-
3
-
-
25444528713
-
Assessing approximate inference for binary Gaussian process classification
-
Kuss M, Rasmussen CE. Assessing approximate inference for binary Gaussian process classification. Journal of Machine Learning Research 2005; 6:1679-1704.
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 1679-1704
-
-
Kuss, M.1
Rasmussen, C.E.2
-
4
-
-
84864038646
-
Sparse Gaussian process using pseudo-inputs
-
Weiss Y, Schölkopf B, Platt J (eds). The MIT Press: Cambridge, MA
-
Snelson E, Ghahramani Z. Sparse Gaussian process using pseudo-inputs. In Advances in Neural Information Processing Systems 18, Weiss Y, Schölkopf B, Platt J (eds). The MIT Press: Cambridge, MA, 2006.
-
(2006)
Advances in Neural Information Processing Systems 18
-
-
Snelson, E.1
Ghahramani, Z.2
-
11
-
-
12744255376
-
A comparison of Bayesian spatial models for disease mapping
-
DOI: 10.1191/0962280205sm388oa
-
Best N, Richardson S, Thomson A. A comparison of Bayesian spatial models for disease mapping. Statistical Methods in Medical Research 2005; 14:35-59. DOI: 10.1191/0962280205sm388oa.
-
(2005)
Statistical Methods in Medical Research
, vol.14
, pp. 35-59
-
-
Best, N.1
Richardson, S.2
Thomson, A.3
-
12
-
-
0003564226
-
-
Elliot P, Wakefield J, Best N, Briggs D (eds). Oxford University Press: Oxford
-
Elliot P, Wakefield J, Best N, Briggs D (eds). Spatial Epidemiology Methods and Applications. Oxford University Press: Oxford, 2001.
-
(2001)
Spatial Epidemiology Methods and Applications
-
-
-
13
-
-
62849120031
-
Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations
-
DOI: 10.1111/j.1467-9868.2008.00700.x
-
Rue H, Martino S, Chopin N. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. Journal of Royal Statistical Society B 2009; 71(2):1-35. DOI: 10.1111/j.1467-9868.2008. 00700.x.
-
(2009)
Journal of Royal Statistical Society B
, vol.71
, Issue.2
, pp. 1-35
-
-
Rue, H.1
Martino, S.2
Chopin, N.3
-
14
-
-
0038891993
-
Sparse online Gaussian processes
-
DOI: 10.1162/089976602317250933
-
Csató L, Opper M. Sparse online Gaussian processes. Neural Computation 2002; 14(3):641-669. DOI: 10.1162/089976602317250933.
-
(2002)
Neural Computation
, vol.14
, Issue.3
, pp. 641-669
-
-
Csató, L.1
Opper, M.2
-
15
-
-
33745987673
-
Fast forward selection to speed up sparse Gaussian process regression
-
Bishop CM, Frey BJ (eds). Society for Artificial Intelligence and Statistics: New Jersey, U.S.A.
-
Seeger M, Williams CKI, Lawrence N. Fast forward selection to speed up sparse Gaussian process regression. In Ninth International Workshop on Artificial Intelligence and Statistics, Bishop CM, Frey BJ (eds). Society for Artificial Intelligence and Statistics: New Jersey, U.S.A., 2003.
-
(2003)
Ninth International Workshop on Artificial Intelligence and Statistics
-
-
Seeger, M.1
Williams, C.K.I.2
Lawrence, N.3
-
16
-
-
0000414912
-
A dimension-reduced approach to space-time Kalman filtering
-
DOI: 10.1093/biomet/86.4.815
-
Wikle CK, Cressie N. A dimension-reduced approach to space-time Kalman filtering. Biometrica 1999; 86:815-829. DOI: 10.1093/biomet/86.4.815.
-
(1999)
Biometrica
, vol.86
, pp. 815-829
-
-
Wikle, C.K.1
Cressie, N.2
-
17
-
-
17344370420
-
Sequential, Bayesian geostatistics: A principle method for large data sets
-
DOI: 10.1111/j.1538-4632.2005.00635.x
-
Cornford D, Csató L, Opper M. Sequential, Bayesian geostatistics: a principle method for large data sets. Geographical Analysis 2005; 37:183-199. DOI: 10.1111/j.1538-4632.2005.00635.x.
