메뉴 건너뛰기




Volumn 23, Issue 2, 2014, Pages 810-822

Latent hierarchical model of temporal structure for complex activity classification

Author keywords

Activity classification; Cascade inference; Deep structure; Hierarchical model; Latent learning

Indexed keywords

ACTIVITY CLASSIFICATIONS; DEEP STRUCTURE; HIERARCHICAL MODEL; INFERENCE PROCESS; LATENT LEARNING; STATE-OF-THE-ART PERFORMANCE; TEMPORAL DISPLACEMENT; TEMPORAL STRUCTURES;

EID: 84892588122     PISSN: 10577149     EISSN: None     Source Type: Journal    
DOI: 10.1109/TIP.2013.2295753     Document Type: Article
Times cited : (108)

References (53)
  • 1
    • 79955649703 scopus 로고    scopus 로고
    • Human activity analysis: A review
    • J. K. Aggarwal and M. S. Ryoo. Human activity analysis: A review. ACM Comput. Surv., vol. 43, no. 3, p. 16, 2011
    • (2011) ACM Comput. Surv , vol.43 , Issue.3 , pp. 16
    • Aggarwal, J.K.1    Ryoo, M.S.2
  • 4
    • 77951262336 scopus 로고    scopus 로고
    • Trajectory classification using switched dynamical hidden markov models
    • May
    • J. C. Nascimento, M. A. T. Figueiredo, and J. S. Marques. Trajectory classification using switched dynamical hidden Markov models. IEEE Trans. Image Process., vol. 19, no. 5, pp. 1338-1348, May 2010
    • (2010) IEEE Trans. Image Process , vol.19 , Issue.5 , pp. 1338-1348
    • Nascimento, J.C.1    Figueiredo, M.A.T.2    Marques, J.S.3
  • 5
    • 34347372619 scopus 로고    scopus 로고
    • Object trajectory-based activity classification and recognition using hidden Markov models
    • DOI 10.1109/TIP.2007.898960
    • F. I. Bashir, A. A. Khokhar, and D. Schonfeld. Object trajectory-based activity classification and recognition using hidden Markov models. IEEE Trans. Image Process., vol. 16, no. 7, pp. 1912-1919, Jul. 2007 (Pubitemid 47018887)
    • (2007) IEEE Transactions on Image Processing , vol.16 , Issue.7 , pp. 1912-1919
    • Bashir, F.I.1    Khokhar, A.A.2    Schonfeld, D.3
  • 6
    • 34548206204 scopus 로고    scopus 로고
    • Multimodal human-computer interaction: A survey
    • DOI 10.1016/j.cviu.2006.10.019, PII S1077314206002335, Vision for Human-Computer Interaction
    • A. Jaimes and N. Sebe. Multimodal human-computer interaction: A survey. Comput. Vis. Image Understand., vol. 108, nos. 1-2, pp. 116-134, 2007 (Pubitemid 47333395)
    • (2007) Computer Vision and Image Understanding , vol.108 , Issue.1-2 , pp. 116-134
    • Jaimes, A.1    Sebe, N.2
  • 7
    • 0041663515 scopus 로고    scopus 로고
    • Automatic soccer video analysis and summarization
    • Jul
    • A. Ekin, A. M. Tekalp, and R. Mehrotra. Automatic soccer video analysis and summarization. IEEE Trans. Image Process., vol. 12, no. 7, pp. 796-807, Jul. 2003
    • (2003) IEEE Trans. Image Process , vol.12 , Issue.7 , pp. 796-807
    • Ekin, A.1    Tekalp, A.M.2    Mehrotra, R.3
  • 8
    • 68349121465 scopus 로고    scopus 로고
    • Concept-based video retrieval
    • C. G. M. Snoek and M. Worring. Concept-based video retrieval. Found. Trends Inf. Retr., vol. 2, no. 4, pp. 215-322, 2009
    • (2009) Found. Trends Inf. Retr , vol.2 , Issue.4 , pp. 215-322
    • Snoek, C.G.M.1    Worring, M.2
  • 9
