메뉴 건너뛰기




Volumn 9905 LNCS, Issue , 2016, Pages 3-20

CNN image retrieval learns from bow: Unsupervised fine-tuning with hard examples

Author keywords

CNN fine tuning; Image retrieval; Unsupervised learning

Indexed keywords

COMPUTER VISION; CONVOLUTIONAL NEURAL NETWORKS; OBJECT RECOGNITION; UNSUPERVISED LEARNING;

EID: 84990032835     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-319-46448-0_1     Document Type: Conference Paper
Times cited : (474)

References (57)
  • 1
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • Lowe, D.: Distinctive image features from scale-invariant keypoints. IJCV 60, 91–110 (2004)
    • (2004) IJCV , vol.60 , pp. 91-110
    • Lowe, D.1
  • 2
    • 0345414182 scopus 로고    scopus 로고
    • Video Google: A text retrieval approach to object matching in videos
    • Sivic, J., Zisserman, A.: Video Google: A text retrieval approach to object matching in videos. In: ICCV (2003)
    • (2003) ICCV
    • Sivic, J.1    Zisserman, A.2
  • 3
    • 34948903793 scopus 로고    scopus 로고
    • Object retrieval with large vocabularies and fast spatial matching
    • Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Object retrieval with large vocabularies and fast spatial matching. In: CVPR (2007)
    • (2007) CVPR
    • Philbin, J.1    Chum, O.2    Isard, M.3    Sivic, J.4    Zisserman, A.5
  • 4
    • 84867872916 scopus 로고    scopus 로고
    • Approximate Gaussian mixtures for large scale vocabularies
    • Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.), Springer, Heidelberg
    • Avrithis, Y., Kalantidis, Y.: Approximate Gaussian mixtures for large scale vocabularies. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7574, pp. 15–28. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33712-3_2
    • (2012) ECCV 2012. LNCS , vol.7574 , pp. 15-28
    • Avrithis, Y.1    Kalantidis, Y.2
  • 5
    • 84901854077 scopus 로고    scopus 로고
    • Spatially-constrained similarity measure for large-scale object retrieval
    • Shen, X., Lin, Z., Brandt, J., Wu, Y.: Spatially-constrained similarity measure for large-scale object retrieval. PAMI 36, 1229–1241 (2014)
    • (2014) PAMI , vol.36 , pp. 1229-1241
    • Shen, X.1    Lin, Z.2    Brandt, J.3    Wu, Y.4
  • 6
  • 7
    • 80052905439 scopus 로고    scopus 로고
    • Hello neighbor: Accurate object retrieval with k-reciprocal nearest neighbors
    • Danfeng, Q., Gammeter, S., Bossard, L., Quack, T., Gool, L.V.: Hello neighbor: accurate object retrieval with k-reciprocal nearest neighbors. In: CVPR (2011)
    • (2011) CVPR
    • Danfeng, Q.1    Gammeter, S.2    Bossard, L.3    Quack, T.4    Gool, L.V.5
  • 8
    • 84902375912 scopus 로고    scopus 로고
    • Visual query expansion with or without geometry: Refining local descriptors by feature aggregation
    • Tolias, G., Jégou, H.: Visual query expansion with or without geometry: refining local descriptors by feature aggregation. Pattern Recogn. 47, 3466–3476 (2014)
    • (2014) Pattern Recogn , vol.47 , pp. 3466-3476
    • Tolias, G.1    Jégou, H.2
  • 9
    • 77955992063 scopus 로고    scopus 로고
    • Large-scale image retrieval with compressed Fisher vectors
    • Perronnin, F., Liu, Y., Sanchez, J., Poirier, H.: Large-scale image retrieval with compressed Fisher vectors. In: CVPR (2010)
    • (2010) CVPR
    • Perronnin, F.1    Liu, Y.2    Sanchez, J.3    Poirier, H.4
  • 11
    • 84962417615 scopus 로고    scopus 로고
    • Multiple measurements and joint dimensionality reduction for large scale image search with short vectors
    • Radenović, F., Jegou, H., Chum, O.: Multiple measurements and joint dimensionality reduction for large scale image search with short vectors. In: ICMR (2015)
    • (2015) ICMR
    • Radenović, F.1    Jegou, H.2    Chum, O.3
  • 13
    • 84906346472 scopus 로고    scopus 로고
    • Orientation covariant aggregation of local descriptors with embeddings
    • Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.), Springer, Heidelberg
