-
1
-
-
57049090486
-
Government policy and organ transplantation in China
-
Huang JMY, Millis JM. Government policy and organ transplantation in China. Lancet. 2008;372:1937-8.
-
(2008)
Lancet
, vol.372
, pp. 1937-1938
-
-
Huang, J.M.Y.1
Millis, J.M.2
-
2
-
-
84958206342
-
Decellularized skin/adipose tissue flap matrix for engineering vascularized composite soft tissue flaps
-
Zhang Q, Johnson JA, Dunne LW, Chen Y, Iyyanki T, Wu Y, Chang EI, Branch-Brooks CD, Robb GL, Butler CE. Decellularized skin/adipose tissue flap matrix for engineering vascularized composite soft tissue flaps. Acta Biomater. 2016;35:166-84.
-
(2016)
Acta Biomater
, vol.35
, pp. 166-184
-
-
Zhang, Q.1
Johnson, J.A.2
Dunne, L.W.3
Chen, Y.4
Iyyanki, T.5
Wu, Y.6
Chang, E.I.7
Branch-Brooks, C.D.8
Robb, G.L.9
Butler, C.E.10
-
3
-
-
84930810683
-
The microwell-mesh: a novel device and protocol for the high throughput manufacturing of cartilage microtissues
-
Futrega K, Palmer JS, Kinney M, Lott WB, Ungrin MD, Zandstra PW, Doran MR. The microwell-mesh: a novel device and protocol for the high throughput manufacturing of cartilage microtissues. Biomaterials. 2015;62:1-12.
-
(2015)
Biomaterials
, vol.62
, pp. 1-12
-
-
Futrega, K.1
Palmer, J.S.2
Kinney, M.3
Lott, W.B.4
Ungrin, M.D.5
Zandstra, P.W.6
Doran, M.R.7
-
4
-
-
84947571159
-
Relevance of fiber integrated gelatin-nanohydroxyapatite composite scaffold for bone tissue regeneration
-
Shamaz BH, Anitha A, Vijayamohan M, Kuttappan S, Nair S, Nair MB. Relevance of fiber integrated gelatin-nanohydroxyapatite composite scaffold for bone tissue regeneration. Nanotechnology. 2015;26:405101.
-
(2015)
Nanotechnology
, vol.26
, pp. 405101
-
-
Shamaz, B.H.1
Anitha, A.2
Vijayamohan, M.3
Kuttappan, S.4
Nair, S.5
Nair, M.B.6
-
5
-
-
84936791732
-
Harnessing endogenous stem/progenitor cells for tendon regeneration
-
Lee CH, Lee FY, Tarafder S, Kao K, Jun Y, Yang G, Mao JJ. Harnessing endogenous stem/progenitor cells for tendon regeneration. J Clin Invest. 2015;125:2690-701.
-
(2015)
J Clin Invest
, vol.125
, pp. 2690-2701
-
-
Lee, C.H.1
Lee, F.Y.2
Tarafder, S.3
Kao, K.4
Jun, Y.5
Yang, G.6
Mao, J.J.7
-
6
-
-
84934766709
-
Alginate-polyester comacromer based hydrogels as physiochemically and biologically favorable entities for cardiac tissue engineering
-
Thankam FG, Muthu J. Alginate-polyester comacromer based hydrogels as physiochemically and biologically favorable entities for cardiac tissue engineering. J Colloid Interface Sci. 2015;457:52-61.
-
(2015)
J Colloid Interface Sci
, vol.457
, pp. 52-61
-
-
Thankam, F.G.1
Muthu, J.2
-
8
-
-
58149189819
-
The correlation of pore morphology, interconnectivity and physical properties of 3D ceramic scaffolds with bone ingrowth
-
Jones AC, Arns CH, Hutmacher DW, Milthorpe BK, Sheppard AP, Knackstedt MA. The correlation of pore morphology, interconnectivity and physical properties of 3D ceramic scaffolds with bone ingrowth. Biomaterials. 2009;30:1440-51.
-
(2009)
Biomaterials
, vol.30
, pp. 1440-1451
-
-
Jones, A.C.1
Arns, C.H.2
Hutmacher, D.W.3
Milthorpe, B.K.4
Sheppard, A.P.5
Knackstedt, M.A.6
-
9
-
-
0035988665
-
Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints
-
Hollister SJ, Maddox RD, Taboas JM. Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints. Biomaterials. 2002;23:4095-103.
