-
1
-
-
84871714415
-
2 emissions: romanian case study
-
2 emissions: romanian case study. Energy 49 (2013), 61–70.
-
(2013)
Energy
, vol.49
, pp. 61-70
-
-
Varga, B.O.1
-
2
-
-
84942015585
-
Electric vehicle cost, emissions, and water footprint in the United States: development of a regional optimization model
-
[2] Noori, M., Gardner, S., Tatari, O., Electric vehicle cost, emissions, and water footprint in the United States: development of a regional optimization model. Energy 89 (2015), 610–625.
-
(2015)
Energy
, vol.89
, pp. 610-625
-
-
Noori, M.1
Gardner, S.2
Tatari, O.3
-
3
-
-
84927940962
-
Conventional, hybrid, plug-in hybrid or electric vehicles? State-based comparative carbon and energy footprint analysis in the United States
-
[3] Onat, N.C., Kucukvar, M., Tatari, O., Conventional, hybrid, plug-in hybrid or electric vehicles? State-based comparative carbon and energy footprint analysis in the United States. Appl Energy 150 (2015), 36–49.
-
(2015)
Appl Energy
, vol.150
, pp. 36-49
-
-
Onat, N.C.1
Kucukvar, M.2
Tatari, O.3
-
4
-
-
84958634672
-
A control-oriented cycle-life model for hybrid electric vehicle lithium ion batteries
-
[4] Suri, G., Onori, S., A control-oriented cycle-life model for hybrid electric vehicle lithium ion batteries. Energy 96 (2016), 644–653.
-
(2016)
Energy
, vol.96
, pp. 644-653
-
-
Suri, G.1
Onori, S.2
-
6
-
-
21244492011
-
Topological overview of hybrid electric and fuel cell vehicular power system architectures and configurations
-
[6] Emadi, A., Rajashekara, K., Williamson, S.S., Lukic, S.M., Topological overview of hybrid electric and fuel cell vehicular power system architectures and configurations. IEEE T Veh Technol 54:3 (2005), 763–770.
-
(2005)
IEEE T Veh Technol
, vol.54
, Issue.3
, pp. 763-770
-
-
Emadi, A.1
Rajashekara, K.2
Williamson, S.S.3
Lukic, S.M.4
-
7
-
-
84881527299
-
State of charge estimation of lithium-ion batteries using the open-circuit voltage at various ambient temperatures
-
[7] Xing, Y.J., He, W., Pecht, M., Tsui, K.L., State of charge estimation of lithium-ion batteries using the open-circuit voltage at various ambient temperatures. Appl Energy 113 (2014), 106–115.
-
(2014)
Appl Energy
, vol.113
, pp. 106-115
-
-
Xing, Y.J.1
He, W.2
Pecht, M.3
Tsui, K.L.4
-
8
-
-
84989961393
-
Estimation of real-time peak power capability of a traction battery pack used in an HEV
-
[8] Zhang CP, Zhang CN, Sharkh SM. Estimation of real-time peak power capability of a traction battery pack used in an HEV. Conference estimation of real-time peak power capability of a traction battery pack used in an HEV. p. 1–6.
-
-
-
Zhang, C.P.1
Zhang, C.N.2
Sharkh, S.M.3
-
9
-
-
84861807264
-
Online estimation of peak power capability of Li-Ion batteries in electric vehicles by a hardware-in-loop approach
-
[9] Xiong, R., He, H.W., Sun, F.C., Zhao, K., Online estimation of peak power capability of Li-Ion batteries in electric vehicles by a hardware-in-loop approach. Energies 5:5 (2012), 1455–1469.
-
(2012)
Energies
, vol.5
, Issue.5
, pp. 1455-1469
-
-
Xiong, R.1
He, H.W.2
Sun, F.C.3
Zhao, K.4
-
10
-
-
4744351602
-
High-performance battery-pack power estimation using a dynamic cell model
-
[10] Plett, G.L., High-performance battery-pack power estimation using a dynamic cell model. IEEE T Veh Technol 53:5 (2004), 1586–1593.
-
(2004)
IEEE T Veh Technol
, vol.53
, Issue.5
, pp. 1586-1593
-
-
Plett, G.L.1
-
11
-
-
84941876112
-
Performance and energy management of a novel full hybrid electric powertrain system
-
[11] Chung, C.T., Hung, Y.H., Performance and energy management of a novel full hybrid electric powertrain system. Energy 89 (2015), 626–636.
