-
1
-
-
84862818865
-
2−sensing properties of Ti-added nonstoichiometric tungsten oxide nanowires
-
2−sensing properties of Ti-added nonstoichiometric tungsten oxide nanowires. Sens. Actuators B: Chem. 162 (2012), 244–250.
-
(2012)
Sens. Actuators B: Chem.
, vol.162
, pp. 244-250
-
-
Qin, Y.1
Sun, X.2
Li, X.3
Hu, M.4
-
2
-
-
84861193008
-
A breakthrough in gas diagnosis with a temperature-modulated generic metal oxide gas sensor
-
[2] Hossein-Babaei, F., Amini, A., A breakthrough in gas diagnosis with a temperature-modulated generic metal oxide gas sensor. Sens. Actuators B: Chem. 166–167 (2012), 419–425.
-
(2012)
Sens. Actuators B: Chem.
, vol.166-167
, pp. 419-425
-
-
Hossein-Babaei, F.1
Amini, A.2
-
3
-
-
84858700315
-
3 sensing properties enhanced by UV illumination: an evidence of surface effect
-
3 sensing properties enhanced by UV illumination: an evidence of surface effect. Sens. Actuators B: Chem. 165 (2012), 59–61.
-
(2012)
Sens. Actuators B: Chem.
, vol.165
, pp. 59-61
-
-
Giberti, A.1
Malagù, C.2
Guidi, V.3
-
4
-
-
0346243670
-
Solid state gas sensors: state of the art and future activities
-
[4] Capone, S., Forleo, A., Francioso, L., Rella, R., Siciliano, P., Spadavecchia, J., Presicce, D.S., Taurino, A.M., Solid state gas sensors: state of the art and future activities. J. Optoelectron. Adv. Mater. 5 (2003), 1335–1348.
-
(2003)
J. Optoelectron. Adv. Mater.
, vol.5
, pp. 1335-1348
-
-
Capone, S.1
Forleo, A.2
Francioso, L.3
Rella, R.4
Siciliano, P.5
Spadavecchia, J.6
Presicce, D.S.7
Taurino, A.M.8
-
5
-
-
33846267688
-
Metal oxide-based gas sensor research: how to?
-
[5] Barsan, N., Koziej, D., Weimar, U., Metal oxide-based gas sensor research: how to?. Sens. Actuators B: Chem. 121 (2007), 18–35.
-
(2007)
Sens. Actuators B: Chem.
, vol.121
, pp. 18-35
-
-
Barsan, N.1
Koziej, D.2
Weimar, U.3
-
6
-
-
4344560262
-
Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures
-
[6] Kolmakov, A., Moskovits, M., Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures. Annu. Rev. Mater. Res. 34 (2004), 151–180.
-
(2004)
Annu. Rev. Mater. Res.
, vol.34
, pp. 151-180
-
-
Kolmakov, A.1
Moskovits, M.2
-
7
-
-
33746344730
-
Graphene-based composite materials
-
[7] Stankovich, S., Dikin, D., Dommett, G., Kohlhaas, K., Zimney, E., Stach, E., Piner, R., Nguyen, S., Ruoff, R., Graphene-based composite materials. Nature 442 (2006), 282–286.
-
(2006)
Nature
, vol.442
, pp. 282-286
-
-
Stankovich, S.1
Dikin, D.2
Dommett, G.3
Kohlhaas, K.4
Zimney, E.5
Stach, E.6
Piner, R.7
Nguyen, S.8
Ruoff, R.9
-
8
-
-
84858331964
-
Laser scribing of high-performance and flexible graphene-based electrochemical capacitors
-
[8] El-Kady, M.F., Strong, V., Dubin, S., Kaner, R.B., Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335 (2012), 1326–1330.
-
(2012)
Science
, vol.335
, pp. 1326-1330
-
-
El-Kady, M.F.1
Strong, V.2
Dubin, S.3
Kaner, R.B.4
-
9
-
-
84864599198
-
Graphene-based materials for energy conversion
-
[9] Sahoo, N.G., Pan, Y., Li, L., Chan, S.H., Graphene-based materials for energy conversion. Adv. Mater. 24 (2012), 4203–4210.
-
(2012)
Adv. Mater.
, vol.24
, pp. 4203-4210
-
-
Sahoo, N.G.1
Pan, Y.2
Li, L.3
Chan, S.H.4
-
10
-
-
84897622180
-
Ab initio study of Pd-decorated single-walled carbon nanotube with C-vacancy as CO sensor
-
[10] Yoosefian, M., Barzgari, Z., Yoosefian, J., Ab initio study of Pd-decorated single-walled carbon nanotube with C-vacancy as CO sensor. Struct. Chem. 25 (2014), 9–19.
-
(2014)
Struct. Chem.
, vol.25
, pp. 9-19
-
-
Yoosefian, M.1
Barzgari, Z.2
Yoosefian, J.3
-
11
-
-
80052329812
-
Metal (Pd, Pt)-decorated carbon nanotubes for CO and NO sensing
-
[11] Li, K., Wang, W., Cao, D., Metal (Pd, Pt)-decorated carbon nanotubes for CO and NO sensing. Sens. Actuators B: Chem. 159 (2011), 171–177.
-
(2011)
Sens. Actuators B: Chem.
, vol.159
, pp. 171-177
-
-
Li, K.1
Wang, W.2
Cao, D.3
-
12
-
-
34848854754
-
Room temperature gas sensing properties of SnO2/multiwall-carbon-nanotube composite nanofibers
-
[12] Yang, A., Tao, X., Wang, R., Lee, S., Surya, C., Room temperature gas sensing properties of SnO2/multiwall-carbon-nanotube composite nanofibers. Appl. Phys. Lett., 91, 2007, 133110.