    • 0034245149 scopus 로고    scopus 로고
    • A bayesian computer vision system for modeling human interactions
    • Aug
    • N. Oliver, B. Rosario, and A. Pentland. A Bayesian computer vision system for modeling human interactions. IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 8, pp. 831-843, Aug. 2000
    • (2000) IEEE Trans. Pattern Anal. Mach. Intell , vol.22 , Issue.8 , pp. 831-843
    • Oliver, N.1    Rosario, B.2    Pentland, A.3
  • 11
    • 79957467077 scopus 로고    scopus 로고
    • Hidden part models for human action recognition: Probabilistic versus max margin
    • Jul
    • Y. Wang and G. Mori. Hidden part models for human action recognition: Probabilistic versus max margin. IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 7, pp. 1310-1323, Jul. 2011
    • (2011) IEEE Trans. Pattern Anal. Mach. Intell , vol.33 , Issue.7 , pp. 1310-1323
    • Wang, Y.1    Mori, G.2
  • 12
    • 78149353400 scopus 로고    scopus 로고
    • Modeling temporal structure of decomposable motion segments for activity classification
    • J. C. Niebles, C-W. Chen, and F-F. Li. Modeling temporal structure of decomposable motion segments for activity classification. in Proc. ECCV, 2010, pp. 392-405
    • (2010) Proc. ECCV , pp. 392-405
    • Niebles, J.C.1    Chen, C.-W.2    Li, F.-F.3
  • 13
    • 80052885961 scopus 로고    scopus 로고
    • Action recognition with multiscale spatio-Temporal contexts
    • Jun
    • J. Wang, Z. Chen, and Y. Wu. Action recognition with multiscale spatio-Temporal contexts. in Proc. IEEE Conf. CVPR, Jun. 2011, pp. 3185-3192
    • (2011) Proc. IEEE Conf. CVPR , pp. 3185-3192
    • Wang, J.1    Chen, Z.2    Wu, Y.3
  • 14
    • 84866658784 scopus 로고    scopus 로고
    • Learning latent temporal structure for complex event detection
    • Jun
    • K. Tang, F-F. Li, and D. Koller. Learning latent temporal structure for complex event detection. in Proc. IEEE Conf. CVPR, Jun. 2012, pp. 1250-1257
    • (2012) Proc. IEEE Conf. CVPR , pp. 1250-1257
    • Tang, K.1    Li, F.-F.2    Koller, D.3
  • 15
    • 84892618164 scopus 로고    scopus 로고
    • Mining motion atoms and phrases for complex action recognition
    • Dec
    • L. Wang, Y. Qiao, and X. Tang. Mining motion atoms and phrases for complex action recognition. in Proc. IEEE Conf. ICCV, Dec. 2013, pp. 2680-2687
    • (2013) Proc. IEEE Conf. ICCV , pp. 2680-2687
    • Wang, L.1    Qiao, Y.2    Tang, X.3
  • 18
    • 84898890371 scopus 로고    scopus 로고
    • Evaluation of local spatio-Temporal features for action recognition
    • H. Wang, M. M. Ullah, A. Kläser, I. Laptev, and C. Schmid. Evaluation of local spatio-Temporal features for action recognition. in Proc. BMVC, 2009, pp. 1-11
    • (2009) Proc. BMVC
    • Wang, H.1    Ullah, M.M.2    Kläser, A.3    Laptev, I.4    Schmid, C.5
  • 19
    • 24944451092 scopus 로고    scopus 로고
    • On space-time interest points
    • DOI 10.1007/s11263-005-1838-7
    • I. Laptev. On space-Time interest points. Int. J. Comput. Vis., vol. 64, nos. 2-3, pp. 107-123, 2005 (Pubitemid 41314645)
    • (2005) International Journal of Computer Vision , vol.64 , Issue.2-3 , pp. 107-123
    • Laptev, I.1
  • 20
