K.3
Horwich, A.L.4
-
7
-
-
77950621338
-
Loss and gain of GroEL in the Mollicutes
-
Clark GW, Tillier ER. 2010. Loss and gain of GroEL in the Mollicutes. Biochem Cell Biol 88:185-194. http://dx.doi.org/10.1139/O09-157.
-
(2010)
Biochem Cell Biol
, vol.88
, pp. 185-194
-
-
Clark, G.W.1
Tillier, E.R.2
-
8
-
-
0024554107
-
The groES and groEL heat shock gene products of Escherichia coli are essential for bacterial growth at all temperatures
-
Fayet O, Ziegelhoffer T, Georgopoulos C. 1989. The groES and groEL heat shock gene products of Escherichia coli are essential for bacterial growth at all temperatures. J Bacteriol 171:1379-1385.
-
(1989)
J Bacteriol
, vol.171
, pp. 1379-1385
-
-
Fayet, O.1
Ziegelhoffer, T.2
Georgopoulos, C.3
-
9
-
-
0029884589
-
Review: the Cct eukaryotic chaperonin subunits of Saccharomyces cerevisiae and other yeasts
-
Stoldt V, Rademacher F, Kehren V, Ernst JF, Pearce DA, Sherman F. 1996. Review: the Cct eukaryotic chaperonin subunits of Saccharomyces cerevisiae and other yeasts. Yeast 12:523-529.
-
(1996)
Yeast
, vol.12
, pp. 523-529
-
-
Stoldt, V.1
Rademacher, F.2
Kehren, V.3
Ernst, J.F.4
Pearce, D.A.5
Sherman, F.6
-
10
-
-
33748490520
-
All three chaperonin genes in the archaeon Haloferax volcanii are individually dispensable
-
Kapatai G, Large A, Benesch JL, Robinson CV, Carrascosa JL, Valpuesta JM, Gowrinathan P, Lund PA. 2006. All three chaperonin genes in the archaeon Haloferax volcanii are individually dispensable. Mol Microbiol 61:1583-1597. http://dx.doi.org/10.1111/j.1365-2958.2006.05324.x.
-
(2006)
Mol Microbiol
, vol.61
, pp. 1583-1597
-
-
Kapatai, G.1
Large, A.2
Benesch, J.L.3
Robinson, C.V.4
Carrascosa, J.L.5
Valpuesta, J.M.6
Gowrinathan, P.7
Lund, P.A.8
-
11
-
-
79961171567
-
Chaperonins: two rings for folding
-
Yébenes H, Mesa P, Muñoz IG, Montoya G, Valpuesta JM. 2011. Chaperonins: two rings for folding. Trends Biochem Sci 36:424-432. http://dx.doi.org/10.1016/j.tibs.2011.05.003.
-
(2011)
Trends Biochem Sci
, vol.36
, pp. 424-432
-
-
Yébenes, H.1
Mesa, P.2
Muñoz, I.G.3
Montoya, G.4
Valpuesta, J.M.5
-
12
-
-
84941173009
-
The mechanism and function of group II chaperonins
-
Lopez T, Dalton K, Frydman J. 2015. The mechanism and function of group II chaperonins. J Mol Biol 427:2919-2930. http://dx.doi.org/10.1016/j.jmb.2015.04.013.
-
(2015)
J Mol Biol
, vol.427
, pp. 2919-2930
-
-
Lopez, T.1
Dalton, K.2
Frydman, J.3
-
13
-
-
66749187185
-
Multiple chaperonins in bacteria-why so many?
-
Lund PA. 2009. Multiple chaperonins in bacteria-why so many? FEMS Microbiol Rev 33:785-800. http://dx.doi.org/10.1111/j.1574-6976.2009.00178.x.
-
(2009)
FEMS Microbiol Rev
, vol.33
, pp. 785-800
-
-
Lund, P.A.1
-
14
-
-
84856438886
-
Mechanism of nucleotide sensing in group II chaperonins
-
Pereira JH, Ralston CY, Douglas NR, Kumar R, Lopez T, Mcandrew RP, Knee KM, King JA, Frydman J, Adams PD. 2012. Mechanism of nucleotide sensing in group II chaperonins. EMBO J 31:731-740. http://dx.doi.org/10.1038/emboj.2011.468.