-
(2015)
Energy
, vol.89
, pp. 626-636
-
-
Chung, C.T.1
Hung, Y.H.2
-
12
-
-
84958602423
-
Particle swarm optimization-based optimal power management of plug-in hybrid electric vehicles considering uncertain driving conditions
-
[12] Chen, Z.Y., Xiong, R., Cao, J.Y., Particle swarm optimization-based optimal power management of plug-in hybrid electric vehicles considering uncertain driving conditions. Energy 96 (2016), 197–208.
-
(2016)
Energy
, vol.96
, pp. 197-208
-
-
Chen, Z.Y.1
Xiong, R.2
Cao, J.Y.3
-
13
-
-
84926469098
-
A comprehensive analysis of energy management strategies for hybrid electric vehicles based on bibliometrics
-
[13] Zhang, P., Yan, F.W., Du, C.Q., A comprehensive analysis of energy management strategies for hybrid electric vehicles based on bibliometrics. Renew Sust Energy Rev 48 (2015), 88–104.
-
(2015)
Renew Sust Energy Rev
, vol.48
, pp. 88-104
-
-
Zhang, P.1
Yan, F.W.2
Du, C.Q.3
-
14
-
-
84989945548
-
-
Revision 3. DOE/ID-10597, February
-
[14] Revision 3. DOE/ID-10597, February Manual, PNGV battery test, 2001.
-
(2001)
Manual, PNGV battery test
-
-
-
15
-
-
0034325057
-
Power requirements for batteries in hybrid electric vehicles
-
[15] Nelson, R.F., Power requirements for batteries in hybrid electric vehicles. J Power Sources 91:1 (2000), 2–26.
-
(2000)
J Power Sources
, vol.91
, Issue.1
, pp. 2-26
-
-
Nelson, R.F.1
-
16
-
-
33748427612
-
Power and thermal characterization of a lithium-ion battery pack for hybrid-electric vehicles
-
[16] Smith, K., Wang, C.Y., Power and thermal characterization of a lithium-ion battery pack for hybrid-electric vehicles. J Power Sources 160:1 (2006), 662–673.
-
(2006)
J Power Sources
, vol.160
, Issue.1
, pp. 662-673
-
-
Smith, K.1
Wang, C.Y.2
-
17
-
-
32344445422
-
Freedom car battery test manual for power-assist hybrid electric vehicles
-
[17] Hunt, G., Motloch, C., Freedom car battery test manual for power-assist hybrid electric vehicles. INEEL, Idaho falls, DOE/ID-11069, 2003.
-
(2003)
INEEL, Idaho falls, DOE/ID-11069
-
-
Hunt, G.1
Motloch, C.2
-
18
-
-
84883069268
-
Real-time prediction of battery power requirements for electric vehicles
-
[18] Kim, E., Lee, J., Shin, K.G., Real-time prediction of battery power requirements for electric vehicles. ACM IEEE Int Conf Cy, 2013, 11–20.
-
(2013)
ACM IEEE Int Conf Cy
, pp. 11-20
-
-
Kim, E.1
Lee, J.2
Shin, K.G.3
-
19
-
-
84861702168
-
Model-based dynamic multi-parameter method for peak power estimation of lithium-ion batteries
-
[19] Sun, F.C., Xiong, R., He, H.W., Li, W.Q., Aussems, J.E.E., Model-based dynamic multi-parameter method for peak power estimation of lithium-ion batteries. Appl Energy 96 (2012), 378–386.
-
(2012)
Appl Energy
, vol.96
, pp. 378-386
-
-
Sun, F.C.1
Xiong, R.2
He, H.W.3
Li, W.Q.4
Aussems, J.E.E.5
-
21
-
-
84896452461
-
Estimation of state-of-charge and state-of-power capability of lithium-ion battery considering varying health conditions
-
[21] Sun, F.C., Xiong, R., He, H.W., Estimation of state-of-charge and state-of-power capability of lithium-ion battery considering varying health conditions. J Power Sources 259 (2014), 166–176.
-
(2014)
J Power Sources
, vol.259
, pp. 166-176
-
-
Sun, F.C.1
Xiong, R.2
He, H.W.3
-
22
-
-
84888430871
-
A data-driven adaptive state of charge and power capability joint estimator of lithium-ion polymer battery used in electric vehicles
-
[22] Xiong, R., Sun, F.C., He, H.W., Nguyen, T.D., A data-driven adaptive state of charge and power capability joint estimator of lithium-ion polymer battery used in electric vehicles. Energy 63 (2013), 295–308.