    • 56749155587 scopus 로고    scopus 로고
    • An efficient dense and scale-invariant spatio-Temporal interest point detector
    • G. Willems, T. Tuytelaars, and L. J. V. Gool. An efficient dense and scale-invariant spatio-Temporal interest point detector. in Proc. ECCV, 2008, pp. 650-663
    • (2008) Proc. ECCV , pp. 650-663
    • Willems, G.1    Tuytelaars, T.2    Gool, L.J.V.3
  • 24
    • 84898426452 scopus 로고    scopus 로고
    • A spatio-Temporal descriptor based on 3D-gradients
    • A. Kläser, M. Marszalek, and C. Schmid. A spatio-Temporal descriptor based on 3D-gradients. in Proc. BMVC, 2008, pp. 1-10
    • (2008) Proc. BMVC
    • Kläser, A.1    Marszalek, M.2    Schmid, C.3
  • 25
    • 84898404668 scopus 로고    scopus 로고
    • Exploring motion boundary based sampling and spatial-Temporal context descriptors for action recognition
    • X. Peng, Y. Qiao, Q. Peng, and X. Qi. Exploring motion boundary based sampling and spatial-Temporal context descriptors for action recognition. in Proc. BMVC, 2013, pp. 1-11
    • (2013) Proc. BMVC , pp. 1-11
    • Peng, X.1    Qiao, Y.2    Peng, Q.3    Qi., X.4
  • 26
    • 84892621904 scopus 로고    scopus 로고
    • A comparative study of encoding, pooling and normalization methods for action recognition
    • X. Wang, L. Wang, and Y. Qiao. A comparative study of encoding, pooling and normalization methods for action recognition. in Proc. ACCV, 2012, pp. 572-585
    • (2012) Proc. ACCV , pp. 572-585
    • Wang, X.1    Wang, L.2    Qiao, Y.3
  • 29
    • 84883487458 scopus 로고    scopus 로고
    • Image classification with the fisher vector: Theory and practice
    • J. Sánchez, F. Perronnin, T. Mensink, and J. J. Verbeek. Image classification with the fisher vector: Theory and practice. Int. J. Comput. Vis., vol. 105, no. 3, pp. 222-245, 2013
    • (2013) Int. J. Comput. Vis , vol.105 , Issue.3 , pp. 222-245
    • Sánchez, J.1    Perronnin, F.2    Mensink, T.3    Verbeek, J.J.4
  • 30
    • 70450209196 scopus 로고    scopus 로고
    • Linear spatial pyramid matching using sparse coding for image classification
    • Jun
    • J. Yang, K. Yu, Y. Gong, and T. S. Huang. Linear spatial pyramid matching using sparse coding for image classification. in Proc. IEEE Conf. CVPR, Jun. 2009, pp. 1794-1801
    • (2009) Proc. IEEE Conf. CVPR , pp. 1794-1801
    • Yang, J.1    Yu, K.2    Gong, Y.3    Huang, T.S.4
  • 31
    • 77955996870 scopus 로고    scopus 로고
    • Localityconstrained linear coding for image classification
    • Jun
    • J. Wang, J. Yang, K. Yu, F. Lv, T. S. Huang, and Y. Gong. Localityconstrained linear coding for image classification. in Proc. IEEE Conf. CVPR, Jun. 2010, pp. 3360-3367
    • (2010) Proc. IEEE Conf. CVPR , pp. 3360-3367
    • Wang, J.1    Yang, J.2    Yu, K.3    Lv, F.4    Huang, T.S.5    Gong, Y.6
  • 32
    • 84887400741 scopus 로고    scopus 로고
    • Motionlets: Mid-level 3d parts for human motion recognition
    • Jun
    • L. Wang, Y. Qiao, and X. Tang. Motionlets: Mid-level 3D parts for human motion recognition. in Proc. IEEE Conf. CVPR, Jun. 2013, pp. 2674-2681
    • (2013) Proc. IEEE Conf. CVPR , pp. 2674-2681
    • Wang, L.1    Qiao, Y.2    Tang, X.3
  • 33