-
(2012)
EMBO J
, vol.31
, pp. 731-740
-
-
Pereira, J.H.1
Ralston, C.Y.2
Douglas, N.R.3
Kumar, R.4
Lopez, T.5
Mcandrew, R.P.6
Knee, K.M.7
King, J.A.8
Frydman, J.9
Adams, P.D.10
-
15
-
-
34247635168
-
Essential function of the built-in lid in the allosteric regulation of eukaryotic and archaeal chaperonins
-
Reissmann S, Parnot C, Booth CR, Chiu W, Frydman J. 2007. Essential function of the built-in lid in the allosteric regulation of eukaryotic and archaeal chaperonins. Nat Struct Mol Biol 14:432-440. http://dx.doi.org/10.1038/nsmb1236.
-
(2007)
Nat Struct Mol Biol
, vol.14
, pp. 432-440
-
-
Reissmann, S.1
Parnot, C.2
Booth, C.R.3
Chiu, W.4
Frydman, J.5
-
16
-
-
0027943510
-
The crystal structure of the bacterial chaperonin GroEL at 2.8 Å
-
Braig K, Otwinowski Z, Hegde R, Boisvert DC, Joachimiak A, Horwich AL, Sigler PB. 1994. The crystal structure of the bacterial chaperonin GroEL at 2.8 Å. Nature 371:578-586. http://dx.doi.org/10.1038/371578a0.
-
(1994)
Nature
, vol.371
, pp. 578-586
-
-
Braig, K.1
Otwinowski, Z.2
Hegde, R.3
Boisvert, D.C.4
Joachimiak, A.5
Horwich, A.L.6
Sigler, P.B.7
-
17
-
-
0032478545
-
Crystal structure of the thermosome, the archaeal chaperonin and homolog of CCT
-
Ditzel L, Löwe J, Stock D, Stetter KO, Huber H, Huber R, Steinbacher S. 1998. Crystal structure of the thermosome, the archaeal chaperonin and homolog of CCT. Cell 93:125-138. http://dx.doi.org/10.1016/S0092-8674(00)81152-6.
-
(1998)
Cell
, vol.93
, pp. 125-138
-
-
Ditzel, L.1
Löwe, J.2
Stock, D.3
Stetter, K.O.4
Huber, H.5
Huber, R.6
Steinbacher, S.7
-
18
-
-
7544242667
-
A mutant chaperonin with rearranged inter-ring electrostatic contacts and temperature-sensitive dissociation
-
Sewell BT, Best RB, Chen S, Roseman AM, Farr GW, Horwich AL, Saibil HR. 2004. A mutant chaperonin with rearranged inter-ring electrostatic contacts and temperature-sensitive dissociation. Nat Struct Mol Biol 11:1128-1133. http://dx.doi.org/10.1038/nsmb844.
-
(2004)
Nat Struct Mol Biol
, vol.11
, pp. 1128-1133
-
-
Sewell, B.T.1
Best, R.B.2
Chen, S.3
Roseman, A.M.4
Farr, G.W.5
Horwich, A.L.6
Saibil, H.R.7
-
19
-
-
77950456761
-
4.0 Å resolution cryo-EM structure of the mammalian chaperonin TRiC/CCT reveals its unique subunit arrangement
-
Cong Y, Baker ML, Jakana J, Woolford D, Miller EJ, Reissmann S, Kumar RN, Redding-Johanson AM, Batth TS, Mukhopadhyay A, Ludtke SJ, Frydman J, Chiu W. 2010. 4.0 Å resolution cryo-EM structure of the mammalian chaperonin TRiC/CCT reveals its unique subunit arrangement. Proc Natl Acad SciUSA107:4967-4972. http://dx.doi.org/10.1073/pnas.0913774107.
-
(2010)
Proc Natl Acad SciUSA
, vol.107
, pp. 4967-4972
-
-
Cong, Y.1
Baker, M.L.2
Jakana, J.3
Woolford, D.4
Miller, E.J.5
Reissmann, S.6
Kumar, R.N.7
Redding-Johanson, A.M.8
Batth, T.S.9
Mukhopadhyay, A.10
Ludtke, S.J.11
Frydman, J.12
Chiu, W.13
-
20
-
-
0028370512
-
Identification of six Tcp-1-related genes encoding divergent subunits of the TCP-1-containing chaperonin
-
Kubota H, Hynes G, Carne A, Ashworth A, Willison K. 1994. Identification of six Tcp-1-related genes encoding divergent subunits of the TCP-1-containing chaperonin. Curr Biol 4:89-99. http://dx.doi.org/10.1016/S0960-9822(94)00024-2.
