메뉴 건너뛰기




Volumn 25, Issue 5, 2016, Pages 2315-2336

Evaluating treatment effectiveness under model misspecification: A comparison of targeted maximum likelihood estimation with bias-corrected matching

Author keywords

bias corrected matching; double robustness; machine learning; model misspecification; targeted maximum likelihood estimation; treatment effectiveness

Indexed keywords

ARTICLE; CASE STUDY; CLINICAL EFFECTIVENESS; CONFIDENCE INTERVAL; EVALUATION STUDY; HUMAN; INTERMETHOD COMPARISON; MACHINE LEARNING; MATHEMATICAL VARIABLE; MAXIMUM LIKELIHOOD METHOD; NONLINEAR SYSTEM; OSTEOARTHRITIS; PATIENT-REPORTED OUTCOME; PREDICTION; PROPENSITY SCORE; QUALITY OF LIFE; REGRESSION ANALYSIS; SIMULATION; STATISTICAL BIAS; STATISTICAL MODEL; TOTAL HIP PROSTHESIS; TREATMENT OUTCOME; VARIANCE; AGED; COMPARATIVE STUDY; COMPUTER SIMULATION; HIP PROSTHESIS; MALE; STATISTICAL ANALYSIS;

EID: 84989888849     PISSN: 09622802     EISSN: 14770334     Source Type: Journal    
DOI: 10.1177/0962280214521341     Document Type: Article
Times cited : (32)

References (84)
  • 1
    • 77955722285 scopus 로고    scopus 로고
    • On the limitations of comparative effectiveness research
    • Rubin DB,. On the limitations of comparative effectiveness research. Stat Med 2010; 29: 1991-1995.
    • (2010) Stat Med , vol.29 , pp. 1991-1995
    • Rubin, D.B.1
  • 2
    • 77955752863 scopus 로고    scopus 로고
    • Comparative effectiveness research: Policy context, methods development and research infrastructure
    • Tunis SR, Benner J, McClellan M,. Comparative effectiveness research: Policy context, methods development and research infrastructure. Stat Med 2010; 29: 1963-1976.
    • (2010) Stat Med , vol.29 , pp. 1963-1976
    • Tunis, S.R.1    Benner, J.2    McClellan, M.3
  • 3
    • 84856022977 scopus 로고    scopus 로고
    • Using Medicare data for comparative effectiveness research: Opportunities and challenges
    • Fung V, Brand RJ, Newhouse JP, et al. Using Medicare data for comparative effectiveness research: Opportunities and challenges. Am J Manag Care 2011; 17: 489-496.
    • (2011) Am J Manag Care , vol.17 , pp. 489-496
    • Fung, V.1    Brand, R.J.2    Newhouse, J.P.3
  • 4
    • 64849112179 scopus 로고    scopus 로고
    • Recent developments in the econometrics of program evaluation
    • Imbens GM, Wooldridge JM,. Recent developments in the econometrics of program evaluation. J Econ Lit 2009; 47: 5-86.
    • (2009) J Econ Lit , vol.47 , pp. 5-86
    • Imbens, G.M.1    Wooldridge, J.M.2
  • 5
    • 34249885738 scopus 로고    scopus 로고
    • Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference
    • Ho DE, Imai K, King G, et al. Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference. Political Analysis 2007; 15: 199-236.
    • (2007) Political Analysis , vol.15 , pp. 199-236
    • Ho, D.E.1    Imai, K.2    King, G.3
  • 6
    • 84856598454 scopus 로고    scopus 로고
    • Regression estimators for generic health-related quality of life and quality-adjusted life years
    • Epub ahead of print 18 October 2011. DOI: 10.1177/0272989X11416988
    • Basu A, Manca A,. Regression estimators for generic health-related quality of life and quality-adjusted life years. Med Decis Making. Epub ahead of print 18 October 2011. DOI: 10.1177/0272989X11416988.
    • Med Decis Making
    • Basu, A.1    Manca, A.2
  • 7
    • 0036102924 scopus 로고    scopus 로고
    • Propensity score-matching methods for nonexperimental causal studies
    • Dehejia RH, Wahba S,. Propensity score-matching methods for nonexperimental causal studies. Rev Econ Stat 2002; 84: 151-161.