-
(2005)
Geographical Analysis
, vol.37
, pp. 183-199
-
-
Cornford, D.1
Csató, L.2
Opper, M.3
-
18
-
-
33947661458
-
Computational techniques for spatial logistic regression with large datasets
-
DOI: 10.1016/j.csda.2006.11.008
-
Paciorek CJ. Computational techniques for spatial logistic regression with large datasets. Computational Statistics and Data Analysis 2007;51:3631-3653. DOI: 10.1016/j.csda.2006.11.008.
-
(2007)
Computational Statistics and Data Analysis
, vol.51
, pp. 3631-3653
-
-
Paciorek, C.J.1
-
19
-
-
47649103974
-
Gaussian predictive process models for large spatial data sets
-
DOI: 10.1111/j.1467-9868.2008.00663.x
-
Banerjee S, Gelfand AE, Finley AO, Sang H. Gaussian predictive process models for large spatial data sets. Journal of Royal statistical Society B 2008; 70(4):825-848. DOI: 10.1111/j.1467-9868.2008.00663.x.
-
(2008)
Journal of Royal Statistical Society B
, vol.70
, Issue.4
, pp. 825-848
-
-
Banerjee, S.1
Gelfand, A.E.2
Finley, A.O.3
Sang, H.4
-
23
-
-
0001609938
-
Efficient approaches to Gaussian process classification
-
MIT Press: Cambridge, MA
-
Csató L, Fokoué E, Opper M, Schottky B. Efficient approaches to Gaussian process classification. Neural Information Processing Systems. MIT Press: Cambridge, MA, 2000; 251-257.
-
(2000)
Neural Information Processing Systems
, pp. 251-257
-
-
Csató, L.1
Fokoué, E.2
Opper, M.3
Schottky, B.4
-
26
-
-
35348868863
-
Age standardization of rates: A new WHO standard
-
World Health Organization
-
Ahmad OB, Boschi-Pinto C, Lopez AD, Murray CJ, Lozano R, Inoue M. Age standardization of rates: a new WHO standard. GPE Discussion Paper Series, World Health Organization, 2000; 31.
-
(2000)
GPE Discussion Paper Series
, pp. 31
-
-
Ahmad, O.B.1
Boschi-Pinto, C.2
Lopez, A.D.3
Murray, C.J.4
Lozano, R.5
Inoue, M.6
-
27
-
-
0036858503
-
Compactly supported correlation functions
-
DOI: 10.1006/jmva.2001.2056
-
Gneiting T. Compactly supported correlation functions. Journal of Multivariate Analysis 2002; 83:493-508. DOI: 10.1006/jmva.2001.2056.
-
(2002)
Journal of Multivariate Analysis
, vol.83
, pp. 493-508
-
-
Gneiting, T.1
-
28
-
-
84867086419
-
Prior distributions for variance parameters in hierarchical models
-
DOI: 10.1214/06-BA117A
-
Gelman A. Prior distributions for variance parameters in hierarchical models. Bayesian Analysis 2006; 1(3):515-533. DOI: 10.1214/06-BA117A.
-
(2006)
Bayesian Analysis
, vol.1
, Issue.3
, pp. 515-533
-
-
Gelman, A.1
-
29
-
-
0004012196
-
-
Chapman and Hall/CRC: London/Boca Raton
-
Gelman A, Carlin JB, Stern HS, Rubin DB. Bayesian Data Analysis, Second Edition. Chapman and Hall/CRC: London/Boca Raton, 2004.
-
(2004)
Bayesian Data Analysis, Second Edition
-
-
Gelman, A.1
Carlin, J.B.2
Stern, H.S.3
Rubin, D.B.4
-
30
-
-
43449137394
-
-
Technical Report, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
-
Seeger M. Expectation propagation for exponential families. Technical Report, Max Planck Institute for Biological Cybernetics, Tübingen, Germany, 2005.
-
(2005)
Expectation Propagation for Exponential Families
-
-
Seeger, M.1
-
31
-
-
84862617524
-
Gaussian quadrature based expectation propagation
-
Cowell RG, Ghahramani Z (eds). Society for Artificial Intelligence and Statistics: New Jersey, U.S.A.
-
Zoeter O, Heskes T. Gaussian quadrature based expectation propagation. In Proceedings of the Ninth International Workshop on Artificial Intelligence and Statistics, Cowell RG, Ghahramani Z (eds). Society for Artificial Intelligence and Statistics: New Jersey, U.S.A., 2005; 445-452.