-
(2007)
Appl. Phys. Lett.
, vol.91
, pp. 133110
-
-
Yang, A.1
Tao, X.2
Wang, R.3
Lee, S.4
Surya, C.5
-
13
-
-
79959799194
-
Gas sensing with Au-decorated carbon nanotubes
-
[13] Zanolli, Z., Leghrib, R., Felten, A., Pireaux, J.-J., Llobet, E., Charlier, J.-C., Gas sensing with Au-decorated carbon nanotubes. ACS Nano 5 (2011), 4592–4599.
-
(2011)
ACS Nano
, vol.5
, pp. 4592-4599
-
-
Zanolli, Z.1
Leghrib, R.2
Felten, A.3
Pireaux, J.-J.4
Llobet, E.5
Charlier, J.-C.6
-
14
-
-
33751295400
-
Gas sensor array based on metal-decorated carbon nanotubes
-
[14] Star, A., Joshi, V., Skarupo, S., Thomas, D., Gabriel, J.-C.P., Gas sensor array based on metal-decorated carbon nanotubes. J. Phys. Chem. B 110 (2006), 21014–21020.
-
(2006)
J. Phys. Chem. B
, vol.110
, pp. 21014-21020
-
-
Star, A.1
Joshi, V.2
Skarupo, S.3
Thomas, D.4
Gabriel, J.-C.P.5
-
15
-
-
0034247521
-
Electronic properties of oxidized carbon nanotubes
-
[15] Jhi, S.H., Louie, S.G., Cohen, M.L., Electronic properties of oxidized carbon nanotubes. Phys. Rev. Lett. 85 (2000), 1710–1713.
-
(2000)
Phys. Rev. Lett.
, vol.85
, pp. 1710-1713
-
-
Jhi, S.H.1
Louie, S.G.2
Cohen, M.L.3
-
17
-
-
84923252775
-
The hybrid of Pd and SWCNT (Pd loaded on SWCNT) as an efficient sensor for the formaldehyde molecule detection: a DFT study
-
[17] Yoosefian, M., Raissi, H., Mola, A., The hybrid of Pd and SWCNT (Pd loaded on SWCNT) as an efficient sensor for the formaldehyde molecule detection: a DFT study. Sens. Actuators B: Chem. 212 (2015), 55–62.
-
(2015)
Sens. Actuators B: Chem.
, vol.212
, pp. 55-62
-
-
Yoosefian, M.1
Raissi, H.2
Mola, A.3
-
18
-
-
67649225738
-
Graphene: status and prospects
-
[18] Geim, A., Graphene: status and prospects. Science, 324, 2009, 1530.
-
(2009)
Science
, vol.324
, pp. 1530
-
-
Geim, A.1
-
19
-
-
79953657081
-
Graphene based new energy materials
-
[19] Sun, Y., Wu, Q., Shi, G., Graphene based new energy materials. Energy Environ. Sci. 4 (2011), 1113–1132.
-
(2011)
Energy Environ. Sci.
, vol.4
, pp. 1113-1132
-
-
Sun, Y.1
Wu, Q.2
Shi, G.3
-
20
-
-
47749150628
-
Measurement of the elastic properties and intrinsic strength of monolayer graphene
-
[20] Lee, C., Wei, X., Kysar, J.W., Hone, J., Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321 (2008), 385–388.
-
(2008)
Science
, vol.321
, pp. 385-388
-
-
Lee, C.1
Wei, X.2
Kysar, J.W.3
Hone, J.4
-
21
-
-
77949372832
-
A graphene platform for sensing biomolecules
-
[21] Lu, C.H., Yang, H.H., Zhu, C.L., Chen, X., Chen, G.N., A graphene platform for sensing biomolecules. Angew. Chem. 121 (2009), 4879–4881.
-
(2009)
Angew. Chem.
, vol.121
, pp. 4879-4881
-
-
Lu, C.H.1
Yang, H.H.2
Zhu, C.L.3
Chen, X.4
Chen, G.N.5
-
22
-
-
83455244532
-
Graphene-based materials for catalysis
-
[22] Machado, B.F., Serp, P., Graphene-based materials for catalysis. Catal. Sci. Technol. 2 (2012), 54–75.
-
(2012)
Catal. Sci. Technol.
, vol.2
, pp. 54-75
-
-
Machado, B.F.1
Serp, P.2
-
23
-
-
84860793320
-
Graphene as a new carbon support for low-temperature fuel cell catalysts
-
[23] Antolini, E., Graphene as a new carbon support for low-temperature fuel cell catalysts. Appl. Catal. B: Environ. 123–124 (2012), 52–68.
-
(2012)
Appl. Catal. B: Environ.
, vol.123-124
, pp. 52-68
-
-
Antolini, E.1
-
24
-
-
81255129158
-
Graphene and its derivative-based sensing materials for analytical devices
-
[24] Guo, S., Dong, S., Graphene and its derivative-based sensing materials for analytical devices. J. Mater. Chem. 21 (2011), 18503–18516.
-
(2011)
J. Mater. Chem.
, vol.21
, pp. 18503-18516
-
-
Guo, S.1
Dong, S.2
-
25
-
-
34548388792
-
Detection of individual gas molecules adsorbed on graphene
-
[25] Schedin, F., Geim, A., Morozov, S., Hill, E., Blake, P., Katsnelson, M., Novoselov, K., Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6 (2007), 652–655.
-
(2007)
Nat. Mater.