    • (2002) Rev Econ Stat , vol.84 , pp. 151-161
    • Dehejia, R.H.1    Wahba, S.2
  • 8
    • 77953607621 scopus 로고    scopus 로고
    • Propensity score estimation: Neural networks, support vector machines, decision trees (CART), and meta-classifiers as alternatives to logistic regression
    • Westreich D, Lessler J, Funk M,. Propensity score estimation: Neural networks, support vector machines, decision trees (CART), and meta-classifiers as alternatives to logistic regression. J Clin Epidemiol 2010; 63: 826-833.
    • (2010) J Clin Epidemiol , vol.63 , pp. 826-833
    • Westreich, D.1    Lessler, J.2    Funk, M.3
  • 9
    • 84888862680 scopus 로고
    • Estimation of regression coefficients when some regressors are not always observed
    • Robins J, Rotnitzky A, Zhao LP,. Estimation of regression coefficients when some regressors are not always observed. J Am Stat Assoc 1994; 89: 846-866.
    • (1994) J Am Stat Assoc , vol.89 , pp. 846-866
    • Robins, J.1    Rotnitzky, A.2    Zhao, L.P.3
  • 10
    • 46249085099 scopus 로고    scopus 로고
    • Comment: Performance of double-robust estimators when "inverse probability" weights are highly variable
    • Robins J, Sued M, Lei-Gomez Q, et al. Comment: Performance of double-robust estimators when "inverse probability" weights are highly variable. Stat Sci 2007; 22: 544-559.
    • (2007) Stat Sci , vol.22 , pp. 544-559
    • Robins, J.1    Sued, M.2    Lei-Gomez, Q.3
  • 11
    • 77949377342 scopus 로고    scopus 로고
    • Invited commentary: Positivity in practice
    • Westreich D, Cole SR,. Invited commentary: Positivity in practice. Am J Epidemiol 2010; 171: 674-677.
    • (2010) Am J Epidemiol , vol.171 , pp. 674-677
    • Westreich, D.1    Cole, S.R.2
  • 12
    • 46249131752 scopus 로고    scopus 로고
    • Demystifying double robustness: A comparison of alternative strategies for estimating a population mean from incomplete data
    • Kang JDY, Schafer JL,. Demystifying double robustness: A comparison of alternative strategies for estimating a population mean from incomplete data. Stat Sci 2007; 22: 523-539.
    • (2007) Stat Sci , vol.22 , pp. 523-539
    • Kang, J.D.Y.1    Schafer, J.L.2
  • 13
    • 46249111567 scopus 로고    scopus 로고
    • Weighting regression by propensity score
    • Freedman D, Berk RA,. Weighting regression by propensity score. Eval Rev 2008; 32: 392-409.
    • (2008) Eval Rev , vol.32 , pp. 392-409
    • Freedman, D.1    Berk, R.A.2
  • 14
    • 77649303040 scopus 로고    scopus 로고
    • Targeted maximum likelihood based causal inference: Part i
    • van der Laan MJ,. Targeted maximum likelihood based causal inference: Part I. Int J Biostat 2010; 6: 1-42. DOI: 10.2202/1557-4679.1211-1-42. DOI: 10.2202/1557-4679.1211.
    • (2010) Int J Biostat , vol.6 , pp. 1
    • Van Der Laan, M.J.1
  • 15
    • 70349244871 scopus 로고    scopus 로고
    • U.C. Berkeley Division of Biostatistics Working Paper Series. Working Paper 213, October 2006
    • van der Laan MJ, Rubin D,. Targeted maximum likelihood learning. U.C. Berkeley Division of Biostatistics Working Paper Series. Working Paper 213, October 2006, http://biostats.bepress.com/ucbbiostat/paper213.
    • Targeted Maximum Likelihood Learning
    • Van Der Laan, M.J.1    Rubin, D.2
  • 16
    • 80052507456 scopus 로고    scopus 로고
    • The relative performance of targeted maximum likelihood estimators
    • Porter KE, Gruber S, van der Laan MJ, et al. The relative performance of targeted maximum likelihood estimators. Int J Biostat 2011; 7: 1-34. DOI: 10.2202/1557-4679.1308-1-34. DOI: 10.2202/1557-4679.1308.
