-
1
-
-
84871877830
-
Temporal changes in incidence of dialysis-requiring AKI
-
doi: 10.1681/ASN.2012080800
-
Hsu, R. K., McCulloch, C. E., Dudley, R. A., Lo, L. J. & Hsu, C. Y. Temporal changes in incidence of dialysis-requiring AKI. Journal of the American Society of Nephrology: JASN 24, 37-42, doi: 10.1681/ASN.2012080800 (2013).
-
(2013)
Journal of the American Society of Nephrology: JASN
, vol.24
, pp. 37-42
-
-
Hsu, R.K.1
McCulloch, C.E.2
Dudley, R.A.3
Lo, L.J.4
Hsu, C.Y.5
-
2
-
-
57149105572
-
Zag expression during aging suppresses proliferation after kidney injury
-
doi: 10.1681/ASN.2008010035
-
Schmitt, R., Marlier, A. & Cantley, L. G. Zag expression during aging suppresses proliferation after kidney injury. Journal of the American Society of Nephrology: JASN 19, 2375-2383, doi: 10.1681/ASN.2008010035 (2008).
-
(2008)
Journal of the American Society of Nephrology: JASN
, vol.19
, pp. 2375-2383
-
-
Schmitt, R.1
Marlier, A.2
Cantley, L.G.3
-
3
-
-
84858223733
-
Age-related decline in label-retaining tubular cells: Implication for reduced regenerative capacity after injury in the aging kidney
-
doi: 10.1152/ajprenal.00249.2011
-
Miya, M. et al. Age-related decline in label-retaining tubular cells: implication for reduced regenerative capacity after injury in the aging kidney. American journal of physiology. Renal physiology 302, F694-F702, doi: 10.1152/ajprenal.00249.2011 (2012).
-
(2012)
American Journal of Physiology. Renal Physiology
, vol.302
, pp. F694-F702
-
-
Miya, M.1
-
4
-
-
47149094501
-
Recovery of kidney function after acute kidney injury in the elderly: A systematic review and meta-analysis
-
doi: 10.1053/j.ajkd.2008.03.005
-
Schmitt, R. et al. Recovery of kidney function after acute kidney injury in the elderly: a systematic review and meta-analysis. American journal of kidney diseases: the official journal of the National Kidney Foundation 52, 262-271, doi: 10.1053/j. ajkd.2008.03.005 (2008).
-
(2008)
American Journal of Kidney Diseases: The Official Journal of the National Kidney Foundation
, vol.52
, pp. 262-271
-
-
Schmitt, R.1
-
6
-
-
84893369728
-
Differentiated kidney epithelial cells repair injured proximal tubule
-
doi: 10.1073/ pnas.1310653110
-
Kusaba, T., Lalli, M., Kramann, R., Kobayashi, A. & Humphreys, B. D. Differentiated kidney epithelial cells repair injured proximal tubule. Proceedings of the National Academy of Sciences of the United States of America 111, 1527-1532, doi: 10.1073/ pnas.1310653110 (2014).
-
(2014)
Proceedings of the National Academy of Sciences of the United States of America
, vol.111
, pp. 1527-1532
-
-
Kusaba, T.1
Lalli, M.2
Kramann, R.3
Kobayashi, A.4
Humphreys, B.D.5
-
7
-
-
80052874703
-
Prodomains regulate the synthesis, extracellular localisation and activity of TGFbeta superfamily ligands
-
doi: 10.3109/08977194.2011.608666
-
Harrison, C. A., Al-Musawi, S. L. & Walton, K. L. Prodomains regulate the synthesis, extracellular localisation and activity of TGFbeta superfamily ligands. Growth Factors 29, 174-186, doi: 10.3109/08977194.2011.608666 (2011).
