메뉴 건너뛰기




Volumn , Issue , 2014, Pages 1628-1634

Capacity estimation of large-scale retired li-ion batteries for second use based on support vector machine

Author keywords

capacity estimation; genetic algorithm (GA); li ion battery; second use; support vector machine (SVM)

Indexed keywords

ELECTRIC BATTERIES; GENETIC ALGORITHMS; INDUSTRIAL ELECTRONICS; LITHIUM BATTERIES; IONS; SUPPORT VECTOR MACHINES;

EID: 84907333207     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ISIE.2014.6864859     Document Type: Conference Paper
Times cited : (9)

References (20)
  • 1
    • 84879500725 scopus 로고    scopus 로고
    • Development of electric vehicles use in China: A study from the perspective of life-cycle energy consumption and greenhouse gas emissions
    • Guanghui Zhou, Xunmin Ou, Xiliang Zhang, 2013. Development of electric vehicles use in China: A study from the perspective of life-cycle energy consumption and greenhouse gas emissions. Energy Policy, 59, 875-884.
    • (2013) Energy Policy , vol.59 , pp. 875-884
    • Zhou, G.1    Ou, X.2    Zhang, X.3
  • 2
    • 80052857264 scopus 로고    scopus 로고
    • Second use of transportation batteries: Maximizing the value of batteries for transportation and grid services
    • September
    • Alvarez Anton, J.C. "Second Use of Transportation Batteries: Maximizing the Value of Batteries for Transportation and Grid Services, " IEEE Transactions on Vehicular Technology, vol. 60, no. 7, pp. 2963-2970, September 2011.
    • (2011) IEEE Transactions on Vehicular Technology , vol.60 , Issue.7 , pp. 2963-2970
    • Alvarez Anton, J.C.1
  • 3
    • 84891044537 scopus 로고    scopus 로고
    • Capacity fade estimation in electric vehicles li-ion batteries using artificial neural Networks
    • IEEE
    • Ala A. Hussein, "Capacity Fade Estimation in Electric Vehicles Li-ion Batteries using Artificial Neural Networks, " Energy Conversion Congress and Exposition (ECCE), 2013 IEEE, pp. 677-681.
    • (2013) Energy Conversion Congress and Exposition (ECCE) , pp. 677-681
    • Hussein, A.A.1
  • 6
    • 84874807821 scopus 로고    scopus 로고
    • A prediction model for remainming capacity in batteries based on least square support vector machine
    • July
    • Shu Fuhua, "A Prediction Model for Remainming Capacity in Batteries Based on Least Square Support Vector Machine, " Chinese Journal of Power Sources, vol. 32, pp. 452-455, July 2008.
    • (2008) Chinese Journal of Power Sources , vol.32 , pp. 452-455
    • Fuhua, S.1
  • 8
    • 77957950260 scopus 로고    scopus 로고
    • Wind speed forecasting model study based on support vector machine
    • July
    • Zhang Hua, and Zeng Jie, "Wind Speed Forecasting Model Study Based on Support Vector Machine, " Acta Enerciae Solaris Sinica, vol. 31, pp. 928-932, July 2010.
    • (2010) Acta Enerciae Solaris Sinica , vol.31 , pp. 928-932
    • Hua, Z.1    Jie, Z.2
  • 10
    • 34248346766 scopus 로고    scopus 로고
    • Combining support vector machine and genetic algorithm to predict ash fusion Temperature
    • March
    • Wang Chunlin, Zhou Hao, and Li Guoneng, "Combining Support Vector Machine and Genetic Algorithm to Predict Ash Fusion Temperature, " Proceedings of the CSEE, vol. 27, pp. 11-15, March 2007.
    • (2007) Proceedings of the CSEE , vol.27 , pp. 11-15
    • Chunlin, W.1    Hao, Z.2    Guoneng, L.3
  • 11
    • 84907349115 scopus 로고    scopus 로고
    • Study of life prediction method based on support vector machine for lithium-ion Battery
    • Xie Bing, Study of Life Prediction Method Based on Support Vector Machine for Lithium-ion Battery, CA: Huazhong University of Science and Technology, 2012.
    • (2012) CA: Huazhong University of Science and Technology
    • Bing, X.1
  • 13
    • 77954788121 scopus 로고    scopus 로고
    • Comparison of several methods for determining the internal resistance of lithium Ion Cells
    • June
    • Hans-Georg Schweiger , and Ossama Obeidi, "Comparison of Several Methods for Determining the Internal Resistance of Lithium Ion Cells", Sensors, pp, 5604-5625. June 2010.
    • (2010) Sensors , pp. 5604-5625
    • Schweiger, H.1    Obeidi, O.2
  • 17
    • 0346250790 scopus 로고    scopus 로고
    • Practical selection of SVM parameters and noise estimation for SVM regression
    • Cherkassky V., and Yunqian MA., "Practical selection of SVM parameters and noise estimation for SVM regression, " Networks, vol.17, no.1, pp.113-126, 2004.
    • (2004) Networks , vol.17 , Issue.1 , pp. 113-126
    • Cherkassky, V.1    Yunqian, M.A.2
  • 18
    • 0036161011 scopus 로고    scopus 로고
    • Choosing kernel parameters for support vector machines
    • Chapelle O., Vapnik V., and BousquetO., "Choosing kernel parameters for support vector machines, " MachineLearning, 2002, 46(1):131-160.
    • (2002) MachineLearning , vol.46 , Issue.1 , pp. 131-160
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3
  • 19
    • 43749116754 scopus 로고    scopus 로고
    • Model selection of SVM with RBF kernel and its application
    • Wang Peng, and Zhu Xiaoyan, "Model Selection of SVM with RBF Kernel and its Application, " Computer Engineering and Application, vol.39, no.24, pp.72-73, 2003.
    • (2003) Computer Engineering and Application , vol.39 , Issue.24 , pp. 72-73
    • Peng, W.1    Xiaoyan, Z.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.