    • (2011) Int J Biostat , vol.7 , pp. 1
    • Porter, K.E.1    Gruber, S.2    Van Der Laan, M.J.3
  • 17
    • 77954380272 scopus 로고    scopus 로고
    • Collaborative targeted maximum likelihood for time to event data
    • Stitelman OM, van der Laan MJ,. Collaborative targeted maximum likelihood for time to event data. Int J Biostat 2010; 6: 1-46-1-46.
    • (2010) Int J Biostat , vol.6 , pp. 146
    • Stitelman, O.M.1    Van Der Laan, M.J.2
  • 18
    • 77955263738 scopus 로고    scopus 로고
    • A targeted maximum likelihood estimator of a causal effect on a bounded continuous outcome
    • 26. DOI: 10.2202/1557-4679.1260-Article 26. DOI: 10.2202/1557-4679.1260
    • Gruber S, van der Laan M,. A targeted maximum likelihood estimator of a causal effect on a bounded continuous outcome. Int J Biostat 2010; 6: Article 26. DOI: 10.2202/1557-4679.1260-Article 26. DOI: 10.2202/1557-4679.1260.
    • (2010) Int J Biostat , vol.6 , pp. Article
    • Gruber, S.1    Van Der Laan, M.2
  • 19
    • 0000001801 scopus 로고
    • The use of matched sampling and regression adjustment to remove bias in observational studies
    • Rubin DB,. The use of matched sampling and regression adjustment to remove bias in observational studies. Biometrics 1973; 29: 185-203.
    • (1973) Biometrics , vol.29 , pp. 185-203
    • Rubin, D.B.1
  • 20
    • 78449245457 scopus 로고    scopus 로고
    • Bias-corrected matching estimators for average treatment effects
    • Abadie A, Imbens GW,. Bias-corrected matching estimators for average treatment effects. J Bus Econ Stat 2011; 29: 1-11.
    • (2011) J Bus Econ Stat , vol.29 , pp. 1-11
    • Abadie, A.1    Imbens, G.W.2
  • 22
    • 1542742319 scopus 로고    scopus 로고
    • Combining propensity score matching with additional adjustments for prognostic covariates
    • Rubin DB, Thomas N,. Combining propensity score matching with additional adjustments for prognostic covariates. J Am Stat Assoc 2000; 95: 573-585.
    • (2000) J Am Stat Assoc , vol.95 , pp. 573-585
    • Rubin, D.B.1    Thomas, N.2
  • 23
    • 85144841000 scopus 로고
    • Using multivariate matched sampling and regression adjustment to control bias in observational studies
    • Rubin DB,. Using multivariate matched sampling and regression adjustment to control bias in observational studies. J Am Stat Assoc 1979; 74: 318-328.
    • (1979) J Am Stat Assoc , vol.74 , pp. 318-328
    • Rubin, D.B.1
  • 24
    • 74749097452 scopus 로고    scopus 로고
    • Improving propensity score weighting using machine learning
    • Lee BK, Lessler J, Stuart EA,. Improving propensity score weighting using machine learning. Stat Med 2010; 29: 337-346.
    • (2010) Stat Med , vol.29 , pp. 337-346
    • Lee, B.K.1    Lessler, J.2    Stuart, E.A.3
  • 25
    • 46349084991 scopus 로고    scopus 로고
    • Evaluating uses of data mining techniques in propensity score estimation: A simulation study
    • Setoguchi S, Schneeweiss S, Brookhart M, et al. Evaluating uses of data mining techniques in propensity score estimation: A simulation study. Pharmacoepidemiol Drug Saf 2008; 17: 546-555.
    • (2008) Pharmacoepidemiol Drug Saf , vol.17 , pp. 546-555
    • Setoguchi, S.1    Schneeweiss, S.2    Brookhart, M.3
  • 26
    • 84857342493 scopus 로고    scopus 로고
    • Using ensemble-based methods for directly estimating causal effects: An investigation of tree-based G-computation
    • Austin PC,. Using ensemble-based methods for directly estimating causal effects: An investigation of tree-based G-computation. Multivar Behav Res 2012; 47: 115-135.
    • (2012) Multivar Behav Res , vol.47 , pp. 115-135
    • Austin, P.C.1
  • 27
    • 49749137541 scopus 로고    scopus 로고
    • Comment: Demystifying double robustness: A comparison of alternative strategies for estimating a population mean from incomplete data
    • Ridgeway G, McCaffrey DF,. Comment: Demystifying double robustness: A comparison of alternative strategies for estimating a population mean from incomplete data. Stat Sci 2007; 22: 540-543.