-
(2011)
Growth Factors
, vol.29
, pp. 174-186
-
-
Harrison, C.A.1
Al-Musawi, S.L.2
Walton, K.L.3
-
8
-
-
44449128120
-
In vivo functions of the proprotein convertase PC5/6 during mouse development: Gdf11 is a likely substrate
-
doi: 10.1073/pnas.0709428105
-
Essalmani, R. et al. In vivo functions of the proprotein convertase PC5/6 during mouse development: Gdf11 is a likely substrate. Proceedings of the National Academy of Sciences of the United States of America 105, 5750-5755, doi: 10.1073/pnas.0709428105 (2008).
-
(2008)
Proceedings of the National Academy of Sciences of the United States of America
, vol.105
, pp. 5750-5755
-
-
Essalmani, R.1
-
9
-
-
21744434744
-
GDF11 forms a bone morphogenetic protein 1-activated latent complex that can modulate nerve growth factor-induced differentiation of PC12 cells
-
doi: 10.1128/ mcb.25.14.5846-5858.2005
-
Ge, G., Hopkins, D. R., Ho, W. B. & Greenspan, D. S. GDF11 forms a bone morphogenetic protein 1-activated latent complex that can modulate nerve growth factor-induced differentiation of PC12 cells. Molecular and cellular biology 25, 5846-5858, doi: 10.1128/ mcb.25.14.5846-5858.2005 (2005).
-
(2005)
Molecular and Cellular Biology
, vol.25
, pp. 5846-5858
-
-
Ge, G.1
Hopkins, D.R.2
Ho, W.B.3
Greenspan, D.S.4
-
10
-
-
84877687210
-
Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy
-
doi: 10.1016/j.cell.2013.04.015
-
Loffredo, F. S. et al. Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy. Cell 153, 828-839, doi: 10.1016/j.cell.2013.04.015 (2013).
-
(2013)
Cell
, vol.153
, pp. 828-839
-
-
Loffredo, F.S.1
-
11
-
-
84900323323
-
Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle
-
doi: 10.1126/science.1251152
-
Sinha, M. et al. Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle. Science 344, 649-652, doi: 10.1126/science.1251152 (2014).
-
(2014)
Science
, vol.344
, pp. 649-652
-
-
Sinha, M.1
-
12
-
-
84937516271
-
GDF11 Increases with Age and Inhibits Skeletal Muscle Regeneration
-
doi: 10.1016/j.cmet.2015.05.010
-
Egerman, M. A. et al. GDF11 Increases with Age and Inhibits Skeletal Muscle Regeneration. Cell metabolism 22, 164-174, doi: 10.1016/j.cmet.2015.05.010 (2015).
-
(2015)
Cell Metabolism
, vol.22
, pp. 164-174
-
-
Egerman, M.A.1
-
13
-
-
84946492396
-
GDF11 does not rescue aging-related pathological hypertrophy
-
doi: 10.1161/ CIRCRESAHA.115.307527
-
Smith, S. C. et al. GDF11 Does Not Rescue Aging-Related Pathological Hypertrophy. Circulation research, doi: 10.1161/ CIRCRESAHA.115.307527 (2015).
-
(2015)
Circulation Research
-
-
Smith, S.C.1
-
14
-
-
84955194688
-
Association of growth differentiation factor 11/8, putative anti-ageing factor, with cardiovascular outcomes and overall mortality in humans: Analysis of the Heart and Soul and HUNT3 cohorts
-
doi: 10.1093/eurheartj/ ehv385
-
Olson, K. A. et al. Association of growth differentiation factor 11/8, putative anti-ageing factor, with cardiovascular outcomes and overall mortality in humans: analysis of the Heart and Soul and HUNT3 cohorts. European heart journal, doi: 10.1093/eurheartj/ ehv385 (2015).
-
(2015)
European Heart Journal
-
-
Olson, K.A.1
-
15
-
-
0037447954
-
Regulation of metanephric kidney development by growth/differentiation factor 11
-
Esquela, A. F. & Lee, S. J. Regulation of metanephric kidney development by growth/differentiation factor 11. Dev Biol 257, 356-370 (2003).