, vol.6
, pp. 652-655
-
-
Schedin, F.1
Geim, A.2
Morozov, S.3
Hill, E.4
Blake, P.5
Katsnelson, M.6
Novoselov, K.7
-
26
-
-
84863607651
-
Graphene-based chemical sensors
-
[26] Yavari, F., Koratkar, N., Graphene-based chemical sensors. J. Phys. Chem. Lett. 3 (2012), 1746–1753.
-
(2012)
J. Phys. Chem. Lett.
, vol.3
, pp. 1746-1753
-
-
Yavari, F.1
Koratkar, N.2
-
28
-
-
79960834406
-
An ab initio study on gas sensing properties of graphene and Si-doped graphene
-
[28] Zou, Y., Li, F., Zhu, Z., Zhao, M., Xu, X., Su, X., An ab initio study on gas sensing properties of graphene and Si-doped graphene. Eur. Phys. J. B 81 (2011), 475–479.
-
(2011)
Eur. Phys. J. B
, vol.81
, pp. 475-479
-
-
Zou, Y.1
Li, F.2
Zhu, Z.3
Zhao, M.4
Xu, X.5
Su, X.6
-
29
-
-
84866127839
-
2 substrate and van der Waals forces: a first principles study
-
2 substrate and van der Waals forces: a first principles study. Chem. Phys. 405 (2012), 161–166.
-
(2012)
Chem. Phys.
, vol.405
, pp. 161-166
-
-
Dai, J.1
Yuan, J.2
-
30
-
-
41549123976
-
2, and NO on graphene: a first-principles study
-
2, and NO on graphene: a first-principles study. Phys. Rev. B, 77, 2008, 125416.
-
(2008)
Phys. Rev. B
, vol.77
, pp. 125416
-
-
Leenaerts, O.1
Partoens, B.2
Peeters, F.3
-
31
-
-
77956214550
-
DNA-decorated graphene chemical sensors
-
[31] Lu, Y., Goldsmith, B.R., Kybert, N.J., Johnson, A.T.C., DNA-decorated graphene chemical sensors. Appl. Phys. Lett., 97, 2010, 083103.
-
(2010)
Appl. Phys. Lett.
, vol.97
, pp. 083103
-
-
Lu, Y.1
Goldsmith, B.R.2
Kybert, N.J.3
Johnson, A.T.C.4
-
32
-
-
38749096585
-
Molecular doping of graphene
-
[32] Wehling, T., Novoselov, K., Morozov, S., Vdovin, E., Katsnelson, M., Geim, A., Lichtenstein, A., Molecular doping of graphene. Nano Lett. 8 (2008), 173–177.
-
(2008)
Nano Lett.
, vol.8
, pp. 173-177
-
-
Wehling, T.1
Novoselov, K.2
Morozov, S.3
Vdovin, E.4
Katsnelson, M.5
Geim, A.6
Lichtenstein, A.7
-
33
-
-
84871936996
-
Response of Si- and Al-doped graphenes toward HCN: a computational study
-
[33] Rastegar, S.F., Peyghan, A.A., Hadipour, N.L., Response of Si- and Al-doped graphenes toward HCN: a computational study. Appl. Surf. Sci. 265 (2013), 412–417.
-
(2013)
Appl. Surf. Sci.
, vol.265
, pp. 412-417
-
-
Rastegar, S.F.1
Peyghan, A.A.2
Hadipour, N.L.3
-
34
-
-
34548266633
-
Surface transfer p-type doping of epitaxial graphene
-
[34] Chen, W., Chen, S., Qi, D.C., Gao, X.Y., Wee, A.T.S., Surface transfer p-type doping of epitaxial graphene. J. Am. Chem. Soc. 129 (2007), 10418–10422.
-
(2007)
J. Am. Chem. Soc.
, vol.129
, pp. 10418-10422
-
-
Chen, W.1
Chen, S.2
Qi, D.C.3
Gao, X.Y.4
Wee, A.T.S.5
-
35
-
-
50249122647
-
Metal to insulator transition in epitaxial graphene induced by molecular doping
-
[35] Zhou, S., Siegel, D., Fedorov, A., Lanzara, A., Metal to insulator transition in epitaxial graphene induced by molecular doping. Phys. Rev. Lett., 101, 2008, 86402.
-
(2008)
Phys. Rev. Lett.
, vol.101
, pp. 86402
-
-
Zhou, S.1
Siegel, D.2
Fedorov, A.3
Lanzara, A.4
-
36
-
-
67650683712
-
Tuning the electronic structure of graphene by molecular charge transfer: a computational study
-
[36] Manna, A.K., Pati, S.K., Tuning the electronic structure of graphene by molecular charge transfer: a computational study. Chem. Asian J. 4 (2009), 855–860.
-
(2009)
Chem. Asian J.
, vol.4
, pp. 855-860
-
-
Manna, A.K.1
Pati, S.K.2
-
37
-
-
84878148759
-
Graphene-related nanomaterials: tuning properties by functionalization
-
[37] Tang, Q., Zhou, Z., Chen, Z., Graphene-related nanomaterials: tuning properties by functionalization. Nanoscale 5 (2013), 4541–4583.
-
(2013)
Nanoscale
, vol.5
, pp. 4541-4583
-
-
Tang, Q.1
Zhou, Z.2
Chen, Z.3
-
38
-
-
67649790751
-
Adsorption of hydrogen on boron-doped graphene: a first-principles prediction
-
[38] Zhou, Y., Zu, X.T., Gao, F., Nie, J., Xiao, H., Adsorption of hydrogen on boron-doped graphene: a first-principles prediction. J. Appl. Phys., 105, 2009, 014309.
