-
1
-
-
84937862424
-
Two-stream convolutional networks for action recognition in videos
-
Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recognition in videos. In: NIPS, pp. 568-576 (2014)
-
(2014)
NIPS
, pp. 568-576
-
-
Simonyan, K.1
Zisserman, A.2
-
2
-
-
84898805910
-
Action recognition with improved trajectories
-
Wang, H., Schmid, C.: Action recognition with improved trajectories. In: ICCV, pp. 3551-3558 (2013)
-
(2013)
ICCV
, pp. 3551-3558
-
-
Wang, H.1
Schmid, C.2
-
3
-
-
84887400741
-
Motionlets: Mid-level 3D parts for human motion recognition
-
Wang, L., Qiao, Y., Tang, X.: Motionlets: mid-level 3D parts for human motion recognition. In: CVPR, pp. 2674-2681 (2013)
-
(2013)
CVPR
, pp. 2674-2681
-
-
Wang, L.1
Qiao, Y.2
Tang, X.3
-
4
-
-
84959228762
-
Beyond short snippets: Deep networks for video classification
-
Ng, J.Y.H., Hausknecht, M., Vijayanarasimhan, S., Vinyals, O., Monga, R., Toderici, G.: Beyond short snippets: deep networks for video classification. In: CVPR, pp. 4694-4702 (2015)
-
(2015)
CVPR
, pp. 4694-4702
-
-
Ng, J.Y.H.1
Hausknecht, M.2
Vijayanarasimhan, S.3
Vinyals, O.4
Monga, R.5
Toderici, G.6
-
5
-
-
84955282488
-
Action recognition with trajectory-pooled deepconvolutional descriptors
-
Wang, L., Qiao, Y., Tang, X.: Action recognition with trajectory-pooled deepconvolutional descriptors. In: CVPR, pp. 4305-4314 (2015)
-
(2015)
CVPR
, pp. 4305-4314
-
-
Wang, L.1
Qiao, Y.2
Tang, X.3
-
6
-
-
84959230113
-
Devnet: A deep event network for multimedia event detection and evidence recounting
-
Gan, C., Wang, N., Yang, Y., Yeung, D.Y., Hauptmann, A.G.: Devnet: a deep event network for multimedia event detection and evidence recounting. In: CVPR, pp. 2568-2577 (2015)
-
(2015)
CVPR
, pp. 2568-2577
-
-
Gan, C.1
Wang, N.2
Yang, Y.3
Yeung, D.Y.4
Hauptmann, A.G.5
-
7
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278-2324 (1998)
-
(1998)
Proc. IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
Lecun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
8
-
-
84876231242
-
ImageNet classification with deep convolutional neural networks
-
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: NIPS, pp. 1106-1114 (2012)
-
(2012)
NIPS
, pp. 1106-1114
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
9
-
-
85083953063
-
Very deep convolutional networks for large-scale image recognition
-
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR, pp. 1-14 (2015)
-
(2015)
ICLR
, pp. 1-14
-
-
Simonyan, K.1
Zisserman, A.2
-
10
-
-
84937522268
-
Going deeper with convolutions
-
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: CVPR, pp. 1-9 (2015)
-
(2015)
CVPR
, pp. 1-9
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
-
11
-
-
84959226544
-
Recognize complex events from static images by fusing deep channels
-
Xiong, Y., Zhu, K., Lin, D., Tang, X.: Recognize complex events from static images by fusing deep channels. In: CVPR, pp. 1600-1609 (2015)
-
(2015)
CVPR
, pp. 1600-1609
-
-
Xiong, Y.1
Zhu, K.2
Lin, D.3
Tang, X.4
-
12
-
-
84911364368
-
Largescale video classification with convolutional neural networks
-
Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L.: Largescale video classification with convolutional neural networks. In: CVPR, pp. 1725-1732 (2014)