-
(1994)
Curr Biol
, vol.4
, pp. 89-99
-
-
Kubota, H.1
Hynes, G.2
Carne, A.3
Ashworth, A.4
Willison, K.5
-
21
-
-
79952478424
-
On the evolutionary origin of the chaperonins
-
Dekker C, Willison KR, Taylor WR. 2011. On the evolutionary origin of the chaperonins. Proteins 79:1172-1192. http://dx.doi.org/10.1002/prot.22952.
-
(2011)
Proteins
, vol.79
, pp. 1172-1192
-
-
Dekker, C.1
Willison, K.R.2
Taylor, W.R.3
-
22
-
-
84911887217
-
The structural basis of substrate recognition by the eukaryotic chaperonin TRiC/CCT
-
Joachimiak LA, Walzthoeni T, Liu CW, Aebersold R, Frydman J. 2014. The structural basis of substrate recognition by the eukaryotic chaperonin TRiC/CCT. Cell 159:1042-1055. http://dx.doi.org/10.1016/j.cell.2014.10.042.
-
(2014)
Cell
, vol.159
, pp. 1042-1055
-
-
Joachimiak, L.A.1
Walzthoeni, T.2
Liu, C.W.3
Aebersold, R.4
Frydman, J.5
-
23
-
-
70450219488
-
Differential substrate specificity of group I and group II chaperonins in the archaeon Methanosarcina mazei
-
Hirtreiter AM, Calloni G, Forner F, Scheibe B, Puype M, Vandekerckhove J, Mann M, Hartl FU, Hayer-Hartl M. 2009. Differential substrate specificity of group I and group II chaperonins in the archaeon Methanosarcina mazei. Mol Microbiol 74:1152-1168. http://dx.doi.org/10.1111/j.1365-2958.2009.06924.x.
-
(2009)
Mol Microbiol
, vol.74
, pp. 1152-1168
-
-
Hirtreiter, A.M.1
Calloni, G.2
Forner, F.3
Scheibe, B.4
Puype, M.5
Vandekerckhove, J.6
Mann, M.7
Hartl, F.U.8
Hayer-Hartl, M.9
-
24
-
-
45649083920
-
Concerted release of substrate domains from GroEL by ATP is demonstrated with FRET
-
Papo N, Kipnis Y, Haran G, Horovitz A. 2008. Concerted release of substrate domains from GroEL by ATP is demonstrated with FRET. J Mol Biol 380:717-725. http://dx.doi.org/10.1016/j.jmb.2008.05.021.
-
(2008)
J Mol Biol
, vol.380
, pp. 717-725
-
-
Papo, N.1
Kipnis, Y.2
Haran, G.3
Horovitz, A.4
-
25
-
-
17844378217
-
Sequential ATP-induced allosteric transitions of the cytoplasmic chaperonin containing TCP-1 revealed by EM analysis
-
Rivenzon-Segal D, Wolf SG, Shimon L, Willison KR, Horovitz A. 2005. Sequential ATP-induced allosteric transitions of the cytoplasmic chaperonin containing TCP-1 revealed by EM analysis. Nat Struct Mol Biol 12: 233-237. http://dx.doi.org/10.1038/nsmb901.
-
(2005)
Nat Struct Mol Biol
, vol.12
, pp. 233-237
-
-
Rivenzon-Segal, D.1
Wolf, S.G.2
Shimon, L.3
Willison, K.R.4
Horovitz, A.5
-
26
-
-
33646897305
-
Structural features of the GroEL-GroES nano-cage required for rapid folding of encapsulated protein
-
Tang YC, Chang HC, Roeben A, Wischnewski D, Wischnewski N, Kerner MJ, Hartl FU, Hayer-Hartl M. 2006. Structural features of the GroEL-GroES nano-cage required for rapid folding of encapsulated protein. Cell 125:903-914. http://dx.doi.org/10.1016/j.cell.2006.04.027.
-
(2006)
Cell
, vol.125
, pp. 903-914
-
-
Tang, Y.C.1
Chang, H.C.2
Roeben, A.3
Wischnewski, D.4
Wischnewski, N.5
Kerner, M.J.6
Hartl, F.U.7
Hayer-Hartl, M.8
-
27
-
-
0028989966
-
Specificity in chaperonin-mediated protein folding
-
Tian G, Vainberg IE, Tap WD, Lewis SA, Cowan NJ. 1995. Specificity in chaperonin-mediated protein folding. Nature 375:250-253. http://dx.doi.org/10.1038/375250a0.