-
(2003)
Dev Biol
, vol.257
, pp. 356-370
-
-
Esquela, A.F.1
Lee, S.J.2
-
17
-
-
84932097650
-
Renal ischaemia reperfusion injury: A mouse model of injury and regeneration
-
doi: 10.3791/51816
-
Hesketh, E. E. et al. Renal ischaemia reperfusion injury: a mouse model of injury and regeneration. Journal of visualized experiments: JoVE, doi: 10.3791/51816 (2014).
-
(2014)
Journal of Visualized Experiments: JoVE
-
-
Hesketh, E.E.1
-
18
-
-
84954533392
-
Circulating growth differentiation factor 11/8 levels decline with age
-
doi: 10.1161/ circresaha.115.307521
-
Poggioli, T. et al. Circulating Growth Differentiation Factor 11/8 Levels Decline with Age. Circulation research, doi: 10.1161/ circresaha.115.307521 (2015).
-
(2015)
Circulation Research
-
-
Poggioli, T.1
-
19
-
-
84946029106
-
Reduced circulating GDF11 is unlikely responsible for age-dependent changes in Mouse Heart, Muscle, and Brain
-
en20151628 doi: 10.1210/en.2015-1628
-
Rodgers, B. D. & Eldridge, J. A. Reduced Circulating GDF11 Is Unlikely Responsible for Age-dependent Changes in Mouse Heart, Muscle, and Brain. Endocrinology, en20151628, doi: 10.1210/en.2015-1628 (2015).
-
(2015)
Endocrinology
-
-
Rodgers, B.D.1
Eldridge, J.A.2
-
20
-
-
84955264169
-
Evaluation of growth differentiation factor 11 (GDF11) levels in dogs with chronic mitral valve insufficiency
-
Ahn, S. T., Suh, S. I., Moon, H. & Hyun, C. Evaluation of growth differentiation factor 11 (GDF11) levels in dogs with chronic mitral valve insufficiency. Canadian journal of veterinary research= Revue canadienne de recherche veterinaire 80, 90-92 (2016).
-
(2016)
Canadian Journal of Veterinary Research= Revue Canadienne de Recherche Veterinaire
, vol.80
, pp. 90-92
-
-
Ahn, S.T.1
Suh, S.I.2
Moon, H.3
Hyun, C.4
-
21
-
-
84975476185
-
Is growth differentiation factor 11 a realistic therapeutic for aging-dependent muscle defects?
-
doi: 10.1161/circresaha.116.307962
-
Harper, S. C. et al. Is Growth Differentiation Factor 11 a Realistic Therapeutic for Aging-Dependent Muscle Defects? Circulation research 118, 1143-1150, doi: 10.1161/circresaha.116.307962 (2016).
-
(2016)
Circulation Research
, vol.118
, pp. 1143-1150
-
-
Harper, S.C.1
-
22
-
-
85007405935
-
Biochemistry and biology of GDF11 and myostatin: Similarities, differences, and questions for future investigation
-
doi: 10.1161/circresaha.116.308391
-
Walker, R. G. et al. Biochemistry and Biology of GDF11 and Myostatin: Similarities, Differences, and Questions for Future Investigation. Circulation research 118, 1125-1142, doi: 10.1161/circresaha.116.308391 (2016).
-
(2016)
Circulation Research
, vol.118
, pp. 1125-1142
-
-
Walker, R.G.1
-
23
-
-
85014671496
-
Circulating concentrations of growth differentiation factor 11 are heritable and correlate with life span
-
doi: 10.1093/gerona/glv308
-
Zhou, Y. et al. Circulating Concentrations of Growth Differentiation Factor 11 Are Heritable and Correlate With Life Span. The journals of gerontology. Series A, Biological sciences and medical sciences, doi: 10.1093/gerona/glv308 (2016).
-
(2016)
The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences
-
-
Zhou, Y.1
-
24
-
-
84975483043
-
Quantification of GDF11 and myostatin in human aging and cardiovascular disease
-
doi: 10.1016/j.cmet.2016.05.023
-
Schafer, M. J. et al. Quantification of GDF11 and Myostatin in Human Aging and Cardiovascular Disease. Cell metabolism 23, 1207-1215, doi: 10.1016/j.cmet.2016.05.023 (2016).