-
(2014)
CVPR
, pp. 1725-1732
-
-
Karpathy, A.1
Toderici, G.2
Shetty, S.3
Leung, T.4
Sukthankar, R.5
Fei-Fei, L.6
-
13
-
-
84973865953
-
Learning spatiotemporal features with 3D convolutional networks
-
Tran, D., Bourdev, L.D., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3D convolutional networks. In: ICCV, pp. 4489-4497 (2015)
-
(2015)
ICCV
, pp. 4489-4497
-
-
Tran, D.1
Bourdev, L.D.2
Fergus, R.3
Torresani, L.4
Paluri, M.5
-
14
-
-
84986258373
-
Real-time action recognition with enhanced motion vector CNNs
-
Zhang, B., Wang, L., Wang, Z., Qiao, Y., Wang, H.: Real-time action recognition with enhanced motion vector CNNs. In: CVPR, pp. 2718-2726 (2016)
-
(2016)
CVPR
, pp. 2718-2726
-
-
Zhang, B.1
Wang, L.2
Wang, Z.3
Qiao, Y.4
Wang, H.5
-
15
-
-
78149353400
-
Modeling temporal structure of decomposable motion segments for activity classification
-
Daniilidis, K., Maragos, P., Paragios, N. (eds.), Springer, Heidelberg
-
Niebles, J.C., Chen, C.-W., Fei-Fei, L.: Modeling temporal structure of decomposable motion segments for activity classification. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part II. LNCS, vol. 6312, pp. 392-405. Springer, Heidelberg (2010)
-
(2010)
ECCV 2010, Part II. LNCS
, vol.6312
, pp. 392-405
-
-
Niebles, J.C.1
Chen, C.-W.2
Fei-Fei, L.3
-
16
-
-
84884557275
-
Temporal localization of actions with actoms
-
Gaidon, A., Harchaoui, Z., Schmid, C.: Temporal localization of actions with actoms. IEEE Trans. Pattern Anal. Mach. Intell. 35(11), 2782-2795 (2013)
-
(2013)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.35
, Issue.11
, pp. 2782-2795
-
-
Gaidon, A.1
Harchaoui, Z.2
Schmid, C.3
-
17
-
-
84892588122
-
Latent hierarchical model of temporal structure for complex activity classification
-
Wang, L., Qiao, Y., Tang, X.: Latent hierarchical model of temporal structure for complex activity classification. IEEE Trans. Image Process. 23(2), 810-822 (2014)
-
(2014)
IEEE Trans. Image Process
, vol.23
, Issue.2
, pp. 810-822
-
-
Wang, L.1
Qiao, Y.2
Tang, X.3
-
18
-
-
84959223985
-
Modeling video evolution for action recognition
-
Fernando, B., Gavves, E O M J, Ghodrati, A., Tuytelaars, T.: Modeling video evolution for action recognition. In: CVPR, pp. 5378-5387 (2015)
-
(2015)
CVPR
, pp. 5378-5387
-
-
Fernando, B.1
Gavves, E.2
Ghodrati, A.3
Tuytelaars, T.4
-
20
-
-
84959236502
-
Long-term recurrent convolutional networks for visual recognition and description
-
Donahue, J., Anne Hendricks, L., Guadarrama, S., Rohrbach, M., Venugopalan, S., Saenko, K., Darrell, T.: Long-term recurrent convolutional networks for visual recognition and description. In: CVPR, pp. 2625-2634 (2015)
-
(2015)
CVPR
, pp. 2625-2634
-
-
Donahue, J.1
Anne Hendricks, L.2
Guadarrama, S.3
Rohrbach, M.4
Venugopalan, S.5
Saenko, K.6
Darrell, T.7
-
22
-
-
84856682691
-
HMDB: A large video database for human motion recognition
-
Kuehne, H., Jhuang, H., Garrote, E., Poggio, T.A., Serre, T.: HMDB: a large video database for human motion recognition. In: ICCV, pp. 2556-2563 (2011)
-
(2011)
ICCV
, pp. 2556-2563
-
-
Kuehne, H.1
Jhuang, H.2
Garrote, E.3
Poggio, T.A.4
Serre, T.5
-
23
-
-
84969584486
-