    • 84866718894 scopus 로고    scopus 로고
    • Action bank: A high-level representation of activity in video
    • Jun
    • S. Sadanand and J. J. Corso. Action bank: A high-level representation of activity in video. in Proc. IEEE Conf. CVPR, Jun. 2012, pp. 1234-1241
    • (2012) Proc. IEEE Conf. CVPR , pp. 1234-1241
    • Sadanand, S.1    Corso, J.J.2
  • 34
    • 34948883502 scopus 로고    scopus 로고
    • Leveraging temporal, contextual and ordering constraints for recognizing complex activities in video
    • Jun
    • B. Laxton, J. Lim, and D. J. Kriegman. Leveraging temporal, contextual and ordering constraints for recognizing complex activities in video. in Proc. IEEE Conf. CVPR, Jun. 2007, pp. 1-8
    • (2007) Proc. IEEE Conf. CVPR , pp. 1-8
    • Laxton, B.1    Lim, J.2    Kriegman, D.J.3
  • 36
    • 34948886211 scopus 로고    scopus 로고
    • A quantitative theory of immediate visual recognition
    • DOI 10.1016/S0079-6123(06)65004-8, PII S0079612306650048, Computational Neuroscience: Theoretical Insights into Brain Function
    • T. Serre, G. Kreiman, M. Kouh, C. Cadieu, U. Knoblich, and T. Poggio. A quantitative theory of immediate visual recognition. Progr. Brain Res., vol. 165, pp. 33-56, 2007 (Pubitemid 47520714)
    • (2007) Progress in Brain Research , vol.165 , pp. 33-56
    • Serre, T.1    Kreiman, G.2    Kouh, M.3    Cadieu, C.4    Knoblich, U.5    Poggio, T.6
  • 38
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for AI
    • Y. Bengio. Learning deep architectures for AI. Found. Trends Mach. Learn., vol. 2, no. 1, pp. 1-127, 2009
    • (2009) Found. Trends Mach. Learn , vol.2 , Issue.1 , pp. 1-127
    • Bengio, Y.1
  • 39
    • 77955993558 scopus 로고    scopus 로고
    • Learning a hierarchy of discriminative space-Time neighborhood features for human action recognition
    • Jun
    • A. Kovashka and K. Grauman. Learning a hierarchy of discriminative space-Time neighborhood features for human action recognition. in Proc. IEEE Conf. CVPR, Jun. 2010, pp. 2046-2053
    • (2010) Proc. IEEE Conf. CVPR , pp. 2046-2053
    • Kovashka, A.1    Grauman, K.2
  • 40
    • 77955986466 scopus 로고    scopus 로고
    • Latent hierarchical structural learning for object detection
    • Jun
    • L. Zhu, Y. Chen, A. L. Yuille, and W. T. Freeman. Latent hierarchical structural learning for object detection. in Proc. IEEE Conf. CVPR, Jun. 2010, pp. 1062-1069
    • (2010) Proc. IEEE Conf. CVPR , pp. 1062-1069
    • Zhu, L.1    Chen, Y.2    Yuille, A.L.3    Freeman, W.T.4
  • 41
    • 78149305530 scopus 로고    scopus 로고
    • Active mask hierarchies for object detection
    • Y. Chen, L. Zhu, and A. L. Yuille. Active mask hierarchies for object detection. in Proc. ECCV, 2010, pp. 43-56
    • (2010) Proc. ECCV , pp. 43-56
    • Chen, Y.1    Zhu, L.2    Yuille, A.L.3
  • 42
    • 51949119610 scopus 로고    scopus 로고
    • Max margin andor graph learning for parsing the human body
    • Jun
    • L. Zhu, Y. Chen, Y. Lu, C. Lin, and A. L. Yuille. Max margin AND/OR graph learning for parsing the human body. in Proc. IEEE Conf. CVPR, Jun. 2008, pp. 1-8
    • (2008) Proc. IEEE Conf. CVPR , pp. 1-8
    • Zhu, L.1    Chen, Y.2    Lu, Y.3    Lin, C.4    Yuille, A.L.5
