메뉴 건너뛰기




Volumn , Issue , 2014, Pages 596-603

Multi-view super vector for action recognition

Author keywords

action recognition; canonical correlation analysis; mixture model; multi view

Indexed keywords

MIXTURES;

EID: 84911446849     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2014.83     Document Type: Conference Paper
Times cited : (220)

References (39)
  • 1
    • 79955649703 scopus 로고    scopus 로고
    • Human activity analysis: A review
    • J. K. Aggarwal and M. S. Ryoo. Human activity analysis: A review. ACM Comput. Surv., 43(3):16, 2011.
    • (2011) ACM Comput. Surv. , vol.43 , Issue.3 , pp. 16
    • Aggarwal, J.K.1    Ryoo, M.S.2
  • 5
    • 33645146449 scopus 로고    scopus 로고
    • Histograms of oriented gradients for human detection
    • N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In CVPR, 2005.
    • (2005) CVPR
    • Dalal, N.1    Triggs, B.2
  • 6
    • 34948855444 scopus 로고    scopus 로고
    • Human detection using oriented histograms of flow and appearance
    • N. Dalal, B. Triggs, and C. Schmid. Human detection using oriented histograms of flow and appearance. In ECCV, 2006.
    • (2006) ECCV
    • Dalal, N.1    Triggs, B.2    Schmid, C.3
  • 10
    • 10044285992 scopus 로고    scopus 로고
    • Canonical correlation analysis: An overview with application to learning methods
    • D. R. Hardoon, S. Szedmák, and J. Shawe-Taylor. Canonical correlation analysis: An overview with application to learning methods. Neural Computation, 16(12):2639-2664, 2004.
    • (2004) Neural Computation , vol.16 , Issue.12 , pp. 2639-2664
    • Hardoon, D.R.1    Szedmák, S.2    Shawe-Taylor, J.3
  • 11
    • 0000396062 scopus 로고    scopus 로고
    • Natural gradient works efficiently in learning
    • S. ichi Amari. Natural gradient works efficiently in learning. Neural Computation, 10(2):251-276, 1998.
    • (1998) Neural Computation , vol.10 , Issue.2 , pp. 251-276
    • Ichi Amari, S.1
  • 12
    • 84887398298 scopus 로고    scopus 로고
    • Better exploiting motion for better action recognition
    • M. Jain, H. Jegou, and P. Bouthemy. Better exploiting motion for better action recognition. In CVPR, 2013.
    • (2013) CVPR
    • Jain, M.1    Jegou, H.2    Bouthemy, P.3
  • 13
    • 84887393169 scopus 로고    scopus 로고
    • Negative evidences and co-occurences in image retrieval: The benefit of pca and whitening
    • H. Jégou and O. Chum. Negative evidences and co-occurences in image retrieval: The benefit of pca and whitening. In ECCV, 2012.
    • (2012) ECCV
    • Jégou, H.1    Chum, O.2
  • 14
    • 77956004473 scopus 로고    scopus 로고
    • Aggregating local descriptors into a compact image representation
    • H. Jegou, M. Douze, C. Schmid, and P. Pérez. Aggregating local descriptors into a compact image representation. In CVPR, 2010.
    • (2010) CVPR
    • Jegou, H.1    Douze, M.2    Schmid, C.3    Pérez, P.4
  • 15
    • 0000262562 scopus 로고
    • Hierarchical mixtures of experts and the em algorithm
    • M. I. Jordan and R. A. Jacobs. Hierarchical mixtures of experts and the em algorithm. Neural computation, 6(2):181-214, 1994.
    • (1994) Neural Computation , vol.6 , Issue.2 , pp. 181-214
    • Jordan, M.I.1    Jacobs, R.A.2
  • 16
  • 17
    • 0034304404 scopus 로고    scopus 로고
    • Kernel and nonlinear canonical correlation analysis
    • P. L. Lai and C. Fyfe. Kernel and nonlinear canonical correlation analysis. Int. J. Neural Syst., 10(5):365-377, 2000.
    • (2000) Int. J. Neural Syst. , vol.10 , Issue.5 , pp. 365-377
    • Lai, P.L.1    Fyfe, C.2
  • 21
    • 84898791167 scopus 로고    scopus 로고
    • Action and event recognition with fisher vectors on a compact feature set
    • D. Oneata, J. J. Verbeek, and C. Schmid. Action and event recognition with fisher vectors on a compact feature set. In ICCV, 2013.
    • (2013) ICCV
    • Oneata, D.1    Verbeek, J.J.2    Schmid, C.3
  • 22
    • 84898404668 scopus 로고    scopus 로고
    • Exploring motion boundary based sampling and spatial-temporal context descriptors for action recognition
    • X. Peng, Y. Qiao, Q. Peng, and X. Qi. Exploring motion boundary based sampling and spatial-temporal context descriptors for action recognition. In BMVC, 2013.
    • (2013) BMVC
    • Peng, X.1    Qiao, Y.2    Peng, Q.3    Qi, X.4
  • 23
    • 34948815101 scopus 로고    scopus 로고