    • (2007) Stat Sci , vol.22 , pp. 540-543
    • Ridgeway, G.1    McCaffrey, D.F.2
  • 28
    • 44649173785 scopus 로고    scopus 로고
    • A critical appraisal of propensity-score matching in the medical literature between 1996 and 2003
    • Austin PC,. A critical appraisal of propensity-score matching in the medical literature between 1996 and 2003. Stat Med 2008; 27: 2037-2049.
    • (2008) Stat Med , vol.27 , pp. 2037-2049
    • Austin, P.C.1
  • 29
    • 38849182246 scopus 로고    scopus 로고
    • Some practical guidance for the implementation of propensity score matching
    • Caliendo M, Kopeinig S,. Some practical guidance for the implementation of propensity score matching. J Econ Surv 2008; 22: 31-72.
    • (2008) J Econ Surv , vol.22 , pp. 31-72
    • Caliendo, M.1    Kopeinig, S.2
  • 30
    • 77957756947 scopus 로고    scopus 로고
    • PROMs England. April 2009-April 2010: Pre- and post-operative data: Experimental statistics. The Health and Social Care Information Centre
    • PROMs. Provisional Monthly Patient Reported Outcome Measures (PROMs) in England. April 2009-April 2010: Pre- and post-operative data: Experimental statistics. The Health and Social Care Information Centre, 2010.
    • (2010) Provisional Monthly Patient Reported Outcome Measures (PROMs)
  • 31
    • 79951712077 scopus 로고    scopus 로고
    • Understanding patient reported outcome measures (PROMs)
    • Ousey K, Cook L,. Understanding patient reported outcome measures (PROMs). Br J Commun Nurs 2011; 16: 80-82.
    • (2011) Br J Commun Nurs , vol.16 , pp. 80-82
    • Ousey, K.1    Cook, L.2
  • 32
    • 0002864224 scopus 로고    scopus 로고
    • Confounding and collapsibility in causal inference
    • Greenland S, Pearl J, Robins JM,. Confounding and collapsibility in causal inference. Stat Sci 1999; 14: 29-46.
    • (1999) Stat Sci , vol.14 , pp. 29-46
    • Greenland, S.1    Pearl, J.2    Robins, J.M.3
  • 33
    • 67651098902 scopus 로고    scopus 로고
    • The consistency statement in causal inference: A definition or an assumption?
    • Cole SR, Frangakis CE,. The consistency statement in causal inference: A definition or an assumption? Epidemiology 2009; 20: 3-5.
    • (2009) Epidemiology , vol.20 , pp. 3-5
    • Cole, S.R.1    Frangakis, C.E.2
  • 34
    • 1842429563 scopus 로고    scopus 로고
    • Nonparametric estimation of average treatment effects under exogeneity: A review
    • Imbens GW,. Nonparametric estimation of average treatment effects under exogeneity: A review. Rev Econ Stat 2004; 86: 4-29.
    • (2004) Rev Econ Stat , vol.86 , pp. 4-29
    • Imbens, G.W.1
  • 35
    • 46149139403 scopus 로고
    • A new approach to causal inference in mortality studies with a sustained exposure period - Application to control of the healthy worker survivor effect
    • Robins J,. A new approach to causal inference in mortality studies with a sustained exposure period-application to control of the healthy worker survivor effect. Math Modelling 1986; 7: 1393-1512.
    • (1986) Math Modelling , vol.7 , pp. 1393-1512
    • Robins, J.1
  • 37
    • 0030862072 scopus 로고    scopus 로고
    • Estimating causal effects from large data sets using propensity scores
    • Rubin DB,. Estimating causal effects from large data sets using propensity scores. Ann Intern Med 1997; 127: 757-763.
    • (1997) Ann Intern Med , vol.127 , pp. 757-763
    • Rubin, D.B.1
  • 39
    • 84989902395 scopus 로고    scopus 로고
    • Polley EC and van der Laan MJ. Super Learner in prediction. U.C. Berkeley Division of Biostatistics Working Paper Series. Working Paper 266, May 2010
    • Polley EC and van der Laan MJ. Super Learner in prediction. U.C. Berkeley Division of Biostatistics Working Paper Series. Working Paper 266, May 2010, http://biostats.bepress.com/ucbbiostat/paper266.