-
(1995)
Nature
, vol.375
, pp. 250-253
-
-
Tian, G.1
Vainberg, I.E.2
Tap, W.D.3
Lewis, S.A.4
Cowan, N.J.5
-
28
-
-
22744447508
-
Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli
-
Kerner MJ, Naylor DJ, Ishihama Y, Maier T, Chang HC, Stines AP, Georgopoulos C, Frishman D, Hayer-Hartl M, Mann M, Hartl FU. 2005. Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli. Cell 122:209-220. http://dx.doi.org/10.1016/j.cell.2005.05.028.
-
(2005)
Cell
, vol.122
, pp. 209-220
-
-
Kerner, M.J.1
Naylor, D.J.2
Ishihama, Y.3
Maier, T.4
Chang, H.C.5
Stines, A.P.6
Georgopoulos, C.7
Frishman, D.8
Hayer-Hartl, M.9
Mann, M.10
Hartl, F.U.11
-
29
-
-
57149098022
-
Defining the TRiC/CCT interactome links chaperonin function to stabilization of newly made proteins with complex topologies
-
Yam AY, Xia Y, Lin HT, Burlingame A, Gerstein M, Frydman J. 2008. Defining the TRiC/CCT interactome links chaperonin function to stabilization of newly made proteins with complex topologies. Nat Struct Mol Biol 15:1255-1262. http://dx.doi.org/10.1038/nsmb.1515.
-
(2008)
Nat Struct Mol Biol
, vol.15
, pp. 1255-1262
-
-
Yam, A.Y.1
Xia, Y.2
Lin, H.T.3
Burlingame, A.4
Gerstein, M.5
Frydman, J.6
-
30
-
-
34548056793
-
Testing the neutral fixation of heterooligomerism in the archaeal chaperonin CCT
-
Ruano-Rubio V, Fares MA. 2007. Testing the neutral fixation of heterooligomerism in the archaeal chaperonin CCT. Mol Biol Evol 24:1384-1396. http://dx.doi.org/10.1093/molbev/msm065.
-
(2007)
Mol Biol Evol
, vol.24
, pp. 1384-1396
-
-
Ruano-Rubio, V.1
Fares, M.A.2
-
31
-
-
2642659387
-
GroE is vital for cell-wall synthesis
-
McLennan N, Masters M. 1998. GroE is vital for cell-wall synthesis. Nature 392:139. http://dx.doi.org/10.1038/32317.
-
(1998)
Nature
, vol.392
, pp. 139
-
-
McLennan, N.1
Masters, M.2
-
32
-
-
0030846353
-
Deletion of Escherichia coli groEL is complemented by a Rhizobium leguminosarum groEL homologue at 37 degrees C but not at 43 degrees C
-
Ivic A, Olden D, Wallington EJ, Lund PA. 1997. Deletion of Escherichia coli groEL is complemented by a Rhizobium leguminosarum groEL homologue at 37 degrees C but not at 43 degrees C. Gene 194:1-8. http://dx.doi.org/10.1016/S0378-1119(97)00087-5.
-
(1997)
Gene
, vol.194
, pp. 1-8
-
-
Ivic, A.1
Olden, D.2
Wallington, E.J.3
Lund, P.A.4
-
33
-
-
33750489742
-
Global aggregation of newly translated proteins in an Escherichia coli strain deficient of the chaperonin GroEL
-
Chapman E, Farr GW, Usaite R, Furtak K, Fenton WA, Chaudhuri TK, Hondorp ER, Matthews RG, Wolf SG, Yates JR, Pypaert M, Horwich AL. 2006. Global aggregation of newly translated proteins in an Escherichia coli strain deficient of the chaperonin GroEL. Proc Natl Acad Sci U S A 103:15800-15805. http://dx.doi.org/10.1073/pnas.0607534103.
-
(2006)
Proc Natl Acad Sci U S A
, vol.103
, pp. 15800-15805
-
-
Chapman, E.1
Farr, G.W.2
Usaite, R.3
Furtak, K.4
Fenton, W.A.5
Chaudhuri, T.K.6
Hondorp, E.R.7
Matthews, R.G.8
Wolf, S.G.9
Yates, J.R.10
Pypaert, M.11
Horwich, A.L.12
-
34
-
-
0038413900
-
Nucleotide-dependent protein folding in the type II chaperonin from the mesophilic archaeon Methanococcus maripaludis
-
Kusmierczyk AR, Martin J. 2003. Nucleotide-dependent protein folding in the type II chaperonin from the mesophilic archaeon Methanococcus maripaludis. Biochem J 371:669-673. http://dx.doi.org/10.1042/bj20030230.