Batch normalization: Accelerating deep network training by reducing internal covariate shift
-
Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: ICML, pp. 448-456 (2015)
-
(2015)
ICML
, pp. 448-456
-
-
Ioffe, S.1
Szegedy, C.2
-
24
-
-
84986296735
-
You lead, we exceed: Labor-free video concept learning by jointly exploiting web videos and images
-
Gan, C., Yao, T., Yang, K., Yang, Y., Mei, T.: You lead, we exceed: labor-free video concept learning by jointly exploiting web videos and images. In: CVPR, pp. 923-932 (2016)
-
(2016)
CVPR
, pp. 923-932
-
-
Gan, C.1
Yao, T.2
Yang, K.3
Yang, Y.4
Mei, T.5
-
25
-
-
85018110317
-
Bag of visual words and fusion methods for action recognition: Comprehensive study and good practice
-
Peng, X., Wang, L., Wang, X., Qiao, Y.: Bag of visual words and fusion methods for action recognition: comprehensive study and good practice. Comput. Vis. Image Underst. 150, 109-125 (2016)
-
(2016)
Comput. Vis. Image Underst
, vol.150
, pp. 109-125
-
-
Peng, X.1
Wang, L.2
Wang, X.3
Qiao, Y.4
-
26
-
-
84959507605
-
Recognizing an action using its name: A knowledge-based approach
-
Gan, C., Yang, Y., Zhu, L., Zhao, D., Zhuang, Y.: Recognizing an action using its name: a knowledge-based approach. Int. J. Comput. Vis. 120(1), 61-77 (2016)
-
(2016)
Int. J. Comput. Vis
, vol.120
, Issue.1
, pp. 61-77
-
-
Gan, C.1
Yang, Y.2
Zhu, L.3
Zhao, D.4
Zhuang, Y.5
-
27
-
-
84870183903
-
3D convolutional neural networks for human action recognition
-
Ji, S., Xu, W., Yang, M., Yu, K.: 3D convolutional neural networks for human action recognition. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 221-231 (2013)
-
(2013)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.35
, Issue.1
, pp. 221-231
-
-
Ji, S.1
Xu, W.2
Yang, M.3
Yu, K.4
-
28
-
-
84973863239
-
Human action recognition using factorized spatio-temporal convolutional networks
-
Sun, L., Jia, K., Yeung, D., Shi, B.E.: Human action recognition using factorized spatio-temporal convolutional networks. In: ICCV, pp. 4597-4605 (2015)
-
(2015)
ICCV
, pp. 4597-4605
-
-
Sun, L.1
Jia, K.2
Yeung, D.3
Shi, B.E.4
-
29
-
-
84911384466
-
Parsing videos of actions with segmental grammars
-
Pirsiavash, H., Ramanan, D.: Parsing videos of actions with segmental grammars. In: CVPR, pp. 612-619 (2014)
-
(2014)
CVPR
, pp. 612-619
-
-
Pirsiavash, H.1
Ramanan, D.2
-
30
-
-
84906484374
-
Video action detection with relational dynamicposelets
-
Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.), Springer, Heidelberg
-
Wang, L., Qiao, Y., Tang, X.: Video action detection with relational dynamicposelets. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part V. LNCS, vol. 8693, pp. 565-580. Springer, Heidelberg (2014)
-
(2014)
ECCV 2014, Part V. LNCS
, vol.8693
, pp. 565-580
-
-
Wang, L.1
Qiao, Y.2
Tang, X.3
-
31
-
-
77955422240
-
Object detection with discriminatively trained part-based models
-
Felzenszwalb, P.F., Girshick, R.B., McAllester, D.A., Ramanan, D.: Object detection with discriminatively trained part-based models. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1627-1645 (2010)
-
(2010)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.32
, Issue.9
, pp. 1627-1645
-
-
Felzenszwalb, P.F.1