-
(2002)
Biomaterials
, vol.23
, pp. 4095-4103
-
-
Hollister, S.J.1
Maddox, R.D.2
Taboas, J.M.3
-
10
-
-
44949166671
-
Three-dimensional cell culture matrices: state of the art
-
Lee J, Cuddihy MJ, Kotov NA. Three-dimensional cell culture matrices: state of the art. Tissue Eng Part B Rev. 2008;14:61-86.
-
(2008)
Tissue Eng Part B Rev
, vol.14
, pp. 61-86
-
-
Lee, J.1
Cuddihy, M.J.2
Kotov, N.A.3
-
12
-
-
16244396719
-
Electrospun fine-textured scaffolds for heart tissue constructs
-
Zong X, Bien H, Chung CY, Yin L, Fang D, Hsiao BS, Chu B, Entcheva E. Electrospun fine-textured scaffolds for heart tissue constructs. Biomaterials. 2005;26:5330-8.
-
(2005)
Biomaterials
, vol.26
, pp. 5330-5338
-
-
Zong, X.1
Bien, H.2
Chung, C.Y.3
Yin, L.4
Fang, D.5
Hsiao, B.S.6
Chu, B.7
Entcheva, E.8
-
13
-
-
27644568924
-
3D fiber-deposited scaffolds for tissue engineering: influence of pores geometry and architecture on dynamic mechanical properties
-
Moroni L, de Wijn JR, van Blitterswijk CA. 3D fiber-deposited scaffolds for tissue engineering: influence of pores geometry and architecture on dynamic mechanical properties. Biomaterials. 2006;27:974-85.
-
(2006)
Biomaterials
, vol.27
, pp. 974-985
-
-
Moroni, L.1
Wijn, J.R.2
Blitterswijk, C.A.3
-
14
-
-
84869131568
-
Printing and prototyping of tissues and scaffolds
-
Derby B. Printing and prototyping of tissues and scaffolds. Science. 2012;338:921-6.
-
(2012)
Science
, vol.338
, pp. 921-926
-
-
Derby, B.1
-
16
-
-
84864302244
-
Synergistic action of fibroblast growth factor-2 and transforming growth factor-beta1 enhances bioprinted human neocartilage formation
-
Cui X, Breitenkamp K, Lotz M, D'Lima D. Synergistic action of fibroblast growth factor-2 and transforming growth factor-beta1 enhances bioprinted human neocartilage formation. Biotechnol Bioeng. 2012;109:2357-68.
-
(2012)
Biotechnol Bioeng
, vol.109
, pp. 2357-2368
-
-
Cui, X.1
Breitenkamp, K.2
Lotz, M.3
D'Lima, D.4
-
17
-
-
84899822379
-
Sustained release of BMP-2 in bioprinted alginate for osteogenicity in mice and rats
-
Poldervaart MT, Wang H, van der Stok J, Weinans H, Leeuwenburgh SC, Oner FC, Dhert WJ, Alblas J. Sustained release of BMP-2 in bioprinted alginate for osteogenicity in mice and rats. PLoS ONE. 2013;8:e72610.
-
(2013)
PLoS ONE
, vol.8
-
-
Poldervaart, M.T.1
Wang, H.2
Stok, J.3
Weinans, H.4
Leeuwenburgh, S.C.5
Oner, F.C.6
Dhert, W.J.7
Alblas, J.8
-
18
-
-
85003047723
-
Towards artificial tissue models: past, present, and future of 3D bioprinting
-
Arslan-Yildiz A, Assal RE, Chen P, Guven S, Inci F, Demirci U. Towards artificial tissue models: past, present, and future of 3D bioprinting. Biofabrication. 2016;8:014103.
-
(2016)
Biofabrication
, vol.8
, pp. 014103
-
-
Arslan-Yildiz, A.1
Assal, R.E.2
Chen, P.3
Guven, S.4
Inci, F.5
Demirci, U.6
-
19
-
-
84930407913
-
Cell sources, liver support systems and liver tissue engineering: alternatives to liver transplantation
-
Lee SY, Kim HJ, Choi D. Cell sources, liver support systems and liver tissue engineering: alternatives to liver transplantation. Int J Stem Cells. 2015;8:36-47.