-
(2009)
J. Appl. Phys.
, vol.105
, pp. 014309
-
-
Zhou, Y.1
Zu, X.T.2
Gao, F.3
Nie, J.4
Xiao, H.5
-
39
-
-
84855459818
-
Formation, stabilities, and electronic properties of nitrogen defects in graphene
-
[39] Fujimoto, Y., Saito, S., Formation, stabilities, and electronic properties of nitrogen defects in graphene. Phys. Rev. B, 84, 2011, 245446.
-
(2011)
Phys. Rev. B
, vol.84
, pp. 245446
-
-
Fujimoto, Y.1
Saito, S.2
-
40
-
-
71949129631
-
Gas adsorption on graphene doped with B N, Al, and S: a theoretical study
-
[40] Dai, J., Yuan, J., Giannozzi, P., Gas adsorption on graphene doped with B N, Al, and S: a theoretical study. Appl. Phys. Lett., 95, 2009, 232105.
-
(2009)
Appl. Phys. Lett.
, vol.95
, pp. 232105
-
-
Dai, J.1
Yuan, J.2
Giannozzi, P.3
-
41
-
-
77955374079
-
Adsorption of molecular oxygen on doped graphene: atomic, electronic, and magnetic properties
-
[41] Dai, J., Yuan, J., Adsorption of molecular oxygen on doped graphene: atomic, electronic, and magnetic properties. Phys. Rev. B, 81, 2010, 165414.
-
(2010)
Phys. Rev. B
, vol.81
, pp. 165414
-
-
Dai, J.1
Yuan, J.2
-
42
-
-
84886091095
-
Density functional theory calculations of hydrogen adsorption on Ti-, Zn- Zr-, Al-, and N-doped and intrinsic graphene sheets
-
[42] Zhang, H.P., Luo, X.G., Lin, X.Y., Lu, X., Leng, Y., Density functional theory calculations of hydrogen adsorption on Ti-, Zn- Zr-, Al-, and N-doped and intrinsic graphene sheets. Int. J. Hydrogen Energy 38 (2013), 14269–14275.
-
(2013)
Int. J. Hydrogen Energy
, vol.38
, pp. 14269-14275
-
-
Zhang, H.P.1
Luo, X.G.2
Lin, X.Y.3
Lu, X.4
Leng, Y.5
-
43
-
-
65549101628
-
Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study
-
[43] Zhang, Y.-H., Chen, Y.-B., Zhou, K.-G., Liu, C.-H., Zeng, J., Zhang, H.-L., Peng, Y., Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study. Nanotechnology, 20, 2009, 185504.
-
(2009)
Nanotechnology
, vol.20
, pp. 185504
-
-
Zhang, Y.-H.1
Chen, Y.-B.2
Zhou, K.-G.3
Liu, C.-H.4
Zeng, J.5
Zhang, H.-L.6
Peng, Y.7
-
44
-
-
84901695280
-
Theoretical study on the Si-doped graphene as an efficient metal-free catalyst for CO oxidation
-
[44] Tang, Y., Liu, Z., Dai, X., Yang, Z., Chen, W., Ma, D., Lu, Z., Theoretical study on the Si-doped graphene as an efficient metal-free catalyst for CO oxidation. Appl. Surf. Sci. 308 (2014), 402–407.
-
(2014)
Appl. Surf. Sci.
, vol.308
, pp. 402-407
-
-
Tang, Y.1
Liu, Z.2
Dai, X.3
Yang, Z.4
Chen, W.5
Ma, D.6
Lu, Z.7
-
45
-
-
77952364783
-
Modulating the electronic and magnetic structures of P-doped graphene by molecule doping
-
[45] Dai, J., Yuan, J., Modulating the electronic and magnetic structures of P-doped graphene by molecule doping. J. Phys.: Condens. Matter, 22, 2010, 225501.
-
(2010)
J. Phys.: Condens. Matter
, vol.22
, pp. 225501
-
-
Dai, J.1
Yuan, J.2
-
48
-
-
84928925275
-
Theoretical study on the removal of adsorbed sulfur on Pt anchored graphene surfaces
-
[48] Tang, Y., Liu, Z., Chen, W., Shen, Z., Li, C., Dai, X., Theoretical study on the removal of adsorbed sulfur on Pt anchored graphene surfaces. Int. J. Hydrogen Energy 40 (2015), 6942–6949.
-
(2015)
Int. J. Hydrogen Energy
, vol.40
, pp. 6942-6949
-
-
Tang, Y.1
Liu, Z.2
Chen, W.3
Shen, Z.4
Li, C.5
Dai, X.6
-
49
-
-
84912531454
-
Transition metal atom embedded graphene for capturing CO: a first-principles study
-
[49] Wang, L., Luo, Q., Zhang, W., Yang, J., Transition metal atom embedded graphene for capturing CO: a first-principles study. Int. J. Hydrogen Energy 39 (2014), 20190–20196.
-
(2014)
Int. J. Hydrogen Energy
, vol.39
, pp. 20190-20196
-
-
Wang, L.1
Luo, Q.2
Zhang, W.3
Yang, J.4
-
51
-
-
67650742468
-
Destruction of graphene by metal adatoms
-
[51] Boukhvalov, D., Katsnelson, M., Destruction of graphene by metal adatoms. Appl. Phys. Lett., 95, 2009, 023109.
-
(2009)
Appl. Phys. Lett.
, vol.95
, pp. 023109
-
-
Boukhvalov, D.1
Katsnelson, M.2
-
52
-
-
64049105752
-
Embedding transition-metal atoms in graphene: structure, bonding, and magnetism
-
[52] Krasheninnikov, A., Lehtinen, P., Foster, A., Pyykkö, P., Nieminen, R., Embedding transition-metal atoms in graphene: structure, bonding, and magnetism. Phys. Rev. Lett., 102, 2009, 126807.