  • 40
    • 14644419415 scopus 로고    scopus 로고
    • Unified cross-validation methodology for selection among estimators and a general cross-validated adaptive epsilon-net estimator: Finite sample oracle inequalities and examples
    • Working Paper 130, November
    • van der Laan MJ and Dudoit S. Unified cross-validation methodology for selection among estimators and a general cross-validated adaptive epsilon-net estimator: Finite sample oracle inequalities and examples. U.C. Berkeley Division of Biostatistics Working Paper Series. Working Paper 130, November 2003, http://biostats.bepress.com/ucbbiostat/paper130.
    • (2003) U.C. Berkeley Division of Biostatistics Working Paper Series
    • Van Der Laan, M.J.1    Dudoit, S.2
  • 41
    • 77951622706 scopus 로고
    • The central role of the propensity score in observational studies for causal effects
    • Rosenbaum PR, Rubin DB,. The central role of the propensity score in observational studies for causal effects. Biometrika 1983; 70: 41-55.
    • (1983) Biometrika , vol.70 , pp. 41-55
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 42
    • 0035761721 scopus 로고    scopus 로고
    • Estimation of causal effects using propensity score weighting: An application to data on right heart catheterization
    • Hirano K, Imbens GW,. Estimation of causal effects using propensity score weighting: An application to data on right heart catheterization. Health Serv Outcomes Res Methodol 2001; 2: 259-278.
    • (2001) Health Serv Outcomes Res Methodol , vol.2 , pp. 259-278
    • Hirano, K.1    Imbens, G.W.2
  • 43
    • 84862681156 scopus 로고    scopus 로고
    • Model misspecification and robustness in causal inference: Comparing matching with doubly robust estimation
    • Waernbaum I,. Model misspecification and robustness in causal inference: Comparing matching with doubly robust estimation. Stat Med 2011; 31: 1572-1581.
    • (2011) Stat Med , vol.31 , pp. 1572-1581
    • Waernbaum, I.1
  • 44
    • 33645024678 scopus 로고    scopus 로고
    • Large sample properties of matching estimators for average treatment effects
    • Abadie A, Imbens GW,. Large sample properties of matching estimators for average treatment effects. Econometrica 2006; 74: 235-267.
    • (2006) Econometrica , vol.74 , pp. 235-267
    • Abadie, A.1    Imbens, G.W.2
  • 45
    • 0141495120 scopus 로고    scopus 로고
    • Efficient estimation of average treatment effects using the estimated propensity score
    • Hirano K, Imbens GW, Ridder G,. Efficient estimation of average treatment effects using the estimated propensity score. Econometrica 2003; 71: 1161-1189.
    • (2003) Econometrica , vol.71 , pp. 1161-1189
    • Hirano, K.1    Imbens, G.W.2    Ridder, G.3
  • 46
    • 84907616783 scopus 로고    scopus 로고
    • Evaluating treatment effectiveness in patient subgroups: A comparison of propensity score methods with an automated matching approach
    • Radice R, Grieve R, Ramsahai R, et al. Evaluating treatment effectiveness in patient subgroups: A comparison of propensity score methods with an automated matching approach. Int J Biostat 2012; 8: 1-43-1-43.
    • (2012) Int J Biostat , vol.8 , pp. 143
    • Radice, R.1    Grieve, R.2    Ramsahai, R.3
  • 47
    • 51749124303 scopus 로고    scopus 로고
    • Constructing inverse probability weights for marginal structural models
    • Cole SR, Hernán MA,. Constructing inverse probability weights for marginal structural models. Am J Epidemiol 2008; 168: 656-664.
    • (2008) Am J Epidemiol , vol.168 , pp. 656-664
    • Cole, S.R.1    Hernán, M.A.2
  • 48
    • 85050833094 scopus 로고    scopus 로고
    • Model averaging methods for weight trimming
    • Elliott MR,. Model averaging methods for weight trimming. J Off Stat 2008; 24: 517-540.
    • (2008) J off Stat , vol.24 , pp. 517-540
    • Elliott, M.R.1
  • 49
    • 60449086859 scopus 로고    scopus 로고
    • Dealing with limited overlap in estimation of average treatment effects
    • Crump RK, Hotz VJ, Imbens GW, et al. Dealing with limited overlap in estimation of average treatment effects. Biometrika 2009; 96: 187-199.