-
(2013)
Energy
, vol.63
, pp. 295-308
-
-
Xiong, R.1
Sun, F.C.2
He, H.W.3
Nguyen, T.D.4
-
23
-
-
84896387880
-
Online peak power prediction based on a parameter and state estimator for lithium-ion batteries in electric vehicles
-
[23] Pei, L., Zhu, C.B., Wang, T.S., Lu, R.G., Chan, C.C., Online peak power prediction based on a parameter and state estimator for lithium-ion batteries in electric vehicles. Energy 66 (2014), 766–778.
-
(2014)
Energy
, vol.66
, pp. 766-778
-
-
Pei, L.1
Zhu, C.B.2
Wang, T.S.3
Lu, R.G.4
Chan, C.C.5
-
25
-
-
49649105634
-
Nanomaterials for rechargeable lithium batteries
-
[25] Bruce, P.G., Scrosati, B., Tarascon, J.M., Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed 47:16 (2008), 2930–2946.
-
(2008)
Angew Chem Int Ed
, vol.47
, Issue.16
, pp. 2930-2946
-
-
Bruce, P.G.1
Scrosati, B.2
Tarascon, J.M.3
-
26
-
-
34250674942
-
2 – a reversible positive electrode for rechargeable lithium batteries
-
2 – a reversible positive electrode for rechargeable lithium batteries. Adv Mater 19:5 (2007), 657–660.
-
(2007)
Adv Mater
, vol.19
, Issue.5
, pp. 657-660
-
-
Jiao, F.1
Bruce, P.G.2
-
27
-
-
3142752164
-
Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs - Part 2. Modeling and identification
-
[27] Plett, G.L., Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs - Part 2. Modeling and identification. J Power Sources 134:2 (2004), 262–276.
-
(2004)
J Power Sources
, vol.134
, Issue.2
, pp. 262-276
-
-
Plett, G.L.1
-
28
-
-
84862754817
-
Robustness analysis of state-of-charge estimation methods for two types of Li-ion batteries
-
[28] Hu, X.S., Li, S.B., Peng, H.I., Sun, F.C., Robustness analysis of state-of-charge estimation methods for two types of Li-ion batteries. J Power Sources 217 (2012), 209–219.
-
(2012)
J Power Sources
, vol.217
, pp. 209-219
-
-
Hu, X.S.1
Li, S.B.2
Peng, H.I.3
Sun, F.C.4
-
29
-
-
84934289678
-
Robust and adaptive estimation of state of charge for lithium-ion batteries
-
[29] Zhang, C.P., Wang, L.Y., Li, X., Chen, W., Yin, G.G., Jiang, J.C., Robust and adaptive estimation of state of charge for lithium-ion batteries. IEEE T Ind Electron 62:8 (2015), 4948–4957.
-
(2015)
IEEE T Ind Electron
, vol.62
, Issue.8
, pp. 4948-4957
-
-
Zhang, C.P.1
Wang, L.Y.2
Li, X.3
Chen, W.4
Yin, G.G.5
Jiang, J.C.6
-
31
-
-
57849137966
-
Temperature-dependent battery models for high-power lithium-ion batteries
-
National Renewable Energy Laboratory City of Golden
-
[31] Johnson, V.H., Pesaran, Ahmad A., Sack, Thomas, Temperature-dependent battery models for high-power lithium-ion batteries. 2001, National Renewable Energy Laboratory, City of Golden.
-
(2001)
-
-
Johnson, V.H.1
Pesaran, A.A.2
Sack, T.3
-
32
-
-
84870749739
-
Experimental investigation of the lithium-ion battery impedance characteristic at various conditions and aging states and its influence on the application
-
[32] Waag, W., Kabitz, S., Sauer, D.U., Experimental investigation of the lithium-ion battery impedance characteristic at various conditions and aging states and its influence on the application. Appl Energy 102 (2013), 885–897.
-
(2013)
Appl Energy
, vol.102
, pp. 885-897
-
-
Waag, W.1
Kabitz, S.2
Sauer, D.U.3
-
33
-
-
0013087461
-
Seeing through statistics
-
Cengage Learning
-
[33] Utts, J., Seeing through statistics. 2014, Cengage Learning.