-
(2015)
Int J Stem Cells
, vol.8
, pp. 36-47
-
-
Lee, S.Y.1
Kim, H.J.2
Choi, D.3
-
20
-
-
33751182499
-
Application of inkjet printing to tissue engineering
-
Boland T, Xu T, Damon B, Cui X. Application of inkjet printing to tissue engineering. Biotechnol J. 2006;1:910-7.
-
(2006)
Biotechnol J
, vol.1
, pp. 910-917
-
-
Boland, T.1
Xu, T.2
Damon, B.3
Cui, X.4
-
21
-
-
77955689253
-
Cell damage evaluation of thermal inkjet printed Chinese hamster ovary cells
-
Cui X, Dean D, Ruggeri ZM, Boland T. Cell damage evaluation of thermal inkjet printed Chinese hamster ovary cells. Biotechnol Bioeng. 2010;106:963-9.
-
(2010)
Biotechnol Bioeng
, vol.106
, pp. 963-969
-
-
Cui, X.1
Dean, D.2
Ruggeri, Z.M.3
Boland, T.4
-
22
-
-
84905725612
-
3D bioprinting of tissues and organs
-
Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32:773-85.
-
(2014)
Nat Biotechnol
, vol.32
, pp. 773-785
-
-
Murphy, S.V.1
Atala, A.2
-
24
-
-
84939150480
-
Bioprinting a cardiac valve
-
Jana S, Lerman A. Bioprinting a cardiac valve. Biotechnol Adv. 2015;33:1503-21.
-
(2015)
Biotechnol Adv
, vol.33
, pp. 1503-1521
-
-
Jana, S.1
Lerman, A.2
-
25
-
-
31044445708
-
Biocompatible inkjet printing technique for designed seeding of individual living cells
-
Nakamura M, Kobayashi A, Takagi F, Watanabe A, Hiruma Y, Ohuchi K, Iwasaki Y, Horie M, Morita I, Takatani S. Biocompatible inkjet printing technique for designed seeding of individual living cells. Tissue Eng. 2005;11:1658-66.
-
(2005)
Tissue Eng
, vol.11
, pp. 1658-1666
-
-
Nakamura, M.1
Kobayashi, A.2
Takagi, F.3
Watanabe, A.4
Hiruma, Y.5
Ohuchi, K.6
Iwasaki, Y.7
Horie, M.8
Morita, I.9
Takatani, S.10
-
26
-
-
35549011970
-
Delivery of human fibroblast cells by piezoelectric drop-on-demand inkjet printing
-
Saunders RE, Gough JE, Derby B. Delivery of human fibroblast cells by piezoelectric drop-on-demand inkjet printing. Biomaterials. 2008;29:193-203.
-
(2008)
Biomaterials
, vol.29
, pp. 193-203
-
-
Saunders, R.E.1
Gough, J.E.2
Derby, B.3
-
28
-
-
0034056315
-
Microarray fabrication with covalent attachment of DNA using bubble jet technology
-
Okamoto T, Suzuki T, Yamamoto N. Microarray fabrication with covalent attachment of DNA using bubble jet technology. Nat Biotechnol. 2000;18:438-41.
-
(2000)
Nat Biotechnol
, vol.18
, pp. 438-441
-
-
Okamoto, T.1
Suzuki, T.2
Yamamoto, N.3
-
29
-
-
2942557434
-
Inkjet printing of viable mammalian cells
-
Xu T, Jin J, Gregory C, Hickman JJ, Boland T. Inkjet printing of viable mammalian cells. Biomaterials. 2005;26:93-9.
-
(2005)
Biomaterials
, vol.26
, pp. 93-99
-
-
Xu, T.1
Jin, J.2
Gregory, C.3
Hickman, J.J.4
Boland, T.5
-
30
-
-
84884211629
-
3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels
-
Duan B, Hockaday LA, Kang KH, Butcher JT. 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J Biomed Mater Res A. 2013;101:1255-64.
-
(2013)
J Biomed Mater Res A
, vol.101
, pp. 1255-1264
-
-
Duan, B.1
Hockaday, L.A.2
Kang, K.H.3
Butcher, J.T.4
-
31
-
-
84866055893
-
Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds
-
Hockaday LA, Kang KH, Colangelo NW, Cheung PY, Duan B, Malone E, Wu J, Girardi LN, Bonassar LJ, Lipson H, et al. Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds. Biofabrication. 2012;4:035005.