    • Fisher kernels on visual vocabularies for image categorization
    • F. Perronnin and C. R. Dance. Fisher kernels on visual vocabularies for image categorization. In CVPR, 2007.
    • (2007) CVPR
    • Perronnin, F.1    Dance, C.R.2
  • 24
    • 79959771606 scopus 로고    scopus 로고
    • Improving the fisher kernel for large-scale image classification
    • F. Perronnin, J. Sánchez, and T. Mensink. Improving the fisher kernel for large-scale image classification. In ECCV, 2010.
    • (2010) ECCV
    • Perronnin, F.1    Sánchez, J.2    Mensink, T.3
  • 26
    • 10044233701 scopus 로고    scopus 로고
    • Recognizing human actions: A local svm approach
    • C. Schüldt, I. Laptev, and B. Caputo. Recognizing human actions: A local svm approach. In ICPR, 2004.
    • (2004) ICPR
    • Schüldt, C.1    Laptev, I.2    Caputo, B.3
  • 27
    • 0345414182 scopus 로고    scopus 로고
    • Video google: A text retrieval approach to object matching in videos
    • J. Sivic and A. Zisserman. Video google: A text retrieval approach to object matching in videos. In ICCV, 2003.
    • (2003) ICCV
    • Sivic, J.1    Zisserman, A.2
  • 29
    • 84866707906 scopus 로고    scopus 로고
    • Evaluation of low-level features and their combinations for complex event detection in open source videos
    • A. Tamrakar, S. Ali, Q. Yu, J. Liu, O. Javed, A. Divakaran, H. Cheng, and H. S. Sawhney. Evaluation of low-level features and their combinations for complex event detection in open source videos. In CVPR, 2012.
    • (2012) CVPR
    • Tamrakar, A.1    Ali, S.2    Yu, Q.3    Liu, J.4    Javed, O.5    Divakaran, A.6    Cheng, H.7    Sawhney, H.S.8
  • 30
    • 84898827877 scopus 로고    scopus 로고
    • Combining the right features for complex event recognition
    • K. D. Tang, B. Yao, F.-F. Li, and D. Koller. Combining the right features for complex event recognition. In ICCV, 2013.
    • (2013) ICCV
    • Tang, K.D.1    Yao, B.2    Li, F.-F.3    Koller, D.4
  • 32
    • 78650994992 scopus 로고    scopus 로고
    • Vlfeat: An open and portable library of computer vision algorithms
    • A. Vedaldi and B. Fulkerson. Vlfeat: an open and portable library of computer vision algorithms. In ACM Multimedia, 2010.
    • (2010) ACM Multimedia
    • Vedaldi, A.1    Fulkerson, B.2
  • 34
    • 84892618164 scopus 로고    scopus 로고
    • Mining motion atoms and phrases for complex action recognition
    • L. Wang, Y. Qiao, and X. Tang. Mining motion atoms and phrases for complex action recognition. In ICCV, 2013.
    • (2013) ICCV
    • Wang, L.1    Qiao, Y.2    Tang, X.3
  • 35
    • 84887400741 scopus 로고    scopus 로고
    • Motionlets: Mid-level 3d parts for human motion recognition
    • L. Wang, Y. Qiao, and X. Tang. Motionlets: Mid-level 3d parts for human motion recognition. In CVPR, 2013.
    • (2013) CVPR
    • Wang, L.1    Qiao, Y.2    Tang, X.3
  • 36
    • 84892588122 scopus 로고    scopus 로고
    • Latent hierarchical model of temporal structure for complex activity classification
    • L. Wang, Y. Qiao, and X. Tang. Latent hierarchical model of temporal structure for complex activity classification. IEEE Transaction on Image Processing, 23(2):810-822, 2014.
    • (2014) IEEE Transaction on Image Processing , vol.23 , Issue.2 , pp. 810-822
    • Wang, L.1    Qiao, Y.2    Tang, X.3
  • 37
    • 84892621904 scopus 로고    scopus 로고
    • A comparative study of encoding, pooling and normalization methods for action recognition
    • X. Wang, L. Wang, and Y. Qiao. A comparative study of encoding, pooling and normalization methods for action recognition. In ACCV, 2012.
    • (2012) ACCV
    • Wang, X.1    Wang, L.2    Qiao, Y.3
  • 38
    • 84898834622 scopus 로고    scopus 로고
    • Feature weighting via optimal thresholding for video analysis
    • Z. Xu, Y. Yang, I. Tsang, N. Sebe, and A. G. Hauptmann. Feature weighting via optimal thresholding for video analysis. In ICCV, 2013.
    • (2013) ICCV
    • Xu, Z.1    Yang, Y.2    Tsang, I.3    Sebe, N.4    Hauptmann, A.G.5
  • 39
    • 84866712367 scopus 로고    scopus 로고
    • Robust late fusion with rank minimization
    • G. Ye, D. Liu, I.-H. Jhuo, and S.-F. Chang. Robust late fusion with rank minimization. In CVPR, 2012.
    • (2012) CVPR
    • Ye, G.1    Liu, D.2    Jhuo, I.-H.3    Chang, S.-F.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.