    • (2009) Biometrika , vol.96 , pp. 187-199
    • Crump, R.K.1    Hotz, V.J.2    Imbens, G.W.3
  • 50
    • 10844272276 scopus 로고    scopus 로고
    • Propensity score estimation with boosted regression for evaluating causal effects in observational studies
    • McCaffrey D, Ridgeway G, Morral A,. Propensity score estimation with boosted regression for evaluating causal effects in observational studies. Psychol Methods 2004; 9: 403-425.
    • (2004) Psychol Methods , vol.9 , pp. 403-425
    • McCaffrey, D.1    Ridgeway, G.2    Morral, A.3
  • 51
    • 77957806232 scopus 로고    scopus 로고
    • Matching methods for causal inference: A review and a look forward
    • Stuart EA,. Matching methods for causal inference: A review and a look forward. Stat Sci 2010; 25: 1-144-1-144.
    • (2010) Stat Sci , vol.25 , pp. 1144
    • Stuart, E.A.1
  • 52
    • 33644851650 scopus 로고    scopus 로고
    • Doubly robust estimation in missing data and causal inference models
    • Bang H, Robins JM,. Doubly robust estimation in missing data and causal inference models. Biometrics 2005; 61: 962-972.
    • (2005) Biometrics , vol.61 , pp. 962-972
    • Bang, H.1    Robins, J.M.2
  • 53
    • 49749122697 scopus 로고    scopus 로고
    • Rejoinder: Demystifying double robustness: A comparison of alternative strategies for estimating a population mean from incomplete data
    • Kang JDY, Schafer JL,. Rejoinder: Demystifying double robustness: A comparison of alternative strategies for estimating a population mean from incomplete data. Stat Sci 2007; 22: 574-580.
    • (2007) Stat Sci , vol.22 , pp. 574-580
    • Kang, J.D.Y.1    Schafer, J.L.2
  • 54
    • 79959258904 scopus 로고    scopus 로고
    • Estimating treatment effects on healthcare costs under exogeneity: Is there a 'magic bullet'?
    • Basu A, Polsky D, Manning W,. Estimating treatment effects on healthcare costs under exogeneity: Is there a 'magic bullet'? Health Serv Outcomes Res Methodol 2011; 11: 1-26.
    • (2011) Health Serv Outcomes Res Methodol , vol.11 , pp. 1-26
    • Basu, A.1    Polsky, D.2    Manning, W.3
  • 55
    • 77953150321 scopus 로고    scopus 로고
    • Collaborative double robust targeted maximum likelihood estimation
    • van der Laan MJ, Gruber S,. Collaborative double robust targeted maximum likelihood estimation. Int J Biostat 2010; 6: 1-68. DOI: 10.2202/1557-4679.1181-1-68. DOI: 10.2202/1557-4679.1181.
    • (2010) Int J Biostat , vol.6 , pp. 1
    • Van Der Laan, M.J.1    Gruber, S.2
  • 56
    • 0003473591 scopus 로고
    • A social tariff for EuroQol: Results from a UK general population survey
    • University of York
    • Gudex C, Kind P and Williams A. A social tariff for EuroQol: results from a UK general population survey. Centre for Health Economics, University of York, 1995, pp. 1-24.
    • (1995) Centre for Health Economics , pp. 1-24
    • Gudex, C.1    Kind, P.2    Williams, A.3
  • 57
    • 84861641356 scopus 로고    scopus 로고
    • Improved double-robust estimation in missing data and causal inference models
    • Rotnitzky A, Lei Q, Sued M, et al. Improved double-robust estimation in missing data and causal inference models. Biometrika 2012; 99: 439-456.
    • (2012) Biometrika , vol.99 , pp. 439-456
    • Rotnitzky, A.1    Lei, Q.2    Sued, M.3
  • 58
    • 84907657365 scopus 로고    scopus 로고
    • Targeted minimum loss based estimation of causal effects on an outcome with known conditional bounds
    • 8. DOI: 10.1515/1557-4679.1370
    • Gruber S, van der Laan MJ,. Targeted minimum loss based estimation of causal effects on an outcome with known conditional bounds. Int J Biostat 2012. 8. DOI: 10.1515/1557-4679.1370.