-
(2012)
Biofabrication
, vol.4
, pp. 035005
-
-
Hockaday, L.A.1
Kang, K.H.2
Colangelo, N.W.3
Cheung, P.Y.4
Duan, B.5
Malone, E.6
Wu, J.7
Girardi, L.N.8
Bonassar, L.J.9
Lipson, H.10
-
32
-
-
84926622049
-
Recent advances in 3D printing of biomaterials
-
Chia HN, Wu BM. Recent advances in 3D printing of biomaterials. J Biol Eng. 2015;9:4.
-
(2015)
J Biol Eng
, vol.9
, pp. 4
-
-
Chia, H.N.1
Wu, B.M.2
-
33
-
-
84876231038
-
Three-dimensional printing of soy protein scaffolds for tissue regeneration
-
Chien KB, Makridakis E, Shah RN. Three-dimensional printing of soy protein scaffolds for tissue regeneration. Tissue Eng Part C Methods. 2013;19:417-26.
-
(2013)
Tissue Eng Part C Methods
, vol.19
, pp. 417-426
-
-
Chien, K.B.1
Makridakis, E.2
Shah, R.N.3
-
34
-
-
84855396802
-
Biofabrication of osteochondral tissue equivalents by printing topologically defined, cell-laden hydrogel scaffolds
-
Fedorovich NE, Schuurman W, Wijnberg HM, Prins HJ, van Weeren PR, Malda J, Alblas J, Dhert WJ. Biofabrication of osteochondral tissue equivalents by printing topologically defined, cell-laden hydrogel scaffolds. Tissue Eng Part C Methods. 2012;18:33-44.
-
(2012)
Tissue Eng Part C Methods
, vol.18
, pp. 33-44
-
-
Fedorovich, N.E.1
Schuurman, W.2
Wijnberg, H.M.3
Prins, H.J.4
Weeren, P.R.5
Malda, J.6
Alblas, J.7
Dhert, W.J.8
-
35
-
-
79960782567
-
Distinct tissue formation by heterogeneous printing of osteo- and endothelial progenitor cells
-
Fedorovich NE, Wijnberg HM, Dhert WJ, Alblas J. Distinct tissue formation by heterogeneous printing of osteo- and endothelial progenitor cells. Tissue Eng Part A. 2011;17:2113-21.
-
(2011)
Tissue Eng Part A
, vol.17
, pp. 2113-2121
-
-
Fedorovich, N.E.1
Wijnberg, H.M.2
Dhert, W.J.3
Alblas, J.4
-
36
-
-
82055185842
-
Laser-assisted bioprinting for creating on-demand patterns of human osteoprogenitor cells and nano-hydroxyapatite
-
Catros S, Fricain JC, Guillotin B, Pippenger B, Bareille R, Remy M, Lebraud E, Desbat B, Amedee J, Guillemot F. Laser-assisted bioprinting for creating on-demand patterns of human osteoprogenitor cells and nano-hydroxyapatite. Biofabrication. 2011;3:025001.
-
(2011)
Biofabrication
, vol.3
, pp. 025001
-
-
Catros, S.1
Fricain, J.C.2
Guillotin, B.3
Pippenger, B.4
Bareille, R.5
Remy, M.6
Lebraud, E.7
Desbat, B.8
Amedee, J.9
Guillemot, F.10
-
37
-
-
84975297327
-
3D printing of calcium phosphate ceramics for bone tissue engineering and drug delivery
-
Trombetta R, Inzana J, Schwarz EM, Kates SL, Awad HA. 3D printing of calcium phosphate ceramics for bone tissue engineering and drug delivery. Ann Biomed Eng. 2016. doi: 10.1007/s10439-016-1678-3.
-
(2016)
Ann Biomed Eng
-
-
Trombetta, R.1
Inzana, J.2
Schwarz, E.M.3
Kates, S.L.4
Awad, H.A.5
-
38
-
-
77951216665
-
Laser-assisted cell printing: principle, physical parameters versus cell fate and perspectives in tissue engineering
-
Guillemot F, Souquet A, Catros S, Guillotin B. Laser-assisted cell printing: principle, physical parameters versus cell fate and perspectives in tissue engineering. Nanomedicine. 2010;5:507-15.