  • 43
  • 44
    • 70450202741 scopus 로고    scopus 로고
    • Understanding videos, constructing plots learning a visually grounded storyline model from annotated videos
    • Jun
    • A. Gupta, P. Srinivasan, J. Shi, and L. S. Davis. Understanding videos, constructing plots learning a visually grounded storyline model from annotated videos. in Proc. IEEE Conf. CVPR, Jun. 2009, pp. 2012-2019
    • (2009) Proc. IEEE Conf. CVPR , pp. 2012-2019
    • Gupta, A.1    Srinivasan, P.2    Shi, J.3    Davis, L.S.4
  • 45
    • 44649145190 scopus 로고    scopus 로고
    • An implicit shape model for combined object categorization and segmentation
    • New York NY USA: Springer Verlag
    • B. Leibe, A. Leonardis, and B. Schiele. An implicit shape model for combined object categorization and segmentation. in Toward Category-Level Object Recognition. New York, NY, USA: Springer-Verlag, 2006, pp. 508-524
    • (2006) Toward Category-Level Object Recognition , pp. 508-524
    • Leibe, B.1    Leonardis, A.2    Schiele, B.3
  • 46
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • C. J. C. Burges. A tutorial on support vector machines for pattern recognition. Data Mining Knowl. Discovery, vol. 2, no. 2, pp. 121-167, 1998 (Pubitemid 128695475)
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.C.1
  • 48
    • 10044233701 scopus 로고    scopus 로고
    • Recognizing human actions: A local svm approach
    • Aug
    • C. Schüldt, I. Laptev, and B. Caputo. Recognizing human actions: A local SVM approach. in Proc. 17th ICPR, Aug. 2004, pp. 32-36
    • (2004) Proc. 17th ICPR , pp. 32-36
    • Schüldt, C.1    Laptev, I.2    Caputo, B.3
  • 50
    • 79955702502 scopus 로고    scopus 로고
    • Libsvm: A library for support vector machines
    • C-C. Chang and C-J. Lin. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, p. 27, 2011
    • (2011) ACM Trans. Intell. Syst. Technol , vol.2 , Issue.3 , pp. 27
    • Chang, C.-C.1    Lin, C.-J.2
  • 51
    • 78149336740 scopus 로고    scopus 로고
    • Convolutional learning of spatio-Temporal features
    • G. W. Taylor, R. Fergus, Y. LeCun, and C. Bregler. Convolutional learning of spatio-Temporal features. in Proc. ECCV, 2010, pp. 140-153
    • (2010) Proc. ECCV , pp. 140-153
    • Taylor, G.W.1    Fergus, R.2    Lecun, Y.3    Bregler, C.4
  • 52
    • 84866652986 scopus 로고    scopus 로고
    • Detecting activities of daily living in first-person camera views
    • Jun
    • H. Pirsiavash and D. Ramanan. Detecting activities of daily living in first-person camera views. in Proc. IEEE Conf. CVPR, Jun. 2012, pp. 2847-2854
    • (2012) Proc. IEEE Conf. CVPR , pp. 2847-2854
    • Pirsiavash, H.1    Ramanan, D.2
  • 53
    • 84876945537 scopus 로고    scopus 로고
    • Dense trajectories and motion boundary descriptors for action recognition
    • H. Wang, A. Kläser, C. Schmid, and C-L. Liu. Dense trajectories and motion boundary descriptors for action recognition. Int. J. Comput. Vis., vol. 103, no. 1, pp. 60-79, 2013
    • (2013) Int. J. Comput. Vis , vol.103 , Issue.1 , pp. 60-79
    • Wang, H.1    Kläser, A.2    Schmid, C.3    Liu, C.-L.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.