-
(2009)
Phys. Rev. Lett.
, vol.102
, pp. 126807
-
-
Krasheninnikov, A.1
Lehtinen, P.2
Foster, A.3
Pyykkö, P.4
Nieminen, R.5
-
53
-
-
78149307962
-
Migration and localization of metal atoms on strained graphene
-
[53] Cretu, O., Krasheninnikov, A.V., Rodríguez-Manzo, J.A., Sun, L., Nieminen, R.M., Banhart, F., Migration and localization of metal atoms on strained graphene. Phys. Rev. Lett., 105, 2010, 196102.
-
(2010)
Phys. Rev. Lett.
, vol.105
, pp. 196102
-
-
Cretu, O.1
Krasheninnikov, A.V.2
Rodríguez-Manzo, J.A.3
Sun, L.4
Nieminen, R.M.5
Banhart, F.6
-
54
-
-
83755186495
-
Trapping of metal atoms in the defects on graphene
-
[54] Tang, Y.N., Yang, Z.X., Dai, X.Q., Trapping of metal atoms in the defects on graphene. J. Chem. Phys., 135, 2011, 224704.
-
(2011)
J. Chem. Phys.
, vol.135
, pp. 224704
-
-
Tang, Y.N.1
Yang, Z.X.2
Dai, X.Q.3
-
55
-
-
41849124219
-
Density functional calculation of transition metal adatom adsorption on graphene
-
[55] Mao, Y., Yuan, J., Zhong, J., Density functional calculation of transition metal adatom adsorption on graphene. J. Phys.: Condens. Matter, 20, 2008, 115209.
-
(2008)
J. Phys.: Condens. Matter
, vol.20
, pp. 115209
-
-
Mao, Y.1
Yuan, J.2
Zhong, J.3
-
56
-
-
84905843026
-
Graphene-based sensors: theoretical study
-
[56] Milowska, K.Z., Majewski, J.A., Graphene-based sensors: theoretical study. J. Phys. Chem. C 118 (2014), 17395–17401.
-
(2014)
J. Phys. Chem. C
, vol.118
, pp. 17395-17401
-
-
Milowska, K.Z.1
Majewski, J.A.2
-
57
-
-
84870865529
-
Graphene synthesis: relationship to applications
-
[57] Edwards, R.S., Coleman, K.S., Graphene synthesis: relationship to applications. Nanoscale 5 (2013), 38–51.
-
(2013)
Nanoscale
, vol.5
, pp. 38-51
-
-
Edwards, R.S.1
Coleman, K.S.2
-
58
-
-
77957327730
-
Graphene double-layer capacitor with ac line-filtering performance
-
[58] Miller, J.R., Outlaw, R., Holloway, B., Graphene double-layer capacitor with ac line-filtering performance. Science 329 (2010), 1637–1639.
-
(2010)
Science
, vol.329
, pp. 1637-1639
-
-
Miller, J.R.1
Outlaw, R.2
Holloway, B.3
-
59
-
-
84877888364
-
The electronic properties of bilayer graphene
-
[59] McCann, E., Koshino, M., The electronic properties of bilayer graphene. Rep. Prog. Phys., 76, 2013, 056503.
-
(2013)
Rep. Prog. Phys.
, vol.76
, pp. 056503
-
-
McCann, E.1
Koshino, M.2
-
60
-
-
84857226044
-
Electronic structures of an epitaxial graphene monolayer on SiC (0001) after metal intercalation (metal = Al Ag, Au, Pt, and Pd): a first-principles study
-
[60] Hsu, C.-H., Lin, W.-H., Ozolins, V., Chuang, F.-C., Electronic structures of an epitaxial graphene monolayer on SiC (0001) after metal intercalation (metal = Al Ag, Au, Pt, and Pd): a first-principles study. Appl. Phys. Lett., 100, 2012, 063115.
-
(2012)
Appl. Phys. Lett.
, vol.100
, pp. 063115
-
-
Hsu, C.-H.1
Lin, W.-H.2
Ozolins, V.3
Chuang, F.-C.4
-
61
-
-
77951548428
-
First-principles study of the doping effects in bilayer graphene
-
[61] Mao, Y., Stocks, G.M., Zhong, J., First-principles study of the doping effects in bilayer graphene. New J. Phys., 12, 2010, 033046.
-
(2010)
New J. Phys.
, vol.12
, pp. 033046
-
-
Mao, Y.1
Stocks, G.M.2
Zhong, J.3
-
62
-
-
84915820935
-
Experimental signature of bandgap opening in bilayer graphene at metal contacts
-
[62] Nouchi, R., Experimental signature of bandgap opening in bilayer graphene at metal contacts. Appl. Phys. Lett., 105, 2014, 223106.
-
(2014)
Appl. Phys. Lett.
, vol.105
, pp. 223106
-
-
Nouchi, R.1
-
63
-
-
84875134605
-
Structure and electronic properties of Au intercalated hexagonal-boron-nitride/graphene bilayer
-
[63] Mao, Y., Xie, Z., Yuan, J., Li, S., Wei, Z., Zhong, J., Structure and electronic properties of Au intercalated hexagonal-boron-nitride/graphene bilayer. Phys. E: Low-dimens. Syst. Nanostruct. 49 (2013), 111–116.
-
(2013)
Phys. E: Low-dimens. Syst. Nanostruct.
, vol.49
, pp. 111-116
-
-
Mao, Y.1
Xie, Z.2
Yuan, J.3
Li, S.4
Wei, Z.5
Zhong, J.6
-
64
-
-
42449136619
-
Structural, electronic and magnetic properties of manganese doping in the upper layer of bilayer graphene
-
[64] Mao, Y., Zhong, J., Structural, electronic and magnetic properties of manganese doping in the upper layer of bilayer graphene. Nanotechnology, 19, 2008, 205708.
