메뉴 건너뛰기




Volumn 9912 LNCS, Issue , 2016, Pages 20-36

Temporal segment networks: Towards good practices for deep action recognition

Author keywords

Action recognition; ConvNets; Good practices; Temporal segment networks

Indexed keywords

ARTS COMPUTING;

EID: 84990047892     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-319-46484-8_2     Document Type: Conference Paper
Times cited : (2976)

References (42)
  • 1
    • 84937862424 scopus 로고    scopus 로고
    • Two-stream convolutional networks for action recognition in videos
    • Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recognition in videos. In: NIPS, pp. 568-576 (2014)
    • (2014) NIPS , pp. 568-576
    • Simonyan, K.1    Zisserman, A.2
  • 2
    • 84898805910 scopus 로고    scopus 로고
    • Action recognition with improved trajectories
    • Wang, H., Schmid, C.: Action recognition with improved trajectories. In: ICCV, pp. 3551-3558 (2013)
    • (2013) ICCV , pp. 3551-3558
    • Wang, H.1    Schmid, C.2
  • 3
    • 84887400741 scopus 로고    scopus 로고
    • Motionlets: Mid-level 3D parts for human motion recognition
    • Wang, L., Qiao, Y., Tang, X.: Motionlets: mid-level 3D parts for human motion recognition. In: CVPR, pp. 2674-2681 (2013)
    • (2013) CVPR , pp. 2674-2681
    • Wang, L.1    Qiao, Y.2    Tang, X.3
  • 5
    • 84955282488 scopus 로고    scopus 로고
    • Action recognition with trajectory-pooled deepconvolutional descriptors
    • Wang, L., Qiao, Y., Tang, X.: Action recognition with trajectory-pooled deepconvolutional descriptors. In: CVPR, pp. 4305-4314 (2015)
    • (2015) CVPR , pp. 4305-4314
    • Wang, L.1    Qiao, Y.2    Tang, X.3
  • 6
    • 84959230113 scopus 로고    scopus 로고
    • Devnet: A deep event network for multimedia event detection and evidence recounting
    • Gan, C., Wang, N., Yang, Y., Yeung, D.Y., Hauptmann, A.G.: Devnet: a deep event network for multimedia event detection and evidence recounting. In: CVPR, pp. 2568-2577 (2015)
    • (2015) CVPR , pp. 2568-2577
    • Gan, C.1    Wang, N.2    Yang, Y.3    Yeung, D.Y.4    Hauptmann, A.G.5
  • 7
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278-2324 (1998)
    • (1998) Proc. IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • Lecun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 8
    • 84876231242 scopus 로고    scopus 로고
    • ImageNet classification with deep convolutional neural networks
    • Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: NIPS, pp. 1106-1114 (2012)
    • (2012) NIPS , pp. 1106-1114
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 9
    • 85083953063 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR, pp. 1-14 (2015)
    • (2015) ICLR , pp. 1-14
    • Simonyan, K.1    Zisserman, A.2
  • 11
    • 84959226544 scopus 로고    scopus 로고
    • Recognize complex events from static images by fusing deep channels
    • Xiong, Y., Zhu, K., Lin, D., Tang, X.: Recognize complex events from static images by fusing deep channels. In: CVPR, pp. 1600-1609 (2015)
    • (2015) CVPR , pp. 1600-1609
    • Xiong, Y.1    Zhu, K.2    Lin, D.3    Tang, X.4
  • 12
  • 13
    • 84973865953 scopus 로고    scopus 로고
    • Learning spatiotemporal features with 3D convolutional networks
    • Tran, D., Bourdev, L.D., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3D convolutional networks. In: ICCV, pp. 4489-4497 (2015)
    • (2015) ICCV , pp. 4489-4497
    • Tran, D.1    Bourdev, L.D.2    Fergus, R.3    Torresani, L.4    Paluri, M.5
  • 14
    • 84986258373 scopus 로고    scopus 로고
    • Real-time action recognition with enhanced motion vector CNNs
    • Zhang, B., Wang, L., Wang, Z., Qiao, Y., Wang, H.: Real-time action recognition with enhanced motion vector CNNs. In: CVPR, pp. 2718-2726 (2016)
    • (2016) CVPR , pp. 2718-2726
    • Zhang, B.1    Wang, L.2    Wang, Z.3    Qiao, Y.4    Wang, H.5
  • 15
    • 78149353400 scopus 로고    scopus 로고