-
(2010)
Nanomedicine
, vol.5
, pp. 507-515
-
-
Guillemot, F.1
Souquet, A.2
Catros, S.3
Guillotin, B.4
-
39
-
-
77955276061
-
Highthroughput laser printing of cells and biomaterials for tissue engineering
-
Guillemot F, Souquet A, Catros S, Guillotin B, Lopez J, Faucon M. Highthroughput laser printing of cells and biomaterials for tissue engineering. Acta Biomater. 2010;6:2494-500.
-
(2010)
Acta Biomater
, vol.6
, pp. 2494-2500
-
-
Guillemot, F.1
Souquet, A.2
Catros, S.3
Guillotin, B.4
Lopez, J.5
Faucon, M.6
-
40
-
-
3042597735
-
Biological laser printing: a novel technique for creating heterogeneous 3-dimensional cell patterns
-
Barron JA, Wu P, Ladouceur HD, Ringeisen BR. Biological laser printing: a novel technique for creating heterogeneous 3-dimensional cell patterns. Biomed Microdevices. 2004;6:139-47.
-
(2004)
Biomed Microdevices
, vol.6
, pp. 139-147
-
-
Barron, J.A.1
Wu, P.2
Ladouceur, H.D.3
Ringeisen, B.R.4
-
41
-
-
2342628508
-
Laser printing of pluripotent embryonal carcinoma cells
-
Ringeisen BR, Kim H, Barron JA, Krizman DB, Chrisey DB, Jackman S, Auyeung RY, Spargo BJ. Laser printing of pluripotent embryonal carcinoma cells. Tissue Eng. 2004;10:483-91.
-
(2004)
Tissue Eng
, vol.10
, pp. 483-491
-
-
Ringeisen, B.R.1
Kim, H.2
Barron, J.A.3
Krizman, D.B.4
Chrisey, D.B.5
Jackman, S.6
Auyeung, R.Y.7
Spargo, B.J.8
-
42
-
-
84874591959
-
Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice
-
Michael S, Sorg H, Peck CT, Koch L, Deiwick A, Chichkov B, Vogt PM, Reimers K. Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice. PLoS ONE. 2013;8:e57741.
-
(2013)
PLoS ONE
, vol.8
-
-
Michael, S.1
Sorg, H.2
Peck, C.T.3
Koch, L.4
Deiwick, A.5
Chichkov, B.6
Vogt, P.M.7
Reimers, K.8
-
44
-
-
84899438659
-
Laser-generated liquid microjets: correlation between bubble dynamics and liquid ejection
-
Patrascioiu A, Fernández-Pradas JM, Palla-Papavlu A, Morenza JL, Serra P. Laser-generated liquid microjets: correlation between bubble dynamics and liquid ejection. Microfluidics Nanofluidics. 2014;16:55-63.
-
(2014)
Microfluidics Nanofluidics
, vol.16
, pp. 55-63
-
-
Patrascioiu, A.1
Fernández-Pradas, J.M.2
Palla-Papavlu, A.3
Morenza, J.L.4
Serra, P.5
-
45
-
-
84914689347
-
Controlling laser-induced jet formation for bioprinting mesenchymal stem cells with high viability and high resolution
-
Ali M, Pages E, Ducom A, Fontaine A, Guillemot F. Controlling laser-induced jet formation for bioprinting mesenchymal stem cells with high viability and high resolution. Biofabrication. 2014;6:045001.
-
(2014)
Biofabrication
, vol.6
, pp. 045001
-
-
Ali, M.1
Pages, E.2
Ducom, A.3
Fontaine, A.4
Guillemot, F.5
-
46
-
-
77953651502
-
A review on stereolithography and its applications in biomedical engineering
-
Melchels FP, Feijen J, Grijpma DW. A review on stereolithography and its applications in biomedical engineering. Biomaterials. 2010;31:6121-30.
-
(2010)
Biomaterials
, vol.31
, pp. 6121-6130
-
-
Melchels, F.P.1
Feijen, J.2
Grijpma, D.W.3
-
47
-
-
84954182752
-
A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks
-
Wang Z, Abdulla R, Parker B, Samanipour R, Ghosh S, Kim K. A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks. Biofabrication. 2015;7:045009.