-
(2008)
Nanotechnology
, vol.19
, pp. 205708
-
-
Mao, Y.1
Zhong, J.2
-
65
-
-
84890473770
-
Magnetism of an adatom on bilayer graphene and its control: a first-principles perspective
-
[65] Nafday, D., Saha-Dasgupta, T., Magnetism of an adatom on bilayer graphene and its control: a first-principles perspective. Phys. Rev. B, 88, 2013, 205422.
-
(2013)
Phys. Rev. B
, vol.88
, pp. 205422
-
-
Nafday, D.1
Saha-Dasgupta, T.2
-
66
-
-
84901281776
-
Interfacial properties of bilayer and trilayer graphene on metal substrates
-
[66] Zheng, J., Wang, Y., Wang, L., Quhe, R., Ni, Z., Mei, W.-N., Gao, Z., Yu, D., Shi, J., Lu, J., Interfacial properties of bilayer and trilayer graphene on metal substrates. Sci. Rep., 3, 2013, 2081.
-
(2013)
Sci. Rep.
, vol.3
, pp. 2081
-
-
Zheng, J.1
Wang, Y.2
Wang, L.3
Quhe, R.4
Ni, Z.5
Mei, W.-N.6
Gao, Z.7
Yu, D.8
Shi, J.9
Lu, J.10
-
67
-
-
84874413139
-
Graphene layers on Cu and Ni (111) surfaces in layer controlled graphene growth
-
[67] Wang, Q., Wei, L., Sullivan, M., Yang, S.-W., Chen, Y., Graphene layers on Cu and Ni (111) surfaces in layer controlled graphene growth. RSC Adv. 3 (2013), 3046–3053.
-
(2013)
RSC Adv.
, vol.3
, pp. 3046-3053
-
-
Wang, Q.1
Wei, L.2
Sullivan, M.3
Yang, S.-W.4
Chen, Y.5
-
68
-
-
84930959581
-
Quantum chemical molecular dynamics studies of bilayer graphene growth on Ni (111) surface
-
[68] Jiao, M., Li, K., Wang, Y., Wu, Z., Quantum chemical molecular dynamics studies of bilayer graphene growth on Ni (111) surface. J. Phys. Chem. C 119 (2015), 12643–12650.
-
(2015)
J. Phys. Chem. C
, vol.119
, pp. 12643-12650
-
-
Jiao, M.1
Li, K.2
Wang, Y.3
Wu, Z.4
-
69
-
-
84921059442
-
Atomistic mechanisms for bilayer growth of graphene on metal substrates
-
[69] Chen, W., Cui, P., Zhu, W., Kaxiras, E., Gao, Y., Zhang, Z., Atomistic mechanisms for bilayer growth of graphene on metal substrates. Phys. Rev. B, 91, 2015, 045408.
-
(2015)
Phys. Rev. B
, vol.91
, pp. 045408
-
-
Chen, W.1
Cui, P.2
Zhu, W.3
Kaxiras, E.4
Gao, Y.5
Zhang, Z.6
-
70
-
-
77955066779
-
Effect of cluster formation on graphene mobility
-
[70] McCreary, K., Pi, K., Swartz, A., Han, W., Bao, W., Lau, C., Guinea, F., Katsnelson, M., Kawakami, R., Effect of cluster formation on graphene mobility. Phys. Rev. B, 81, 2010, 115453.
-
(2010)
Phys. Rev. B
, vol.81
, pp. 115453
-
-
McCreary, K.1
Pi, K.2
Swartz, A.3
Han, W.4
Bao, W.5
Lau, C.6
Guinea, F.7
Katsnelson, M.8
Kawakami, R.9
-
71
-
-
84930965870
-
Geometric stability, electronic structure, and intercalation mechanism of Co adatom anchors on graphene sheets
-
[71] Tang, Y., Chen, W., Li, C., Li, W., Dai, X., Geometric stability, electronic structure, and intercalation mechanism of Co adatom anchors on graphene sheets. J. Phys. Condens. Matter, 27, 2015, 255009.
-
(2015)
J. Phys. Condens. Matter
, vol.27
, pp. 255009
-
-
Tang, Y.1
Chen, W.2
Li, C.3
Li, W.4
Dai, X.5
-
72
-
-
77954692376
-
Graphene on Pt (111): growth and substrate interaction
-
[72] Sutter, P., Sadowski, J.T., Sutter, E., Graphene on Pt (111): growth and substrate interaction. Phys. Rev. B, 80, 2009, 245411.
-
(2009)
Phys. Rev. B
, vol.80
, pp. 245411
-
-
Sutter, P.1
Sadowski, J.T.2
Sutter, E.3
-
73
-
-
48249135493
-
Doping graphene with metal contacts
-
[73] Giovannetti, G., Khomyakov, P., Brocks, G., Karpan, V., Van den Brink, J., Kelly, P., Doping graphene with metal contacts. Phys. Rev. Lett., 101, 2008, 026803.
-
(2008)
Phys. Rev. Lett.
, vol.101
, pp. 026803
-
-
Giovannetti, G.1
Khomyakov, P.2
Brocks, G.3
Karpan, V.4
Van den Brink, J.5
Kelly, P.6
-
74
-
-
84884867498
-
Electronic structure of graphene on a reconstructed Pt (100) surface: hydrogen adsorption, doping, and band gaps
-
[74] Ulstrup, S., Nilsson, L., Miwa, J.A., Balog, R., Bianchi, M., Hornekær, L., Hofmann, P., Electronic structure of graphene on a reconstructed Pt (100) surface: hydrogen adsorption, doping, and band gaps. Phys. Rev. B, 88, 2013, 125425.