    • (2012) Int J Biostat
    • Gruber, S.1    Van Der Laan, M.J.2
  • 59
    • 61749092099 scopus 로고    scopus 로고
    • Covariate adjustment in randomized trials with binary outcomes: Targeted maximum likelihood estimation
    • Moore KL, van der Laan MJ,. Covariate adjustment in randomized trials with binary outcomes: Targeted maximum likelihood estimation. Stat Med 2009; 28: 39-64.
    • (2009) Stat Med , vol.28 , pp. 39-64
    • Moore, K.L.1    Van Der Laan, M.J.2
  • 60
    • 84950646761 scopus 로고
    • The influence curve and its role in robust estimation
    • Hampel FR,. The influence curve and its role in robust estimation. J Am Stat Assoc 1974; 69: 383-393.
    • (1974) J Am Stat Assoc , vol.69 , pp. 383-393
    • Hampel, F.R.1
  • 61
    • 84872794089 scopus 로고    scopus 로고
    • Tmle: An R package for targeted maximum likelihood estimation
    • Gruber S, van der Laan MJ,. tmle: An R package for targeted maximum likelihood estimation. J Stat Software 2012; 51: 1-35.
    • (2012) J Stat Software , vol.51 , pp. 1-35
    • Gruber, S.1    Van Der Laan, M.J.2
  • 63
    • 77958523826 scopus 로고    scopus 로고
    • Statistical criteria for selecting the optimal number of untreated subjects matched to each treated subject when using many-to-one matching on the propensity score
    • Austin PC,. Statistical criteria for selecting the optimal number of untreated subjects matched to each treated subject when using many-to-one matching on the propensity score. Am J Epidemiol 2010; 172: 1092-1097.
    • (2010) Am J Epidemiol , vol.172 , pp. 1092-1097
    • Austin, P.C.1
  • 64
    • 84989830229 scopus 로고    scopus 로고
    • NICE. Health Technology Appraisal. Total hip replacement and resurfacing arthroplasty for the treatment of pain or disability resulting from end stage arthritis of the hip (Review of technology appraisal guidance 2 and 44). Final scope, 2012, (accessed 31 July 2012)
    • NICE. Health Technology Appraisal. Total hip replacement and resurfacing arthroplasty for the treatment of pain or disability resulting from end stage arthritis of the hip (Review of technology appraisal guidance 2 and 44). Final scope, 2012, http://www.nice.org.uk/nicemedia/live/13690/61348/61348.pdf (accessed 31 July 2012).
  • 65
    • 0025688231 scopus 로고
    • EuroQol - A new facility for the measurement of health-related quality of life
    • EuroQol Group
    • EuroQol Group. EuroQol-a new facility for the measurement of health-related quality of life. Health Policy 1990; 16: 199-208.
    • (1990) Health Policy , vol.16 , pp. 199-208
  • 66
    • 84875830136 scopus 로고    scopus 로고
    • Cemented, cementless and hybrid prostheses for total hip replacement: A cost-effectiveness analysis
    • 346: f1026. DOI: 10.1136/bmj.f1026
    • Pennington M, Grieve R, Sekhon JS, et al. Cemented, cementless and hybrid prostheses for total hip replacement: A cost-effectiveness analysis. Br Med J 2013. 346: f1026. DOI: 10.1136/bmj.f1026.
    • (2013) Br Med J
    • Pennington, M.1    Grieve, R.2    Sekhon, J.S.3
  • 68
    • 0030539070 scopus 로고    scopus 로고
    • Multiple imputation after 18+ years
    • Rubin D,. Multiple imputation after 18+ years. J Am Stat Assoc 1996; 91: 473-489.
    • (1996) J Am Stat Assoc , vol.91 , pp. 473-489
    • Rubin, D.1
  • 69
    • 0036667561 scopus 로고    scopus 로고
    • Analysis of repeated measures data with clumping at zero
    • Tooze JA, Grunwald GK, Jones RH,. Analysis of repeated measures data with clumping at zero. Stat Methods Med Res 2002; 11: 341-355.
    • (2002) Stat Methods Med Res , vol.11 , pp. 341-355
    • Tooze, J.A.1    Grunwald, G.K.2    Jones, R.H.3
  • 70
    • 2342446541 scopus 로고    scopus 로고
    • Too much ado about two-part models and transformation?: Comparing methods of modeling Medicare expenditures
    • Buntin MB, Zaslavsky AM,. Too much ado about two-part models and transformation?: Comparing methods of modeling Medicare expenditures. J Health Econ 2004; 23: 525-542.