-
(2016)
Cell Metabolism
, vol.23
, pp. 1207-1215
-
-
Schafer, M.J.1
-
25
-
-
39749172401
-
Intrinsic epithelial cells repair the kidney after injury
-
doi: 10.1016/j.stem.2008.01.014
-
Humphreys, B. D. et al. Intrinsic epithelial cells repair the kidney after injury. Cell stem cell 2, 284-291, doi: 10.1016/j. stem.2008.01.014 (2008).
-
(2008)
Cell Stem Cell
, vol.2
, pp. 284-291
-
-
Humphreys, B.D.1
-
26
-
-
84896722388
-
Kidney regeneration: Common themes from the embryo to the adult
-
doi: 10.1007/s00467-013-2597-2
-
Cirio, M. C., de Groh, E. D., de Caestecker, M. P., Davidson, A. J. & Hukriede, N. A. Kidney regeneration: common themes from the embryo to the adult. Pediatric nephrology (Berlin, Germany) 29, 553-564, doi: 10.1007/s00467-013-2597-2 (2014).
-
(2014)
Pediatric Nephrology (Berlin, Germany)
, vol.29
, pp. 553-564
-
-
Cirio, M.C.1
De Groh, E.D.2
De Caestecker, M.P.3
Davidson, A.J.4
Hukriede, N.A.5
-
27
-
-
84866742560
-
TGFbeta signalling in context
-
doi: 10.1038/nrm3434
-
Massague, J. TGFbeta signalling in context. Nature reviews. Molecular cell biology 13, 616-630, doi: 10.1038/nrm3434 (2012).
-
(2012)
Nature Reviews. Molecular Cell Biology
, vol.13
, pp. 616-630
-
-
Massague, J.1
-
28
-
-
77956548300
-
Smad2 protects against TGF-beta/Smad3-mediated renal fibrosis
-
doi: 10.1681/asn.2009121244
-
Meng, X. M. et al. Smad2 protects against TGF-beta/Smad3-mediated renal fibrosis. Journal of the American Society of Nephrology: JASN 21, 1477-1487, doi: 10.1681/asn.2009121244 (2010).
-
(2010)
Journal of the American Society of Nephrology: JASN
, vol.21
, pp. 1477-1487
-
-
Meng, X.M.1
-
29
-
-
84858008133
-
Activin-like kinase 3 is important for kidney regeneration and reversal of fibrosis
-
doi: 10.1038/nm.2629
-
Sugimoto, H. et al. Activin-like kinase 3 is important for kidney regeneration and reversal of fibrosis. Nature medicine 18, 396-404, doi: 10.1038/nm.2629 (2012).
-
(2012)
Nature Medicine
, vol.18
, pp. 396-404
-
-
Sugimoto, H.1
-
30
-
-
84862787119
-
Deletion of the epidermal growth factor receptor in renal proximal tubule epithelial cells delays recovery from acute kidney injury
-
doi: 10.1038/ki.2012.43
-
Chen, J., Chen, J. K. & Harris, R. C. Deletion of the epidermal growth factor receptor in renal proximal tubule epithelial cells delays recovery from acute kidney injury. Kidney international 82, 45-52, doi: 10.1038/ki.2012.43 (2012).
-
(2012)
Kidney International
, vol.82
, pp. 45-52
-
-
Chen, J.1
Chen, J.K.2
Harris, R.C.3
-
31
-
-
84882807441
-
Activation of ERK accelerates repair of renal tubular epithelial cells, whereas it inhibits progression of fibrosis following ischemia/reperfusion injury
-
doi: 10.1016/j.bbadis.2013.07.001
-
Jang, H. S. et al. Activation of ERK accelerates repair of renal tubular epithelial cells, whereas it inhibits progression of fibrosis following ischemia/reperfusion injury. Biochimica et biophysica acta 1832, 1998-2008, doi: 10.1016/j.bbadis.2013.07.001 (2013).