-
(2013)
Phys. Rev. B
, vol.88
, pp. 125425
-
-
Ulstrup, S.1
Nilsson, L.2
Miwa, J.A.3
Balog, R.4
Bianchi, M.5
Hornekær, L.6
Hofmann, P.7
-
75
-
-
84919681500
-
Nontrivial spin structure of graphene on Pt (111) at the Fermi level due to spin-dependent hybridization
-
[75] Klimovskikh, I., Tsirkin, S., Rybkin, A., Rybkina, A., Filianina, M., Zhizhin, E., Chulkov, E., Shikin, A., Nontrivial spin structure of graphene on Pt (111) at the Fermi level due to spin-dependent hybridization. Phys. Rev. B, 90, 2014, 235431.
-
(2014)
Phys. Rev. B
, vol.90
, pp. 235431
-
-
Klimovskikh, I.1
Tsirkin, S.2
Rybkin, A.3
Rybkina, A.4
Filianina, M.5
Zhizhin, E.6
Chulkov, E.7
Shikin, A.8
-
76
-
-
84964345754
-
2 molecule adsorption on the pristine and Mn-doped boron nitride nanotubes
-
2 molecule adsorption on the pristine and Mn-doped boron nitride nanotubes. Appl. Surf. Sci. 347 (2015), 485–490.
-
(2015)
Appl. Surf. Sci.
, vol.347
, pp. 485-490
-
-
Deng, Z.-Y.1
Zhang, J.-M.2
Xu, K.-W.3
-
77
-
-
84876577108
-
A theoretical study of silicon-doped boron nitride nanotubes serving as a potential chemical sensor for hydrogen cyanide
-
[77] Ruoxi, W., Dongju, Z., Yongjun, L., Chengbu, L., A theoretical study of silicon-doped boron nitride nanotubes serving as a potential chemical sensor for hydrogen cyanide. Nanotechnology, 20, 2009, 21264.
-
(2009)
Nanotechnology
, vol.20
, pp. 21264
-
-
Ruoxi, W.1
Dongju, Z.2
Yongjun, L.3
Chengbu, L.4
-
78
-
-
84907521628
-
A density function theory study on the NO reduction on nitrogen doped graphene
-
[78] Zhang, X., Lu, Z., Tang, Y., Fu, Z., Ma, D., Yang, Z., A density function theory study on the NO reduction on nitrogen doped graphene. Phys. Chem. Chem. Phys. 16 (2014), 20561–20569.
-
(2014)
Phys. Chem. Chem. Phys.
, vol.16
, pp. 20561-20569
-
-
Zhang, X.1
Lu, Z.2
Tang, Y.3
Fu, Z.4
Ma, D.5
Yang, Z.6
-
79
-
-
84928796991
-
A first-principles study on gas sensing properties of graphene and Pd-doped graphene
-
[79] Ma, L., Zhang, J.-M., Xu, K.-W., Ji, V., A first-principles study on gas sensing properties of graphene and Pd-doped graphene. Appl. Surf. Sci. 343 (2015), 121–127.
-
(2015)
Appl. Surf. Sci.
, vol.343
, pp. 121-127
-
-
Ma, L.1
Zhang, J.-M.2
Xu, K.-W.3
Ji, V.4
-
80
-
-
84927548112
-
3, CO and HCN molecules
-
3, CO and HCN molecules. Appl. Surf. Sci. 342 (2015), 191–199.
-
(2015)
Appl. Surf. Sci.
, vol.342
, pp. 191-199
-
-
Tang, Y.1
Chen, W.2
Li, C.3
Pan, L.4
Dai, X.5
Ma, D.6
-
81
-
-
84935825398
-
2S molecules
-
2S molecules. Eur. Phys. J. Appl. Phys., 70, 2015, 31301.
-
(2015)
Eur. Phys. J. Appl. Phys.
, vol.70
, pp. 31301
-
-
Tang, Y.1
Liu, Z.2
Chen, W.3
Fu, Z.4
Li, W.5
Dai, X.6
-
82
-
-
77951086921
-
CO catalytic oxidation on iron-embedded graphene: computational quest for low-cost nanocatalysts
-
[82] Li, Y., Zhou, Z., Yu, G., Chen, W., Chen, Z., CO catalytic oxidation on iron-embedded graphene: computational quest for low-cost nanocatalysts. J. Phys. Chem. C 114 (2010), 6250–6254.
-
(2010)
J. Phys. Chem. C
, vol.114
, pp. 6250-6254
-
-
Li, Y.1
Zhou, Z.2
Yu, G.3
Chen, W.4
Chen, Z.5
-
83
-
-
84863037111
-
Fe-anchored graphene oxide: a low-cost and easily accessible catalyst for low-temperature CO oxidation
-
[83] Li, F., Zhao, J., Chen, Z., Fe-anchored graphene oxide: a low-cost and easily accessible catalyst for low-temperature CO oxidation. J. Phys. Chem. C 116 (2012), 2507–2514.
-
(2012)
J. Phys. Chem. C
, vol.116
, pp. 2507-2514
-
-
Li, F.1
Zhao, J.2
Chen, Z.3
-
84
-
-
84855451682
-
Metallic impurities in graphenes prepared from graphite can dramatically influence their properties
-
[84] Ambrosi, A., Chee, S.Y., Khezri, B., Webster, R.D., Sofer, Z., Pumera, M., Metallic impurities in graphenes prepared from graphite can dramatically influence their properties. Angew. Chem. Int. Ed. 51 (2012), 500–503.