-
(2015)
Biofabrication
, vol.7
, pp. 045009
-
-
Wang, Z.1
Abdulla, R.2
Parker, B.3
Samanipour, R.4
Ghosh, S.5
Kim, K.6
-
48
-
-
84874163690
-
3D cell bioprinting for regenerative medicine research and therapies
-
Khatiwala C, Law R, Shepherd B, Dorfman S, Csete M. 3D cell bioprinting for regenerative medicine research and therapies. Gene Ther. 2012;7:1-19.
-
(2012)
Gene Ther
, vol.7
, pp. 1-19
-
-
Khatiwala, C.1
Law, R.2
Shepherd, B.3
Dorfman, S.4
Csete, M.5
-
49
-
-
84871703021
-
Bioprinting for stem cell research
-
Tasoglu S, Demirci U. Bioprinting for stem cell research. Trends Biotechnol. 2013;31:10-9.
-
(2013)
Trends Biotechnol
, vol.31
, pp. 10-19
-
-
Tasoglu, S.1
Demirci, U.2
-
50
-
-
45249104205
-
Cell encapsulation in biodegradable hydrogels for tissue engineering applications
-
Nicodemus GD, Bryant SJ. Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Eng Part B Rev. 2008;14:149-65.
-
(2008)
Tissue Eng Part B Rev
, vol.14
, pp. 149-165
-
-
Nicodemus, G.D.1
Bryant, S.J.2
-
51
-
-
84896549846
-
Tunable hydrogel composite with two-step processing in combination with innovative hardware upgrade for cell-based three-dimensional bioprinting
-
Wust S, Godla ME, Muller R, Hofmann S. Tunable hydrogel composite with two-step processing in combination with innovative hardware upgrade for cell-based three-dimensional bioprinting. Acta Biomater. 2014;10:630-40.
-
(2014)
Acta Biomater
, vol.10
, pp. 630-640
-
-
Wust, S.1
Godla, M.E.2
Muller, R.3
Hofmann, S.4
-
52
-
-
84923301073
-
Scaffold mean pore size influences mesenchymal stem cell chondrogenic differentiation and matrix deposition
-
Matsiko A, Gleeson JP, O'Brien FJ. Scaffold mean pore size influences mesenchymal stem cell chondrogenic differentiation and matrix deposition. Tissue Eng Part A. 2015;21:486-97.
-
(2015)
Tissue Eng Part A
, vol.21
, pp. 486-497
-
-
Matsiko, A.1
Gleeson, J.P.2
O'Brien, F.J.3
-
53
-
-
84889059684
-
The first systematic analysis of 3D rapid prototyped poly(epsilon-caprolactone) scaffolds manufactured through BioCell printing: the effect of pore size and geometry on compressive mechanical behaviour and in vitro hMSC viability
-
Domingos M, Intranuovo F, Russo T, De Santis R, Gloria A, Ambrosio L, Ciurana J, Bartolo P. The first systematic analysis of 3D rapid prototyped poly(epsilon-caprolactone) scaffolds manufactured through BioCell printing: the effect of pore size and geometry on compressive mechanical behaviour and in vitro hMSC viability. Biofabrication. 2013;5:045004.
-
(2013)
Biofabrication
, vol.5
, pp. 045004
-
-
Domingos, M.1
Intranuovo, F.2
Russo, T.3
Santis, R.4
Gloria, A.5
Ambrosio, L.6
Ciurana, J.7
Bartolo, P.8
-
54
-
-
84920761346
-
Structure and properties of PLLA/beta-TCP nanocomposite scaffolds for bone tissue engineering
-
Lou T, Wang X, Song G, Gu Z, Yang Z. Structure and properties of PLLA/beta-TCP nanocomposite scaffolds for bone tissue engineering. J Mater Sci Mater Med. 2015;26:5366.
-
(2015)
J Mater Sci Mater Med
, vol.26
, pp. 5366
-
-
Lou, T.1
Wang, X.2
Song, G.3
Gu, Z.4
Yang, Z.5
-
55
-
-
84924341136
-
Three-dimensional CaP/gelatin lattice scaffolds with integrated osteoinductive surface topographies for bone tissue engineering
-
Nadeem D, Smith CA, Dalby MJ, Meek RM, Lin S, Li G, Su B. Three-dimensional CaP/gelatin lattice scaffolds with integrated osteoinductive surface topographies for bone tissue engineering. Biofabrication. 2015;7:015005.