-
(2014)
-
-
Utts, J.1
-
34
-
-
4043137356
-
A tutorial on support vector regression
-
[34] Smola, A.J., Scholkopf, B., A tutorial on support vector regression. Stat Comput 14:3 (2004), 199–222.
-
(2004)
Stat Comput
, vol.14
, Issue.3
, pp. 199-222
-
-
Smola, A.J.1
Scholkopf, B.2
-
35
-
-
34249753618
-
Support-vector networks
-
[35] Cortes, C., Vapnik, V., Support-vector networks. Mach Learn 20:3 (1995), 273–297.
-
(1995)
Mach Learn
, vol.20
, Issue.3
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
36
-
-
84989938978
-
Pattern-recognition with optimal margin classifiers
-
[36] Boser, B.E., Pattern-recognition with optimal margin classifiers. Nato Adv Sci Inst Se 124 (1994), 147–171.
-
(1994)
Nato Adv Sci Inst Se
, vol.124
, pp. 147-171
-
-
Boser, B.E.1
-
37
-
-
0000874557
-
Theoretical foundations of the potential function method in pattern recognition learning
-
[37] Aizerman, A., Braverman, Emmanuel M., Rozoner, L.I., Theoretical foundations of the potential function method in pattern recognition learning. Autom Remote Control 25 (1964), 821–837.
-
(1964)
Autom Remote Control
, vol.25
, pp. 821-837
-
-
Aizerman, A.1
Braverman, E.M.2
Rozoner, L.I.3
-
38
-
-
84989825551
-
The nature of statistical learning theory
-
Springer Science & Business Media
-
[38] Vapnik, V., The nature of statistical learning theory. 2013, Springer Science & Business Media.
-
(2013)
-
-
Vapnik, V.1
-
39
-
-
27144489164
-
A tutorial on Support Vector Machines for pattern recognition
-
[39] Burges, C.J.C., A tutorial on Support Vector Machines for pattern recognition. Data Min Knowl Disc 2:2 (1998), 121–167.
-
(1998)
Data Min Knowl Disc
, vol.2
, Issue.2
, pp. 121-167
-
-
Burges, C.J.C.1
-
40
-
-
0032594959
-
An overview of statistical learning theory
-
[40] Vapnik, V.N., An overview of statistical learning theory. IEEE T Neural Netw 10:5 (1999), 988–999.
-
(1999)
IEEE T Neural Netw
, vol.10
, Issue.5
, pp. 988-999
-
-
Vapnik, V.N.1
-
41
-
-
85053458658
-
Support vector machines: optimization based theory, algorithms, and extensions
-
CRC Press
-
[41] Deng, Naiyang, Tian, Yingjie, Zhang, C., Support vector machines: optimization based theory, algorithms, and extensions. 2012, CRC Press.
-
(2012)
-
-
Deng, N.1
Tian, Y.2
Zhang, C.3
-
42
-
-
84907333207
-
Capacity estimation of large-scale retired Li-ion batteries for second use based on support vector machine
-
[42] Meng, F.D., Jiang, J.C., Mang, W.G., Sun, B.X., Mang, C.P., Wang, Y.K., Capacity estimation of large-scale retired Li-ion batteries for second use based on support vector machine. Proc IEEE Int Symp, 2014, 1628–1634.
-
(2014)
Proc IEEE Int Symp
, pp. 1628-1634
-
-
Meng, F.D.1
Jiang, J.C.2
Mang, W.G.3
Sun, B.X.4
Mang, C.P.5
Wang, Y.K.6
-
43
-
-
68949128341
-
Support vector machines
-
Springer Science & Business Media
-
[43] Steinwart, I., Christmann, Andreas, Support vector machines. 2008, Springer Science & Business Media.
-
(2008)
-
-
Steinwart, I.1
Christmann, A.2
-
44
-
-
84855259616
-
Support vector machines explained: introductory course
-
University College London London, UK Internal Rep 0103
-
[44] Fletcher, T., Support vector machines explained: introductory course., 2009, University College London, London, UK Internal Rep 0103.
-
(2009)
-
-
Fletcher, T.1
-
45
-
-
30444437204
-
Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance
-
[45] Willmott, C.J., Matsuura, K., Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim Res 30:1 (2005), 79–82.
-
(2005)
Clim Res
, vol.30
, Issue.1
, pp. 79-82
-
-
Willmott, C.J.1
Matsuura, K.2
|