    • Tolias, G., Furon, T., Jégou, H.: Orientation covariant aggregation of local descriptors with embeddings. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 382–397. Springer, Heidelberg (2014). doi:10. 1007/978-3-319-10599-4_25
    • (2014) ECCV 2014. LNCS , vol.8694 , pp. 382-397
    • Tolias, G.1    Furon, T.2    Jégou, H.3
  • 14
    • 84906490449 scopus 로고    scopus 로고
    • Neural codes for image retrieval
    • Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.), Springer, Heidelberg
    • Babenko, A., Slesarev, A., Chigorin, A., Lempitsky, V.: Neural codes for image retrieval. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 584–599. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10590-1_38
    • (2014) ECCV 2014. LNCS , vol.8689 , pp. 584-599
    • Babenko, A.1    Slesarev, A.2    Chigorin, A.3    Lempitsky, V.4
  • 16
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NIPS (2012)
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 19
    • 84908537903 scopus 로고    scopus 로고
    • CNN features off-the-shelf: An astounding baseline for recognition
    • Razavian, A.S., Azizpour, H., Sullivan, J., Carlsson, S.: CNN features off-the-shelf: an astounding baseline for recognition. In: CVPRW (2014)
    • (2014) CVPRW
    • Razavian, A.S.1    Azizpour, H.2    Sullivan, J.3    Carlsson, S.4
  • 20
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: CVPR (2014)
    • (2014) CVPR
    • Girshick, R.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 22
    • 84906352772 scopus 로고    scopus 로고
    • Multi-scale orderless pooling of deep convolutional activation features
    • Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.), Springer, Heidelberg
    • Gong, Y., Wang, L., Guo, R., Lazebnik, S.: Multi-scale orderless pooling of deep convolutional activation features. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8695, pp. 392–407. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10584-0_26
    • (2014) ECCV 2014. LNCS , vol.8695 , pp. 392-407
    • Gong, Y.1    Wang, L.2    Guo, R.3    Lazebnik, S.4
  • 23
    • 84973908877 scopus 로고    scopus 로고
    • Aggregating deep convolutional features for image retrieval
    • Babenko, A., Lempitsky, V.: Aggregating deep convolutional features for image retrieval. In: ICCV (2015)
    • (2015) ICCV
    • Babenko, A.1    Lempitsky, V.2
  • 25
    • 85083952007 scopus 로고    scopus 로고
    • Particular object retrieval with integral maxpooling of CNN activations
    • Tolias, G., Sicre, R., Jégou, H.: Particular object retrieval with integral maxpooling of CNN activations. In: ICLR (2016)
    • (2016) ICLR
    • Tolias, G.1    Sicre, R.2    Jégou, H.3
  • 27
    • 84906514027 scopus 로고    scopus 로고
    • Part-based R-CNNs for finegrained category detection
    • Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.), Springer, Heidelberg
    • Zhang, N., Donahue, J., Girshick, R., Darrell, T.: Part-based R-CNNs for finegrained category detection. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 834–849. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10590-1_54
    • (2014) ECCV 2014. LNCS , vol.8689 , pp. 834-849
    • Zhang, N.1    Donahue, J.2    Girshick, R.3    Darrell, T.4
  • 28
    • 84911449395 scopus 로고    scopus 로고
    • Learning and transferring mid-level image representations using convolutional neural networks
    • Oquab, M., Bottou, L., Laptev, I., Sivic, J.: Learning and transferring mid-level image representations using convolutional neural networks. In: CVPR (2014)
    • (2014) CVPR
    • Oquab, M.1    Bottou, L.2    Laptev, I.3    Sivic, J.4
  • 29
    • 24644436425 scopus 로고    scopus 로고
    • Learning a similarity metric discriminatively, with application to face verification
    • Chopra, S., Hadsell, R., LeCun, Y.: Learning a similarity metric discriminatively, with application to face verification. In: CVPR (2005)
    • (2005) CVPR
    • Chopra, S.1    Hadsell, R.2    Lecun, Y.3
  • 30
    • 33845594569 scopus 로고    scopus 로고