Girshick, R.B.2
McAllester, D.A.3
Ramanan, D.4
-
32
-
-
84906489074
-
Visualizing and understanding convolutional networks
-
Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.), Springer, Heidelberg
-
Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part I. LNCS, vol. 8689, pp. 818-833. Springer, Heidelberg (2014)
-
(2014)
ECCV 2014, Part I. LNCS
, vol.8689
, pp. 818-833
-
-
Zeiler, M.D.1
Fergus, R.2
-
33
-
-
72249100259
-
ImageNet: A large-scale hierarchical image database
-
Deng, J., Dong, W., Socher, R., Li, L., Li, K., Li, F.: ImageNet: a large-scale hierarchical image database. In: CVPR, pp. 248-255 (2009)
-
(2009)
CVPR
, pp. 248-255
-
-
Deng, J.1
Dong, W.2
Socher, R.3
Li, L.4
Li, K.5
Li, F.6
-
34
-
-
84905052261
-
Sukthankar
-
Jiang, Y.G., Liu, J., Roshan Zamir, A., Laptev, I., Piccardi, M., Shah, M., Sukthankar, R.: THUMOS challenge: action recognition with a large number of classes (2013)
-
(2013)
THUMOS Challenge: Action Recognition with a Large Number of Classes
-
-
Jiang, Y.G.1
Liu, J.2
Roshan Zamir, A.3
Laptev, I.4
Piccardi, M.5
Shah, M.6
-
35
-
-
38349007037
-
A duality based approach for realtime TV-L1 optical flow
-
Hamprecht, F.A., Schnörr, C., Jähne, B. (eds.), Springer, Heidelberg
-
Zach, C., Pock, T., Bischof, H.: A duality based approach for realtime TV-L1 optical flow. In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds.) DAGM 2007. LNCS, vol. 4713, pp. 214-223. Springer, Heidelberg (2007)
-
(2007)
DAGM 2007. LNCS
, vol.4713
, pp. 214-223
-
-
Zach, C.1
Pock, T.2
Bischof, H.3
-
36
-
-
84913555165
-
-
CoRR abs/1408.5093
-
Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R.B., Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding. CoRR abs/1408.5093
-
Caffe: Convolutional Architecture for Fast Feature Embedding
-
-
Jia, Y.1
Shelhamer, E.2
Donahue, J.3
Karayev, S.4
Long, J.5
Girshick, R.B.6
Guadarrama, S.7
Darrell, T.8
-
37
-
-
84911446849
-
Multi-view super vector for action recognition
-
Cai, Z., Wang, L., Peng, X., Qiao, Y.: Multi-view super vector for action recognition. In: CVPR, pp. 596-603 (2014)
-
(2014)
CVPR
, pp. 596-603
-
-
Cai, Z.1
Wang, L.2
Peng, X.3
Qiao, Y.4
-
39
-
-
84944683002
-
MoFAP: A multi-level representation for action recognition
-
Wang, L., Qiao, Y., Tang, X.: MoFAP: a multi-level representation for action recognition. Int. J. Comput. Vis. 119(3), 254-271 (2016)
-
(2016)
Int. J. Comput. Vis
, vol.119
, Issue.3
, pp. 254-271
-
-
Wang, L.1
Qiao, Y.2
Tang, X.3
-
40
-
-
84959219390
-
Motion part regularization: Improving action recognition via trajectory group selection
-
Ni, B., Moulin, P., Yang, X., Yan, S.: Motion part regularization: improving action recognition via trajectory group selection. In: CVPR, pp. 3698-3706 (2015)
-
(2015)
CVPR
, pp. 3698-3706
-
-
Ni, B.1
Moulin, P.2
Yang, X.3
Yan, S.4
-
41
-
-
84986305522
-
A key volume mining deep framework for action recognition
-
Zhu, W., Hu, J., Sun, G., Cao, X., Qiao, Y.: A key volume mining deep framework for action recognition. In: CVPR, pp. 1991-1999 (2016)
-
(2016)
CVPR
, pp. 1991-1999
-
-
Zhu, W.1
Hu, J.2
Sun, G.3
Cao, X.4
Qiao, Y.5
-
42
-
-
84990037328
-
-
GitHub: Deep draw. https://github.com/auduno/deepdraw
-
-
-
|