    • (2004) J Health Econ , vol.23 , pp. 525-542
    • Buntin, M.B.1    Zaslavsky, A.M.2
  • 71
    • 79961135005 scopus 로고    scopus 로고
    • R Development Core Team Vienna, Austria: R Foundation for Statistical Computing
    • R Development Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing, 2011.
    • (2011) R: A Language and Environment for Statistical Computing
  • 73
    • 84906939725 scopus 로고    scopus 로고
    • Software Package, (accessed 15 June 2012)
    • Kooperberg C. Polspline: Polynomial spline routines, 2010 CRAN, Software Package, http://cran.r-project.org/web/packages/polspline/ (accessed 15 June 2012).
    • (2010) Polspline: Polynomial Spline Routines
    • Kooperberg, C.1
  • 74
    • 84989887060 scopus 로고    scopus 로고
    • Twang: Toolkit for weighting and analysis of nonequivalent groups
    • Software Package
    • Ridgeway G, McCaffrey D, Morral A, et al. twang: Toolkit for weighting and analysis of nonequivalent groups. CRAN, Software Package, http://cran.r-project.org/web/packages/twang/index.html.
    • CRAN
    • Ridgeway, G.1    McCaffrey, D.2    Morral, A.3
  • 76
    • 33846253571 scopus 로고    scopus 로고
    • The design versus the analysis of observational studies for causal effects: Parallels with the design of randomized trials
    • Rubin DB,. The design versus the analysis of observational studies for causal effects: Parallels with the design of randomized trials. Stat Med 2007; 26: 20-36.
    • (2007) Stat Med , vol.26 , pp. 20-36
    • Rubin, D.B.1
  • 77
    • 38849176100 scopus 로고    scopus 로고
    • Selection of important variables and determination of functional form for continuous predictors in multivariable model building
    • Sauerbrei W, Royston P, Binder H,. Selection of important variables and determination of functional form for continuous predictors in multivariable model building. Stat Med 2007; 26: 5512-5528.
    • (2007) Stat Med , vol.26 , pp. 5512-5528
    • Sauerbrei, W.1    Royston, P.2    Binder, H.3
  • 78
    • 1542784498 scopus 로고    scopus 로고
    • Variable selection via nonconcave penalized likelihood and its oracle properties
    • Fan J, Li R,. Variable selection via nonconcave penalized likelihood and its oracle properties. J Am Stat Assoc 2001; 96: 1348-1360.
    • (2001) J Am Stat Assoc , vol.96 , pp. 1348-1360
    • Fan, J.1    Li, R.2
  • 79
    • 84879167098 scopus 로고    scopus 로고
    • The performance of different propensity score methods for estimating marginal odds ratios
    • Austin PC,. The performance of different propensity score methods for estimating marginal odds ratios. Stat Med 2013; 32: 2837-2849.
    • (2013) Stat Med , vol.32 , pp. 2837-2849
    • Austin, P.C.1
  • 81
    • 38849111846 scopus 로고    scopus 로고
    • Stratification for the propensity score compared with linear regression techniques to assess the effect of treatment or exposure
    • Senn S, Graf E, Caputo A,. Stratification for the propensity score compared with linear regression techniques to assess the effect of treatment or exposure. Stat Med 2007; 26: 5529-5544.
    • (2007) Stat Med , vol.26 , pp. 5529-5544
    • Senn, S.1    Graf, E.2    Caputo, A.3
  • 83
    • 77953143090 scopus 로고    scopus 로고
    • An application of collaborative targeted maximum likelihood estimation in causal inference and genomics
    • Gruber S, van der Laan MJ,. An application of collaborative targeted maximum likelihood estimation in causal inference and genomics. Int J Biostat 2010; 6: 1-29. DOI: 10.2202/1557-4679.1182-1-29. DOI: 10.2202/1557-4679.1182.
    • (2010) Int J Biostat , vol.6 , pp. 1
    • Gruber, S.1    Van Der Laan, M.J.2
  • 84
    • 79961226937 scopus 로고    scopus 로고
    • Matching: Multivariate and propensity score matching with automated balance search
    • Sekhon JS,. Matching: Multivariate and propensity score matching with automated balance search. J Stat Software 2011; 42: 1-52-1-52.
    • (2011) J Stat Software , vol.42 , pp. 152
    • Sekhon, J.S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.