-
(2015)
Biofabrication
, vol.7
, pp. 015005
-
-
Nadeem, D.1
Smith, C.A.2
Dalby, M.J.3
Meek, R.M.4
Lin, S.5
Li, G.6
Su, B.7
-
56
-
-
84983573846
-
Design, construction and mechanical testing of digital 3D anatomical data-based PCL-HA bone tissue engineering scaffold
-
Yao Q, Wei B, Guo Y, Jin C, Du X, Yan C, Yan J, Hu W, Xu Y, Zhou Z, et al. Design, construction and mechanical testing of digital 3D anatomical data-based PCL-HA bone tissue engineering scaffold. J Mater Sci Mater Med. 2015;26:5360.
-
(2015)
J Mater Sci Mater Med
, vol.26
, pp. 5360
-
-
Yao, Q.1
Wei, B.2
Guo, Y.3
Jin, C.4
Du, X.5
Yan, C.6
Yan, J.7
Hu, W.8
Xu, Y.9
Zhou, Z.10
-
57
-
-
72049121885
-
Response of human bone marrow stromal cells to a resorbable P(2)O(5)-SiO(2)-CaO-MgO-Na(2)O-K(2)O phosphate glass ceramic for tissue engineering applications
-
Leonardi E, Ciapetti G, Baldini N, Novajra G, Verne E, Baino F, Vitale-Brovarone C. Response of human bone marrow stromal cells to a resorbable P(2)O(5)-SiO(2)-CaO-MgO-Na(2)O-K(2)O phosphate glass ceramic for tissue engineering applications. Acta Biomater. 2010;6:598-606.
-
(2010)
Acta Biomater
, vol.6
, pp. 598-606
-
-
Leonardi, E.1
Ciapetti, G.2
Baldini, N.3
Novajra, G.4
Verne, E.5
Baino, F.6
Vitale-Brovarone, C.7
-
59
-
-
85040290621
-
Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels
-
Hinton TJ, Jallerat Q, Palchesko RN, Park JH, Grodzicki MS, Shue HJ, Ramadan MH, Hudson AR, Feinberg AW. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci Adv. 2015;1:e1500758.
-
(2015)
Sci Adv
, vol.1
-
-
Hinton, T.J.1
Jallerat, Q.2
Palchesko, R.N.3
Park, J.H.4
Grodzicki, M.S.5
Shue, H.J.6
Ramadan, M.H.7
Hudson, A.R.8
Feinberg, A.W.9
-
60
-
-
84961215599
-
Understanding the role of ECM protein composition and geometric micropatterning for engineering human skeletal muscle
-
Duffy RMSY, Feinberg AW. Understanding the role of ECM protein composition and geometric micropatterning for engineering human skeletal muscle. Ann Biomed Eng. 2016;44:2076-89.
-
(2016)
Ann Biomed Eng
, vol.44
, pp. 2076-2089
-
-
Duffy, R.M.S.Y.1
Feinberg, A.W.2
-
62
-
-
84899520611
-
Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels
-
Bertassoni LE, Cardoso JC, Manoharan V, Cristino AL, Bhise NS, Araujo WA, Zorlutuna P, Vrana NE, Ghaemmaghami AM, Dokmeci MR, Khademhosseini A. Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels. Biofabrication. 2014;6:024105.
-
(2014)
Biofabrication
, vol.6
, pp. 024105
-
-
Bertassoni, L.E.1
Cardoso, J.C.2
Manoharan, V.3
Cristino, A.L.4
Bhise, N.S.5
Araujo, W.A.6
Zorlutuna, P.7
Vrana, N.E.8
Ghaemmaghami, A.M.9
Dokmeci, M.R.10
Khademhosseini, A.11
-
63
-
-
84905458725
-
Engineering a morphogenetically active hydrogel for bioprinting of bioartificial tissue derived from human osteoblast-like SaOS-2 cells
-
Neufurth M, Wang X, Schroder HC, Feng Q, Diehl-Seifert B, Ziebart T, Steffen R, Wang S, Muller WE. Engineering a morphogenetically active hydrogel for bioprinting of bioartificial tissue derived from human osteoblast-like SaOS-2 cells. Biomaterials. 2014;35:8810-9.