-
(2005)
Proceedings of the Ninth International Workshop on Artificial Intelligence and Statistics
, pp. 445-452
-
-
Zoeter, O.1
Heskes, T.2
-
32
-
-
35548979581
-
Vectorized adaptive quadrature in MATLAB
-
DOI: 10.1016/j.cam.2006.11.021
-
Shampine LF. Vectorized adaptive quadrature in MATLAB. Journal of Computational and Applied Mathematics 2008; 211:131-140. DOI: 10.1016/j.cam.2006.11.021.
-
(2008)
Journal of Computational and Applied Mathematics
, vol.211
, pp. 131-140
-
-
Shampine, L.F.1
-
36
-
-
0001667705
-
Bayesian inference in econometric models using Monte Carlo integration
-
Geweke J. Bayesian inference in econometric models using Monte Carlo integration. Econometrica 1989; 57(6):721-741.
-
(1989)
Econometrica
, vol.57
, Issue.6
, pp. 721-741
-
-
Geweke, J.1
-
38
-
-
84893792941
-
Monte Carlo methods for solving multivariate problems
-
DOI: 10.1111/j.1749-6632.1960.tb42846.x
-
Hammersley JM. Monte Carlo methods for solving multivariate problems. Annals of the New York Academy of Sciences 1960; 86(3):844-874. DOI: 10.1111/j.1749-6632.1960.tb42846.x.
-
(1960)
Annals of the New York Academy of Sciences
, vol.86
, Issue.3
, pp. 844-874
-
-
Hammersley, J.M.1
-
39
-
-
33745285728
-
Very large fractional factorials and central composite designs
-
DOI: 10.1145/1113316.1113320
-
Sanchez SM, Sanchez PJ. Very large fractional factorials and central composite designs. ACM Transactions on Modeling and Computer Simulation 2005; 15:362-377. DOI: 10.1145/1113316.1113320.
-
(2005)
ACM Transactions on Modeling and Computer Simulation
, vol.15
, pp. 362-377
-
-
Sanchez, S.M.1
Sanchez, P.J.2
-
42
-
-
0036435040
-
Bayesian measures of model complexity and fit
-
DOI: 10.1111/1467-9868.00353
-
Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A. Bayesian measures of model complexity and fit. Journal of Royal Statistical Society B 2002; 64(4):583-639. DOI: 10.1111/1467-9868.00353.
-
(2002)
Journal of Royal Statistical Society B
, vol.64
, Issue.4
, pp. 583-639
-
-
Spiegelhalter, D.J.1
Best, N.G.2
Carlin, B.P.3
Van Der Linde, A.4
-
43
-
-
67650493910
-
Perturbation corrections in approximate inference: Mixture modelling applications
-
Paquet U, Winther O, Opper M. Perturbation corrections in approximate inference: mixture modelling applications. Journal of Machine Learning Research 2009; 10:1263-1304.
-
(2009)
Journal of Machine Learning Research
, vol.10
, pp. 1263-1304
-
-
Paquet, U.1
Winther, O.2
Opper, M.3
-
47
-
-
85162029278
-
The generalized FITC approximation
-
Platt J, Koller D, Singer Y, Roweis S (eds). MIT Press: Cambridge, MA
-
Naish-Guzman A, Holden S. The generalized FITC approximation. In Advances in Neural Information Processing Systems 20, Platt J, Koller D, Singer Y, Roweis S (eds). MIT Press: Cambridge, MA, 2008.
-
(2008)
Advances in Neural Information Processing Systems 20
-
-
Naish-Guzman, A.1
Holden, S.2
-
48
-
-
2942699190
-
Algorithm 837: AMD, an approximate minimum degree ordering algorithm
-
DOI: 10.1145/1024074.1024081
-
Amestoy P, Davis TA, Duff IS. Algorithm 837: AMD, an approximate minimum degree ordering algorithm. ACM Transactions on Mathematical Software 2004; 30(3):381-388. DOI: 10.1145/1024074.1024081.
-
(2004)
ACM Transactions on Mathematical Software
, vol.30
, Issue.3
, pp. 381-388
-
-
Amestoy, P.1
Davis, T.A.2
Duff, I.S.3
-
50
-
-
0008452761
-
Formation of a sparse bus impedance matrix and its application to short circuit study
-
IEEE Power Engineering Society: Minneapolis, U.S.A.
-
Takahashi K, Fagan J, Chen MS. Formation of a sparse bus impedance matrix and its application to short circuit study. Power Industry Computer Application Conference Proceedings. IEEE Power Engineering Society: Minneapolis, U.S.A., 1973.