-
(2003)
Biochem J
, vol.371
, pp. 669-673
-
-
Kusmierczyk, A.R.1
Martin, J.2
-
35
-
-
0038642763
-
Nested cooperativity and salt dependence of the ATPase activity of the archaeal chaperonin Mm-cpn
-
Kusmierczyk AR, Martin J. 2003. Nested cooperativity and salt dependence of the ATPase activity of the archaeal chaperonin Mm-cpn. FEBS Lett 547:201-204. http://dx.doi.org/10.1016/S0014-5793(03)00722-1.
-
(2003)
FEBS Lett
, vol.547
, pp. 201-204
-
-
Kusmierczyk, A.R.1
Martin, J.2
-
36
-
-
0034721833
-
High salt-induced conversion of Escherichia coli GroEL into a fully functional thermophilic chaperonin
-
Kusmierczyk AR, Martin J. 2000. High salt-induced conversion of Escherichia coli GroEL into a fully functional thermophilic chaperonin. J Biol Chem 275:33504-33511. http://dx.doi.org/10.1074/jbc. M006256200.
-
(2000)
J Biol Chem
, vol.275
, pp. 33504-33511
-
-
Kusmierczyk, A.R.1
Martin, J.2
-
37
-
-
84865544765
-
The unusual mycobacterial chaperonins: evidence for in vivo oligomerization and specialization of function
-
Fan M, Rao T, Zacco E, Ahmed MT, Shukla A, Ojha A, Freeke J, Robinson CV, Benesch JL, Lund PA. 2012. The unusual mycobacterial chaperonins: evidence for in vivo oligomerization and specialization of function. Mol Microbiol 85:934-944. http://dx.doi.org/10.1111/j.1365-2958.2012.08150.x.
-
(2012)
Mol Microbiol
, vol.85
, pp. 934-944
-
-
Fan, M.1
Rao, T.2
Zacco, E.3
Ahmed, M.T.4
Shukla, A.5
Ojha, A.6
Freeke, J.7
Robinson, C.V.8
Benesch, J.L.9
Lund, P.A.10
-
38
-
-
77956256437
-
Crystal structures of a group II chaperonin reveal the open and closed states associated with the protein folding cycle
-
Pereira JH, Ralston CY, Douglas NR, Meyer D, Knee KM, Goulet DR, King JA, Frydman J, Adams PD. 2010. Crystal structures of a group II chaperonin reveal the open and closed states associated with the protein folding cycle. J Biol Chem 285:27958-27966. http://dx.doi.org/10.1074/jbc. M110.125344.
-
(2010)
J Biol Chem
, vol.285
, pp. 27958-27966
-
-
Pereira, J.H.1
Ralston, C.Y.2
Douglas, N.R.3
Meyer, D.4
Knee, K.M.5
Goulet, D.R.6
King, J.A.7
Frydman, J.8
Adams, P.D.9
-
39
-
-
0027427326
-
The reaction cycle of GroEL and GroES in chaperonin-assisted protein folding
-
Martin J, Mayhew M, Langer T, Hartl FU. 1993. The reaction cycle of GroEL and GroES in chaperonin-assisted protein folding. Nature 366: 228-233. http://dx.doi.org/10.1038/366228a0.
-
(1993)
Nature
, vol.366
, pp. 228-233
-
-
Martin, J.1
Mayhew, M.2
Langer, T.3
Hartl, F.U.4
-
40
-
-
0026095524
-
Intermediates in the chaperonin-assisted refolding of rhodanese are trapped at low temperature and show a small stoichiometry
-
Mendoza JA, Lorimer GH, Horowitz PM. 1991. Intermediates in the chaperonin-assisted refolding of rhodanese are trapped at low temperature and show a small stoichiometry. J Biol Chem 266:16973-16976.
-
(1991)
J Biol Chem
, vol.266
, pp. 16973-16976
-
-
Mendoza, J.A.1
Lorimer, G.H.2
Horowitz, P.M.3
-
41
-
-
0027092285
-
Chaperonin-mediated protein folding: GroES binds to one end of the GroEL cylinder, which accommodates the protein substrate within its central cavity
-
Langer T, Pfeifer G, Martin J, Baumeister W, Hartl FU. 1992. Chaperonin-mediated protein folding: GroES binds to one end of the GroEL cylinder, which accommodates the protein substrate within its central cavity. EMBO J 11:4757-4765.