    • Dimensionality reduction by learning an invariant mapping
    • Hadsell, R., Chopra, S., LeCun, Y.: Dimensionality reduction by learning an invariant mapping. In: CVPR (2006)
    • (2006) CVPR
    • Hadsell, R.1    Chopra, S.2    Lecun, Y.3
  • 31
    • 84911459575 scopus 로고    scopus 로고
    • Discriminative deep metric learning for face verification in the wild
    • Hu, J., Lu, J., Tan, Y.P.: Discriminative deep metric learning for face verification in the wild. In: CVPR (2014)
    • (2014) CVPR
    • Hu, J.1    Lu, J.2    Tan, Y.P.3
  • 33
    • 84946751287 scopus 로고    scopus 로고
    • FaceNet: A unified embedding for face recognition and clustering
    • Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: CVPR (2015)
    • (2015) CVPR
    • Schroff, F.1    Kalenichenko, D.2    Philbin, J.3
  • 34
    • 85083952535 scopus 로고    scopus 로고
    • Deep metric learning using triplet network
    • Hoffer, E., Ailon, N.: Deep metric learning using triplet network. In: ICLR Workshop (2015)
    • (2015) ICLR Workshop
    • Hoffer, E.1    Ailon, N.2
  • 35
    • 84986296991 scopus 로고    scopus 로고
    • NetVLAD: CNN architecture for weakly supervised place recognition
    • Arandjelovic, R., Gronat, P., Torii, A., Pajdla, T., Sivic, J.: NetVLAD: CNN architecture for weakly supervised place recognition. In: CVPR (2016)
    • (2016) CVPR
    • Arandjelovic, R.1    Gronat, P.2    Torii, A.3    Pajdla, T.4    Sivic, J.5
  • 36
    • 84990038542 scopus 로고    scopus 로고
    • Deep image retrieval: Learning global representations for image search
    • Leibe, B., Mata, J., Sebe, N., Welling, M. (eds.), Springer, Switzerland
    • Gordo, A., Almazan, J., Revaud, J., Larlus, D.: Deep image retrieval: learning global representations for image search. In: Leibe, B., Mata, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 241–257. Springer, Switzerland (2016)
    • (2016) ECCV 2016. LNCS , vol.9910 , pp. 241-257
    • Gordo, A.1    Almazan, J.2    Revaud, J.3    Larlus, D.4
  • 37
    • 73849136385 scopus 로고    scopus 로고
    • Large-scale discovery of spatially related images
    • Chum, O., Matas, J.: Large-scale discovery of spatially related images. PAMI 32, 371–377 (2010)
    • (2010) PAMI , vol.32 , pp. 371-377
    • Chum, O.1    Matas, J.2
  • 38
    • 84898801650 scopus 로고    scopus 로고
    • Discovering details and scene structure with hierarchical iconoid shift
    • Weyand, T., Leibe, B.: Discovering details and scene structure with hierarchical iconoid shift. In: ICCV (2013)
    • (2013) ICCV
    • Weyand, T.1    Leibe, B.2
  • 39
    • 80052657842 scopus 로고    scopus 로고
    • Geometric latent Dirichlet allocation on a matching graph for large-scale image datasets
    • Philbin, J., Sivic, J., Zisserman, A.: Geometric latent Dirichlet allocation on a matching graph for large-scale image datasets. IJCV 95, 138–153 (2011)
    • (2011) IJCV , vol.95 , pp. 138-153
    • Philbin, J.1    Sivic, J.2    Zisserman, A.3
  • 41
    • 84867857457 scopus 로고    scopus 로고
    • Negative evidences and co-occurences in image retrieval: The benefit of PCA and whitening
    • Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.), Springer, Heidelberg
    • Jégou, H., Chum, O.: Negative evidences and co-occurences in image retrieval: the benefit of PCA and whitening. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7573, pp. 774–787. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33709-3_55
    • (2012) ECCV 2012. LNCS , vol.7573 , pp. 774-787
    • Jégou, H.1    Chum, O.2
  • 45
    • 84959218210 scopus 로고    scopus 로고
    • Modeling local and global deformations in deep learning: Epitomic convolution, multiple instance learning, and sliding window detection
    • Papandreou, G., Kokkinos, I., Savalle, P.A.: Modeling local and global deformations in deep learning: epitomic convolution, multiple instance learning, and sliding window detection. In: CVPR (2015)
    • (2015) CVPR
    • Papandreou, G.1    Kokkinos, I.2    Savalle, P.A.3
