메뉴 건너뛰기




Volumn 198 CCIS, Issue , 2011, Pages 387-398

Brain tissue classification of mr images using fast fourier transform based expectation- maximization gaussian mixture model

Author keywords

Computational complexity; Expectation Maximization; Fast Fourier Transform (FFT); Frequency domain; Gaussian Mixture Model (EM GMM); Tissue classification

Indexed keywords

BRAIN TISSUE; CLASSICAL SOLUTIONS; CLASSIFICATION ACCURACY; EXPECTATION MAXIMIZATION; FOURIER DOMAINS; FREQUENCY DOMAINS; GAUSSIAN MIXTURE MODEL; HIGH-THROUGHPUT; MR IMAGES; POOR PERFORMANCE; REAL-TIME APPLICATION; SPATIAL CORRELATIONS; SPATIAL DOMAINS; TISSUE CLASSIFICATION; TISSUE TYPES;

EID: 79960338927     PISSN: 18650929     EISSN: None     Source Type: Book Series    
DOI: 10.1007/978-3-642-22555-0_40     Document Type: Conference Paper
Times cited : (19)

References (34)
  • 1
  • 2
    • 39549119121 scopus 로고    scopus 로고
    • Fully Automatic Segmentation of Multiple Sclerosis Lesions in Brain MR FLAIR images using Adaptive Mixtures
    • Khayati, R., Vafadust, M., Towhidkhah, F., Massood Nabavi, S.: Fully Automatic Segmentation of Multiple Sclerosis Lesions In Brain MR FLAIR images using Adaptive Mixtures. Computers in Biology and Medicine 38, 379-390 (2008)
    • (2008) Computers in Biology and Medicine , vol.38 , pp. 379-390
    • Khayati, R.1    Vafadust, M.2    Towhidkhah, F.3    Massood Nabavi, S.4
  • 4
    • 33745255698 scopus 로고    scopus 로고
    • Classification of Magnetic Resonance Brain Images using Wavelets as Input to Support Vector Machine and Neural Network
    • Jagannathan: Classification of Magnetic Resonance Brain Images using Wavelets as Input To Support Vector Machine And Neural Network. Biomedical Signal Processing and Control 1, 86-92 (2006)
    • (2006) Biomedical Signal Processing and Control , vol.1 , pp. 86-92
    • Jagannathan1
  • 5
    • 44349156048 scopus 로고    scopus 로고
    • Hybrid multiresolution Slantlet transform and fuzzy c-means clustering approach for normal-pathological brain MR image segregation
    • doi:10.1016/j.medengphy.2007.06.009
    • Maitra, M., Chatterjee, A.: Hybrid multiresolution Slantlet transform and fuzzy c-means clustering approach for normal-pathological brain MR image segregation. Med. Eng. Phys. (2007), doi:10.1016/j.medengphy.2007.06.009
    • (2007) Med. Eng. Phys.
    • Maitra, M.1    Chatterjee, A.2
  • 7
    • 0030833458 scopus 로고    scopus 로고
    • Neural Networks Analysis of Astrocytic Gliomas from MRI appearances
    • Abdolmaleki, P., Mihara, F., Masuda, K., Buadu, L.D.: Neural Networks Analysis of Astrocytic Gliomas from MRI appearances. Cancer Letters 118, 69-78 (1997)
    • (1997) Cancer Letters , vol.118 , pp. 69-78
    • Abdolmaleki, P.1    Mihara, F.2    Masuda, K.3    Buadu, L.D.4
  • 9
    • 0142260969 scopus 로고    scopus 로고
    • A Fully Automatic and Robust Brain MRI Tissue Classification Method
    • Cocosco, C., Zijdenbos, A.P., Evans, A.C.: A Fully Automatic and Robust Brain MRI Tissue Classification Method. Medical Image Analysis 7, 513-527 (2003)
    • (2003) Medical Image Analysis , vol.7 , pp. 513-527
    • Cocosco, C.1    Zijdenbos, A.P.2    Evans, A.C.3
  • 11
    • 0030270952 scopus 로고    scopus 로고
    • Neural network methods for volumetric magnetic resonance imaging of the human brain
    • Gelenbe, E., Feng, Y., Krishnan, K.R.R.: Neural network methods for volumetric magnetic resonance imaging of the human brain. Proc. IEEE 84, 1488-1496 (1996)
    • (1996) Proc. IEEE , vol.84 , pp. 1488-1496
    • Gelenbe, E.1    Feng, Y.2    Krishnan, K.R.R.3
  • 13
    • 0142260969 scopus 로고    scopus 로고
    • A Fully Automatic and Robust Brain MRI Tissue Classification Method
    • Cocosco, C.A., Zijdenbox, A.P., Evans, A.C.: A Fully Automatic and Robust Brain MRI Tissue Classification Method. Medical Image Analysis 7(4), 513-527 (2003)