-
(1992)
EMBO J
, vol.11
, pp. 4757-4765
-
-
Langer, T.1
Pfeifer, G.2
Martin, J.3
Baumeister, W.4
Hartl, F.U.5
-
42
-
-
0034570491
-
GroEL/GroES interaction assayed by protease protection
-
Martin J. 2000. GroEL/GroES interaction assayed by protease protection. Methods Mol Biol 140:71-74.
-
(2000)
Methods Mol Biol
, vol.140
, pp. 71-74
-
-
Martin, J.1
-
43
-
-
0032577573
-
Prefoldin, a chaperone that delivers unfolded proteins to cytosolic chaperonin
-
Vainberg IE, Lewis SA, Rommelaere H, Ampe C, Vandekerckhove J, Klein HL, Cowan NJ. 1998. Prefoldin, a chaperone that delivers unfolded proteins to cytosolic chaperonin. Cell 93:863-873. http://dx.doi.org/10.1016/S0092-8674(00)81446-4.
-
(1998)
Cell
, vol.93
, pp. 863-873
-
-
Vainberg, I.E.1
Lewis, S.A.2
Rommelaere, H.3
Ampe, C.4
Vandekerckhove, J.5
Klein, H.L.6
Cowan, N.J.7
-
44
-
-
44349090822
-
Essential role of the chaperonin folding compartment in vivo
-
Tang YC, Chang HC, Chakraborty K, Hartl FU, Hayer-Hartl M. 2008. Essential role of the chaperonin folding compartment in vivo. EMBO J 27:1458-1468. http://dx.doi.org/10.1038/emboj.2008.77.
-
(2008)
EMBO J
, vol.27
, pp. 1458-1468
-
-
Tang, Y.C.1
Chang, H.C.2
Chakraborty, K.3
Hartl, F.U.4
Hayer-Hartl, M.5
-
45
-
-
77954277524
-
Chaperonin-catalyzed rescue of kinetically trapped states in protein folding
-
Chakraborty K, Chatila M, Sinha J, Shi Q, Poschner BC, Sikor M, Jiang G, Lamb DC, Hartl FU, Hayer-Hartl M. 2010. Chaperonin-catalyzed rescue of kinetically trapped states in protein folding. Cell 142:112-122. http://dx.doi.org/10.1016/j.cell.2010.05.027.
-
(2010)
Cell
, vol.142
, pp. 112-122
-
-
Chakraborty, K.1
Chatila, M.2
Sinha, J.3
Shi, Q.4
Poschner, B.C.5
Sikor, M.6
Jiang, G.7
Lamb, D.C.8
Hartl, F.U.9
Hayer-Hartl, M.10
-
46
-
-
68649123756
-
The GroEL/GroES cis cavity as a passive anti-aggregation device
-
Horwich AL, Apetri AC, Fenton WA. 2009. The GroEL/GroES cis cavity as a passive anti-aggregation device. FEBS Lett 583:2654-2662. http://dx.doi.org/10.1016/j.febslet.2009.06.049.
-
(2009)
FEBS Lett
, vol.583
, pp. 2654-2662
-
-
Horwich, A.L.1
Apetri, A.C.2
Fenton, W.A.3
-
47
-
-
84866872549
-
Revisiting the contribution of negative charges on the chaperonin cage wall to the acceleration of protein folding
-
Motojima F, Motojima-Miyazaki Y, Yoshida M. 2012. Revisiting the contribution of negative charges on the chaperonin cage wall to the acceleration of protein folding. Proc Natl Acad Sci U S A 109:15740-15745. http://dx.doi.org/10.1073/pnas.1204547109.
-
(2012)
Proc Natl Acad Sci U S A
, vol.109
, pp. 15740-15745
-
-
Motojima, F.1
Motojima-Miyazaki, Y.2
Yoshida, M.3
-
48
-
-
79955798700
-
Cryo-EM structure of a group II chaperonin in the prehydrolysis ATP-bound state leading to lid closure
-
Zhang J, Ma B, DiMaio F, Douglas NR, Joachimiak LA, Baker D, Frydman J, Levitt M, Chiu W. 2011. Cryo-EM structure of a group II chaperonin in the prehydrolysis ATP-bound state leading to lid closure. Structure 19:633-639. http://dx.doi.org/10.1016/j.str.2011.03.005.
-
(2011)
Structure
, vol.19
, pp. 633-639
-
-
Zhang, J.1
Ma, B.2
DiMaio, F.3
Douglas, N.R.4
Joachimiak, L.A.5
Baker, D.6
Frydman, J.7
Levitt, M.8
Chiu, W.9
|