  • 46
    • 50649091097 scopus 로고    scopus 로고
    • Improving descriptors for fast tree matching by optimal linear projection
    • Mikolajczyk, K., Matas, J.: Improving descriptors for fast tree matching by optimal linear projection. In: ICCV (2007)
    • (2007) ICCV
    • Mikolajczyk, K.1    Matas, J.2
  • 49
    • 84866678025 scopus 로고    scopus 로고
    • Three things everyone should know to improve object retrieval
    • Arandjelovic, R., Zisserman, A.: Three things everyone should know to improve object retrieval. In: CVPR (2012)
    • (2012) CVPR
    • Arandjelovic, R.1    Zisserman, A.2
  • 50
    • 84876888793 scopus 로고    scopus 로고
    • Learning vocabularies over a fine quantization
    • Mikulik, A., Perdoch, M., Chum, O., Matas, J.: Learning vocabularies over a fine quantization. IJCV 13, 163–175 (2013)
    • (2013) IJCV , vol.13 , pp. 163-175
    • Mikulik, A.1    Perdoch, M.2    Chum, O.3    Matas, J.4
  • 51
    • 78149312739 scopus 로고    scopus 로고
    • Building Rome on a cloudless day
    • Daniilidis, K., Maragos, P., Paragios, N. (eds.), Springer, Heidelberg
    • Frahm, J.-M., et al.: Building Rome on a cloudless day. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 368–381. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15561-1_27
    • (2010) ECCV 2010. LNCS , vol.6314 , pp. 368-381
    • Frahm, J.-M.1
  • 53
    • 84886415466 scopus 로고    scopus 로고
    • Image retrieval for online browsing in large image collections
    • Brisaboa, N., Pedreira, O., Zezula, P. (eds.), Springer, Heidelberg
    • Mikulik, A., Chum, O., Matas, J.: Image retrieval for online browsing in large image collections. In: Brisaboa, N., Pedreira, O., Zezula, P. (eds.) SISAP 2013. LNCS, vol. 8199, pp. 3–15. Springer, Heidelberg (2013). doi:10.1007/978-3-642-41062-8_2
    • (2013) SISAP 2013. LNCS , vol.8199 , pp. 3-15
    • Mikulik, A.1    Chum, O.2    Matas, J.3
  • 54
    • 84945938901 scopus 로고    scopus 로고
    • Efficient image detail mining
    • Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.), Springer, Heidelberg
    • Mikulík, A., Radenović, F., Chum, O., Matas, J.: Efficient image detail mining. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014. LNCS, vol. 9004, pp. 118–132. Springer, Heidelberg (2015). doi:10.1007/978-3-319-16808-1_9
    • (2015) ACCV 2014. LNCS , vol.9004 , pp. 118-132
    • Mikulík, A.1    Radenović, F.2    Chum, O.3    Matas, J.4
  • 55
    • 78149335629 scopus 로고    scopus 로고
    • Location recognition using prioritized feature matching
    • Daniilidis, K., Maragos, P., Paragios, N. (eds.), Springer, Heidelberg
    • Li, Y., Snavely, N., Huttenlocher, D.P.: Location recognition using prioritized feature matching. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6312, pp. 791–804. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15552-9_57
    • (2010) ECCV 2010. LNCS , vol.6312 , pp. 791-804
    • Li, Y.1    Snavely, N.2    Huttenlocher, D.P.3
  • 56
    • 51949105132 scopus 로고    scopus 로고
    • Lost in quantization: Improving particular object retrieval in large scale image databases
    • Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Lost in quantization: improving particular object retrieval in large scale image databases. In: CVPR (2008)
    • (2008) CVPR
    • Philbin, J.1    Chum, O.2    Isard, M.3    Sivic, J.4    Zisserman, A.5
  • 57
    • 56749104169 scopus 로고    scopus 로고
    • Hamming embedding and weak geometric consistency for large scale image search
    • Forsyth, D., Torr, P., Zisserman, A. (eds.), Springer, Heidelberg
    • Jegou, H., Douze, M., Schmid, C.: Hamming embedding and weak geometric consistency for large scale image search. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5302, pp. 304–317. Springer, Heidelberg (2008). doi:10. 1007/978-3-540-88682-2_24
    • (2008) ECCV 2008. LNCS , vol.5302 , pp. 304-317
    • Jegou, H.1    Douze, M.2    Schmid, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.