-
(1973)
Power Industry Computer Application Conference Proceedings
-
-
Takahashi, K.1
Fagan, J.2
Chen, M.S.3
-
52
-
-
34250219986
-
Approximate Bayesian inference for hierarchical Gaussian Markov random field models
-
DOI: 10.1016/j.jspi.2006.07.016
-
Rue H, Martino S. Approximate Bayesian inference for hierarchical Gaussian Markov random field models. Journal of Statistical Planning and Inference 2007; 137:3177-3192. DOI: 10.1016/j.jspi.2006.07.016.
-
(2007)
Journal of Statistical Planning and Inference
, vol.137
, pp. 3177-3192
-
-
Rue, H.1
Martino, S.2
-
53
-
-
22944441327
-
Row modifications of a sparse Cholesky factorization
-
DOI: 10.1137/S089547980343641X
-
Davis TA, Hager WW. Row modifications of a sparse Cholesky factorization. SIAM Journal on Matrix Analysis and Applications 2005; 26(3):621-639. DOI: 10.1137/S089547980343641X.
-
(2005)
SIAM Journal on Matrix Analysis and Applications
, vol.26
, Issue.3
, pp. 621-639
-
-
Davis, T.A.1
Hager, W.W.2
-
54
-
-
0040946757
-
Incomplete nested dissection for solving n by n grid problems
-
DOI: 10.1137/0715044
-
George A, William G, Poole J, Voigt RG. Incomplete nested dissection for solving n by n grid problems. SIAM Journal on Numerical Analysis 1978; 15(4):662-673. DOI: 10.1137/0715044.
-
(1978)
SIAM Journal on Numerical Analysis
, vol.15
, Issue.4
, pp. 662-673
-
-
George, A.1
William, G.2
Poole, J.3
Voigt, R.G.4
-
56
-
-
0032273615
-
General methods for monitoring convergence of iterative simulations
-
Brooks SP, Gelman A. General methods for monitoring convergence of iterative simulations. Journal of Computational and Graphical Statistics 1998; 7(4):434-455. (Pubitemid 128635035)
-
(1998)
Journal of Computational and Graphical Statistics
, vol.7
, Issue.4
, pp. 434-455
-
-
Brooks, S.P.1
Gelman, A.2
-
58
-
-
84972511893
-
Practical Markov chain Monte Carlo
-
DOI: 10.1214/ss/1177011137
-
Geyer CJ. Practical Markov chain Monte Carlo. Statistical Science 1992; 7(4):473-511. DOI: 10.1214/ss/1177011137.
-
(1992)
Statistical Science
, vol.7
, Issue.4
, pp. 473-511
-
-
Geyer, C.J.1
-
59
-
-
0000273048
-
Annealed importance sampling
-
DOI: 10.1023/A:1008923215028
-
Neal RM. Annealed importance sampling. Statistics and Computing 2001; 11:125-139. DOI: 10.1023/A:1008923215028.
-
(2001)
Statistics and Computing
, vol.11
, pp. 125-139
-
-
Neal, R.M.1
-
60
-
-
0036781790
-
Bayesian model assessment and comparison using cross-validation predictive densities
-
Vehtari A, Lampinen J. Bayesian model assessment and comparison using cross-validation predictive densities. Neural Computation 2002;14(10):2439-2468.
-
(2002)
Neural Computation
, vol.14
, Issue.10
, pp. 2439-2468
-
-
Vehtari, A.1
Lampinen, J.2
-
61
-
-
0000079228
-
Model determination using predictive distributions with implementation via sampling-based methods (with Discussion)
-
Bernardo JM, Berger JO, Dawid AP, Smith AFM (eds). Oxford University Press: Oxford
-
Gelfand AE, Dey DK, Chang H. Model determination using predictive distributions with implementation via sampling-based methods (with Discussion). In Bayesian Statistics 4, Bernardo JM, Berger JO, Dawid AP, Smith AFM (eds). Oxford University Press: Oxford, 1992; 147-167.
-
(1992)
Bayesian Statistics 4
, pp. 147-167
-
-
Gelfand, A.E.1
Dey, D.K.2
Chang, H.3
-
62
-
-
2142734871
-
Inconsistent Estimation and Asymptotically Equal Interpolations in Model-Based Geostatistics
-
Zhang H. Inconsistent estimation and asymptotically equal interpolations in model-based geostatistics. Journal of the American Statistical Association 2004; 99(465):250-261. DOI: 10.1198/016214504000000241. (Pubitemid 38545211)
-
(2004)
Journal of the American Statistical Association
, vol.99
, Issue.465
, pp. 250-261
-
-
Zhang, H.1
|