    • (2003) Medical Image Analysis , vol.7 , Issue.4 , pp. 513-527
    • Cocosco, C.A.1    Zijdenbox, A.P.2    Evans, A.C.3
  • 15
    • 0034745001 scopus 로고    scopus 로고
    • Segmentation of Brain MR Images Through a Hidden Markov Random Field Model and the Expectation-Maximization Algorithm
    • Zhang, Y., Brady, M., Smith, S.: Segmentation of Brain MR Images Through a Hidden Markov Random Field Model and the Expectation-Maximization Algorithm. IEEE Transactions on Medical Imaging 20(1), 45-57 (2001)
    • (2001) IEEE Transactions on Medical Imaging , vol.20 , Issue.1 , pp. 45-57
    • Zhang, Y.1    Brady, M.2    Smith, S.3
  • 16
    • 79960303069 scopus 로고    scopus 로고
    • MR-Brain Image Segmentation Using Gaussian Multiresolution Analysis and the EM Algorithm
    • Tolba, M.F., Mostafa, M.G., Gharib, T.F., Salem, M.A.: MR-Brain Image Segmentation Using Gaussian Multiresolution Analysis and the EM Algorithm. In: ICEIS, vol. 2, pp. 165-170 (2003)
    • (2003) ICEIS , vol.2 , pp. 165-170
    • Tolba, M.F.1    Mostafa, M.G.2    Gharib, T.F.3    Salem, M.A.4
  • 18
    • 7444224673 scopus 로고    scopus 로고
    • A complex way to compute fMRI activation
    • Rowe, D.B., Logan, B.R.: A complex way to compute fMRI activation. NeuroImage 23, 1078-1092 (2004)
    • (2004) NeuroImage , vol.23 , pp. 1078-1092
    • Rowe, D.B.1    Logan, B.R.2
  • 19
    • 17844408155 scopus 로고    scopus 로고
    • Modeling both the magnitude and phase of complex-valued fMRI data
    • Rowe, D.B.: Modeling both the magnitude and phase of complex-valued fMRI data. NeuroImage 25, 1310-1324 (2005)
    • (2005) NeuroImage , vol.25 , pp. 1310-1324
    • Rowe, D.B.1
  • 24
    • 0027655363 scopus 로고
    • Range image segmentation using the Fourier transform
    • Paquet, E., Rioux, M., Arsenaul, H.: Range image segmentation using the Fourier transform. Optical Engineering 32(09), 2173-2180 (1993)
    • (1993) Optical Engineering , vol.32 , Issue.9 , pp. 2173-2180
    • Paquet, E.1    Rioux, M.2    Arsenaul, H.3
  • 26
    • 0029955521 scopus 로고    scopus 로고
    • An iterative algorithm for cell segmentation usingshort-time Fourier transform
    • Wu, H.S., Barba, J., Gil, J.: An iterative algorithm for cell segmentation usingshort-time Fourier transform. J. Microsc. 184(Pt 2), 127-132 (1996)
    • (1996) J. Microsc. , vol.184 , Issue.PART 2 , pp. 127-132
    • Wu, H.S.1    Barba, J.2    Gil, J.3
  • 28
    • 0035768386 scopus 로고    scopus 로고
    • Texture identification and image segmentation via Fourier transform
    • Zhang, T., Bhanu, B., Shu, N. (eds.) Image Extraction, Segmentation, and Recognition.
    • Zou, W., Wang, D.: Texture identification and image segmentation via Fourier transform. In: Zhang, T., Bhanu, B., Shu, N. (eds.) Image Extraction, Segmentation, and Recognition. Proc. SPIE, vol. 4550, pp. 34-39 (2001)
    • (2001) Proc. SPIE , vol.4550 , pp. 34-39
    • Zou, W.1    Wang, D.2
  • 31
    • 7444224673 scopus 로고    scopus 로고
    • A complex way to compute fMRI activation
    • Rowe, D.B., Logan, B.R.: A complex way to compute fMRI activation. NeuroImage 24, 1078-1092 (2004)
    • (2004) NeuroImage , vol.24 , pp. 1078-1092
    • Rowe, D.B.1    Logan, B.R.2
  • 32
    • 17844408155 scopus 로고    scopus 로고
    • Modeling both magnitude and phase of complex-valued fMRI data
    • Rowe, D.B.: Modeling both magnitude and phase of complex-valued fMRI data. NeuroImage 25, 1310-1324 (2005)
    • (2005) NeuroImage , vol.25 , pp. 1310-1324
    • Rowe, D.B.1
  • 34
    • 0028935442 scopus 로고    scopus 로고
    • A perspective on K-space
    • Mezrich, R.: A perspective on K-space. Radiology 195, 297-315
    • Radiology , vol.195 , pp. 297-315
    • Mezrich, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.