-
(2013)
Biochimica et Biophysica Acta
, vol.1832
, pp. 1998-2008
-
-
Jang, H.S.1
-
32
-
-
33747039211
-
STAT3 attenuates EGFR-mediated ERK activation and cell survival during oxidant stress in mouse proximal tubular cells
-
doi: 10.1038/sj.ki.5001604
-
Arany, I., Megyesi, J. K., Nelkin, B. D. & Safirstein, R. L. STAT3 attenuates EGFR-mediated ERK activation and cell survival during oxidant stress in mouse proximal tubular cells. Kidney international 70, 669-674, doi: 10.1038/sj.ki.5001604 (2006).
-
(2006)
Kidney International
, vol.70
, pp. 669-674
-
-
Arany, I.1
Megyesi, J.K.2
Nelkin, B.D.3
Safirstein, R.L.4
-
33
-
-
84929377156
-
Conditional knockout of proximal tubule mitofusin 2 accelerates recovery and improves survival after renal ischemia
-
doi: 10.1681/asn.2014010126
-
Gall, J. M. et al. Conditional knockout of proximal tubule mitofusin 2 accelerates recovery and improves survival after renal ischemia. Journal of the American Society of Nephrology: JASN 26, 1092-1102, doi: 10.1681/asn.2014010126 (2015).
-
(2015)
Journal of the American Society of Nephrology: JASN
, vol.26
, pp. 1092-1102
-
-
Gall, J.M.1
-
34
-
-
4143146568
-
The Ras/Raf/ERK signalling pathway drives Schwann cell dedifferentiation
-
doi: 10.1038/sj.emboj.7600309
-
Harrisingh, M. C. et al. The Ras/Raf/ERK signalling pathway drives Schwann cell dedifferentiation. The EMBO journal 23, 3061-3071, doi: 10.1038/sj.emboj.7600309 (2004).
-
(2004)
The EMBO Journal
, vol.23
, pp. 3061-3071
-
-
Harrisingh, M.C.1
-
35
-
-
84874639676
-
Direct reprogramming by oncogenic Ras and Myc
-
doi: 10.1073/pnas.1219592110
-
Ischenko, I., Zhi, J., Moll, U. M., Nemajerova, A. & Petrenko, O. Direct reprogramming by oncogenic Ras and Myc. Proceedings of the National Academy of Sciences of the United States of America 110, 3937-3942, doi: 10.1073/pnas.1219592110 (2013).
-
(2013)
Proceedings of the National Academy of Sciences of the United States of America
, vol.110
, pp. 3937-3942
-
-
Ischenko, I.1
Zhi, J.2
Moll, U.M.3
Nemajerova, A.4
Petrenko, O.5
-
36
-
-
38449120316
-
Clinical significance of growth differentiation factor 11 in colorectal cancer
-
Yokoe, T. et al. Clinical significance of growth differentiation factor 11 in colorectal cancer. International journal of oncology 31, 1097-1101 (2007).
-
(2007)
International Journal of Oncology
, vol.31
, pp. 1097-1101
-
-
Yokoe, T.1
-
37
-
-
84898042418
-
Transforming growth factor-beta superfamily ligand trap ACE-536 corrects anemia by promoting late-stage erythropoiesis
-
doi: 10.1038/nm.3512
-
Suragani, R. N. et al. Transforming growth factor-beta superfamily ligand trap ACE-536 corrects anemia by promoting late-stage erythropoiesis. Nature medicine 20, 408-414, doi: 10.1038/nm.3512 (2014).
-
(2014)
Nature Medicine
, vol.20
, pp. 408-414
-
-
Suragani, R.N.1
-
38
-
-
84898049056
-
An activin receptor IIA ligand trap corrects ineffective erythropoiesis in beta-thalassemia
-
doi: 10.1038/nm.3468
-
Dussiot, M. et al. An activin receptor IIA ligand trap corrects ineffective erythropoiesis in beta-thalassemia. Nature medicine 20, 398-407, doi: 10.1038/nm.3468 (2014).
-
(2014)
Nature Medicine
, vol.20
, pp. 398-407
-
-
Dussiot, M.1
|