-
(2012)
Angew. Chem. Int. Ed.
, vol.51
, pp. 500-503
-
-
Ambrosi, A.1
Chee, S.Y.2
Khezri, B.3
Webster, R.D.4
Sofer, Z.5
Pumera, M.6
-
85
-
-
0030190741
-
Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
-
[85] Kresse, G., Furthmüller, J., Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6 (1996), 15–50.
-
(1996)
Comput. Mater. Sci.
, vol.6
, pp. 15-50
-
-
Kresse, G.1
Furthmüller, J.2
-
86
-
-
2442537377
-
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
-
[86] Kresse, G., Furthmüller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54 (1996), 11169–11186.
-
(1996)
Phys. Rev. B
, vol.54
, pp. 11169-11186
-
-
Kresse, G.1
Furthmüller, J.2
-
87
-
-
0011236321
-
From ultrasoft pseudopotentials to the projector augmented-wave method
-
[87] Kresse, G., Joubert, D., From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59 (1999), 1758–1775.
-
(1999)
Phys. Rev. B
, vol.59
, pp. 1758-1775
-
-
Kresse, G.1
Joubert, D.2
-
88
-
-
4243943295
-
Generalized gradient approximation made simple
-
[88] Perdew, J., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple. Phys. Rev. Lett. 77 (1996), 3865–3868.
-
(1996)
Phys. Rev. Lett.
, vol.77
, pp. 3865-3868
-
-
Perdew, J.1
Burke, K.2
Ernzerhof, M.3
-
89
-
-
33144465627
-
Structural, electronic, and chemical properties of nanoporous carbon
-
[89] Carlsson, J., Scheffler, M., Structural, electronic, and chemical properties of nanoporous carbon. Phys. Rev. Lett., 96, 2006, 46806.
-
(2006)
Phys. Rev. Lett.
, vol.96
, pp. 46806
-
-
Carlsson, J.1
Scheffler, M.2
-
90
-
-
33745753520
-
A fast and robust algorithm for Bader decomposition of charge density
-
[90] Henkelman, G., Arnaldsson, A., Jónsson, H., A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 36 (2006), 354–360.
-
(2006)
Comput. Mater. Sci.
, vol.36
, pp. 354-360
-
-
Henkelman, G.1
Arnaldsson, A.2
Jónsson, H.3
-
91
-
-
45749127809
-
First-principles study of metal adatom adsorption on graphene
-
[91] Chan, K., Neaton, J., Cohen, M., First-principles study of metal adatom adsorption on graphene. Phys. Rev. B, 77, 2008, 235430.
-
(2008)
Phys. Rev. B
, vol.77
, pp. 235430
-
-
Chan, K.1
Neaton, J.2
Cohen, M.3
-
92
-
-
77956922640
-
Absorption of Pt clusters and the induced magnetic properties of graphene
-
[92] Dai, X., Tang, Y., Zhao, J., Dai, Y., Absorption of Pt clusters and the induced magnetic properties of graphene. J. Phys.: Condens. Matter, 22, 2010, 316005.
-
(2010)
J. Phys.: Condens. Matter
, vol.22
, pp. 316005
-
-
Dai, X.1
Tang, Y.2
Zhao, J.3
Dai, Y.4
-
93
-
-
84874154096
-
Structural stability and electronic and magnetic properties of fluorinated bilayer graphene
-
[93] Hu, C.-H., Zhang, P., Liu, H.-Y., Wu, S.-Q., Yang, Y., Zhu, Z.-Z., Structural stability and electronic and magnetic properties of fluorinated bilayer graphene. J. Phys. Chem. C 117 (2013), 3572–3579.
-
(2013)
J. Phys. Chem. C
, vol.117
, pp. 3572-3579
-
-
Hu, C.-H.1
Zhang, P.2
Liu, H.-Y.3
Wu, S.-Q.4
Yang, Y.5
Zhu, Z.-Z.6
-
94
-
-
85028192987
-
Tunable metal-insulator transition in double-layer graphene heterostructures
-
[94] Ponomarenko, L., Geim, A., Zhukov, A., Jalil, R., Morozov, S., Novoselov, K., Grigorieva, I., Hill, E., Cheianov, V., Fal'Ko, V., Tunable metal-insulator transition in double-layer graphene heterostructures. Nat. Phys. 7 (2011), 958–961.
-
(2011)
Nat. Phys.
, vol.7
, pp. 958-961
-
-
Ponomarenko, L.1
Geim, A.2
Zhukov, A.3
Jalil, R.4
Morozov, S.5
Novoselov, K.6
Grigorieva, I.7
Hill, E.8
Cheianov, V.9
Fal'Ko, V.10
-
95
-
-
33747626322
-
Controlling the electronic structure of bilayer graphene
-
[95] Ohta, T., Bostwick, A., Seyller, T., Horn, K., Rotenberg, E., Controlling the electronic structure of bilayer graphene. Science 313 (2006), 951–954.
-
(2006)
Science
, vol.313
, pp. 951-954
-
-
Ohta, T.1
Bostwick, A.2
Seyller, T.3
Horn, K.4
Rotenberg, E.5
-
96
-
-
84870155639
-
A theoretical simulation on the catalytic oxidation of CO on Pt/graphene
-
[96] Tang, Y., Yang, Z., Dai, X., A theoretical simulation on the catalytic oxidation of CO on Pt/graphene. Phys. Chem. Chem. Phys. 14 (2012), 16566–16572.
-
(2012)
Phys. Chem. Chem. Phys.
, vol.14
, pp. 16566-16572
-
-
Tang, Y.1
Yang, Z.2
Dai, X.3
|