    • Modeling temporal structure of decomposable motion segments for activity classification
    • Daniilidis, K., Maragos, P., Paragios, N. (eds.), Springer, Heidelberg
    • Niebles, J.C., Chen, C.-W., Fei-Fei, L.: Modeling temporal structure of decomposable motion segments for activity classification. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part II. LNCS, vol. 6312, pp. 392-405. Springer, Heidelberg (2010)
    • (2010) ECCV 2010, Part II. LNCS , vol.6312 , pp. 392-405
    • Niebles, J.C.1    Chen, C.-W.2    Fei-Fei, L.3
  • 17
    • 84892588122 scopus 로고    scopus 로고
    • Latent hierarchical model of temporal structure for complex activity classification
    • Wang, L., Qiao, Y., Tang, X.: Latent hierarchical model of temporal structure for complex activity classification. IEEE Trans. Image Process. 23(2), 810-822 (2014)
    • (2014) IEEE Trans. Image Process , vol.23 , Issue.2 , pp. 810-822
    • Wang, L.1    Qiao, Y.2    Tang, X.3
  • 18
    • 84959223985 scopus 로고    scopus 로고
    • Modeling video evolution for action recognition
    • Fernando, B., Gavves, E O M J, Ghodrati, A., Tuytelaars, T.: Modeling video evolution for action recognition. In: CVPR, pp. 5378-5387 (2015)
    • (2015) CVPR , pp. 5378-5387
    • Fernando, B.1    Gavves, E.2    Ghodrati, A.3    Tuytelaars, T.4
  • 22
    • 84856682691 scopus 로고    scopus 로고
    • HMDB: A large video database for human motion recognition
    • Kuehne, H., Jhuang, H., Garrote, E., Poggio, T.A., Serre, T.: HMDB: a large video database for human motion recognition. In: ICCV, pp. 2556-2563 (2011)
    • (2011) ICCV , pp. 2556-2563
    • Kuehne, H.1    Jhuang, H.2    Garrote, E.3    Poggio, T.A.4    Serre, T.5
  • 23
    • 84969584486 scopus 로고    scopus 로고
    • Batch normalization: Accelerating deep network training by reducing internal covariate shift
    • Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: ICML, pp. 448-456 (2015)
    • (2015) ICML , pp. 448-456
    • Ioffe, S.1    Szegedy, C.2
  • 24
    • 84986296735 scopus 로고    scopus 로고
    • You lead, we exceed: Labor-free video concept learning by jointly exploiting web videos and images
    • Gan, C., Yao, T., Yang, K., Yang, Y., Mei, T.: You lead, we exceed: labor-free video concept learning by jointly exploiting web videos and images. In: CVPR, pp. 923-932 (2016)
    • (2016) CVPR , pp. 923-932
    • Gan, C.1    Yao, T.2    Yang, K.3    Yang, Y.4    Mei, T.5
  • 25
    • 85018110317 scopus 로고    scopus 로고
    • Bag of visual words and fusion methods for action recognition: Comprehensive study and good practice
    • Peng, X., Wang, L., Wang, X., Qiao, Y.: Bag of visual words and fusion methods for action recognition: comprehensive study and good practice. Comput. Vis. Image Underst. 150, 109-125 (2016)
    • (2016) Comput. Vis. Image Underst , vol.150 , pp. 109-125
    • Peng, X.1    Wang, L.2    Wang, X.3    Qiao, Y.4
  • 26
    • 84959507605 scopus 로고    scopus 로고
    • Recognizing an action using its name: A knowledge-based approach
    • Gan, C., Yang, Y., Zhu, L., Zhao, D., Zhuang, Y.: Recognizing an action using its name: a knowledge-based approach. Int. J. Comput. Vis. 120(1), 61-77 (2016)
    • (2016) Int. J. Comput. Vis , vol.120 , Issue.1 , pp. 61-77
    • Gan, C.1    Yang, Y.2    Zhu, L.3    Zhao, D.4    Zhuang, Y.5
  • 27
    • 84870183903 scopus 로고    scopus 로고
    • 3D convolutional neural networks for human action recognition
    • Ji, S., Xu, W., Yang, M., Yu, K.: 3D convolutional neural networks for human action recognition. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 221-231 (2013)
    • (2013) IEEE Trans. Pattern Anal. Mach. Intell , vol.35 , Issue.1 , pp. 221-231
    • Ji, S.1    Xu, W.2    Yang, M.3    Yu, K.4
  • 28
    • 84973863239 scopus 로고    scopus 로고
    • Human action recognition using factorized spatio-temporal convolutional networks
    • Sun, L., Jia, K., Yeung, D., Shi, B.E.: Human action recognition using factorized spatio-temporal convolutional networks. In: ICCV, pp. 4597-4605 (2015)
    • (2015) ICCV , pp. 4597-4605
    • Sun, L.1    Jia, K.2    Yeung, D.3    Shi, B.E.4
  • 29
    • 84911384466 scopus 로고    scopus 로고
    • Parsing videos of actions with segmental grammars
    • Pirsiavash, H., Ramanan, D.: Parsing videos of actions with segmental grammars. In: CVPR, pp. 612-619 (2014)
    • (2014) CVPR , pp. 612-619
    • Pirsiavash, H.1    Ramanan, D.2
  • 30
    • 84906484374 scopus 로고    scopus 로고
    • Video action detection with relational dynamicposelets
    • Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.), Springer, Heidelberg
    • Wang, L., Qiao, Y., Tang, X.: Video action detection with relational dynamicposelets. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part V. LNCS, vol. 8693, pp. 565-580. Springer, Heidelberg (2014)
    • (2014) ECCV 2014, Part V. LNCS , vol.8693 , pp. 565-580
    • Wang, L.1    Qiao, Y.2    Tang, X.3
  • 32
    • 84906489074 scopus 로고    scopus 로고
    • Visualizing and understanding convolutional networks
    • Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.), Springer, Heidelberg
    • Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part I. LNCS, vol. 8689, pp. 818-833. Springer, Heidelberg (2014)
    • (2014) ECCV 2014, Part I. LNCS , vol.8689 , pp. 818-833
    • Zeiler, M.D.1    Fergus, R.2
  • 33
    • 72249100259 scopus 로고    scopus 로고
    • ImageNet: A large-scale hierarchical image database
    • Deng, J., Dong, W., Socher, R., Li, L., Li, K., Li, F.: ImageNet: a large-scale hierarchical image database. In: CVPR, pp. 248-255 (2009)
    • (2009) CVPR , pp. 248-255
    • Deng, J.1    Dong, W.2    Socher, R.3    Li, L.4    Li, K.5    Li, F.6
  • 35
    • 38349007037 scopus 로고    scopus 로고
    • A duality based approach for realtime TV-L1 optical flow
    • Hamprecht, F.A., Schnörr, C., Jähne, B. (eds.), Springer, Heidelberg
    • Zach, C., Pock, T., Bischof, H.: A duality based approach for realtime TV-L1 optical flow. In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds.) DAGM 2007. LNCS, vol. 4713, pp. 214-223. Springer, Heidelberg (2007)
    • (2007) DAGM 2007. LNCS , vol.4713 , pp. 214-223
    • Zach, C.1    Pock, T.2    Bischof, H.3
  • 37
    • 84911446849 scopus 로고    scopus 로고
    • Multi-view super vector for action recognition
    • Cai, Z., Wang, L., Peng, X., Qiao, Y.: Multi-view super vector for action recognition. In: CVPR, pp. 596-603 (2014)
    • (2014) CVPR , pp. 596-603
    • Cai, Z.1    Wang, L.2    Peng, X.3    Qiao, Y.4
  • 39
    • 84944683002 scopus 로고    scopus 로고
    • MoFAP: A multi-level representation for action recognition
    • Wang, L., Qiao, Y., Tang, X.: MoFAP: a multi-level representation for action recognition. Int. J. Comput. Vis. 119(3), 254-271 (2016)
    • (2016) Int. J. Comput. Vis , vol.119 , Issue.3 , pp. 254-271
    • Wang, L.1    Qiao, Y.2    Tang, X.3
  • 40
    • 84959219390 scopus 로고    scopus 로고
    • Motion part regularization: Improving action recognition via trajectory group selection
    • Ni, B., Moulin, P., Yang, X., Yan, S.: Motion part regularization: improving action recognition via trajectory group selection. In: CVPR, pp. 3698-3706 (2015)
    • (2015) CVPR , pp. 3698-3706
    • Ni, B.1    Moulin, P.2    Yang, X.3    Yan, S.4
  • 41
    • 84986305522 scopus 로고    scopus 로고
    • A key volume mining deep framework for action recognition
    • Zhu, W., Hu, J., Sun, G., Cao, X., Qiao, Y.: A key volume mining deep framework for action recognition. In: CVPR, pp. 1991-1999 (2016)
    • (2016) CVPR , pp. 1991-1999
    • Zhu, W.1    Hu, J.2    Sun, G.3    Cao, X.4    Qiao, Y.5
  • 42
    • 84990037328 scopus 로고    scopus 로고
    • GitHub: Deep draw. https://github.com/auduno/deepdraw


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.