-
(2014)
Biomaterials
, vol.35
, pp. 8810-8819
-
-
Neufurth, M.1
Wang, X.2
Schroder, H.C.3
Feng, Q.4
Diehl-Seifert, B.5
Ziebart, T.6
Steffen, R.7
Wang, S.8
Muller, W.E.9
-
64
-
-
84896744666
-
Adult rat retinal ganglion cells and glia can be printed by piezoelectric inkjet printing
-
Lorber B, Hsiao WK, Hutchings IM, Martin KR. Adult rat retinal ganglion cells and glia can be printed by piezoelectric inkjet printing. Biofabrication. 2014;6:015001.
-
(2014)
Biofabrication
, vol.6
, pp. 015001
-
-
Lorber, B.1
Hsiao, W.K.2
Hutchings, I.M.3
Martin, K.R.4
-
65
-
-
84922185482
-
Biofabrication of tissue constructs by 3D bioprinting of cell-laden microcarriers
-
Levato R, Visser J, Planell JA, Engel E, Malda J, Mateos-Timoneda MA. Biofabrication of tissue constructs by 3D bioprinting of cell-laden microcarriers. Biofabrication. 2014;6:035020.
-
(2014)
Biofabrication
, vol.6
, pp. 035020
-
-
Levato, R.1
Visser, J.2
Planell, J.A.3
Engel, E.4
Malda, J.5
Mateos-Timoneda, M.A.6
-
66
-
-
84870317408
-
Three-dimensional printing of stem cell-laden hydrogels submerged in a hydrophobic high-density fluid
-
Duarte Campos DF, Blaeser A, Weber M, Jakel J, Neuss S, Jahnen-Dechent W, Fischer H. Three-dimensional printing of stem cell-laden hydrogels submerged in a hydrophobic high-density fluid. Biofabrication. 2013;5:015003.
-
(2013)
Biofabrication
, vol.5
, pp. 015003
-
-
Duarte Campos, D.F.1
Blaeser, A.2
Weber, M.3
Jakel, J.4
Neuss, S.5
Jahnen-Dechent, W.6
Fischer, H.7
-
67
-
-
78650862905
-
Laser printing of stem cells for biofabrication of scaffold-free autologous grafts
-
Gruene M, Deiwick A, Koch L, Schlie S, Unger C, Hofmann N, Bernemann I, Glasmacher B, Chichkov B. Laser printing of stem cells for biofabrication of scaffold-free autologous grafts. Tissue Eng Part C Methods. 2011;17:79-87.
-
(2011)
Tissue Eng Part C Methods
, vol.17
, pp. 79-87
-
-
Gruene, M.1
Deiwick, A.2
Koch, L.3
Schlie, S.4
Unger, C.5
Hofmann, N.6
Bernemann, I.7
Glasmacher, B.8
Chichkov, B.9
-
68
-
-
84868210194
-
Application of visible light-based projection stereolithography for live cell-scaffold fabrication with designed architecture
-
Lin H, Zhang D, Alexander PG, Yang G, Tan J, Cheng AW, Tuan RS. Application of visible light-based projection stereolithography for live cell-scaffold fabrication with designed architecture. Biomaterials. 2013;34:331-9.
-
(2013)
Biomaterials
, vol.34
, pp. 331-339
-
-
Lin, H.1
Zhang, D.2
Alexander, P.G.3
Yang, G.4
Tan, J.5
Cheng, A.W.6
Tuan, R.S.7
-
69
-
-
79952582118
-
Drop-on-demand single cell isolation and total RNA analysis
-
Moon S, Kim Y-G, Dong L, Lombardi M, Haeggstrom E, Jensen RV, Hsiao L-L, Demirci U. Drop-on-demand single cell isolation and total RNA analysis. PLoS ONE. 2011;6:e17455.
-
(2011)
PLoS ONE
, vol.6
-
-
Moon, S.1
Kim, Y.-G.2
Dong, L.3
Lombardi, M.4
Haeggstrom, E.5
Jensen, R.V.6
Hsiao, L.-L.7
Demirci, U.8
-
70
-
-
84890211914
-
Laser patterning for the study of MSC cardiogenic differentiation at the single-cell level
-
Ma Z, Liu Q, Yang H, Runyan RB, Eisenberg CA, Xu M, Borg TK, Markwald R, Wang Y, Gao BZ. Laser patterning for the study of MSC cardiogenic differentiation at the single-cell level. Light Sci Appl. 2013;2:e68.
-
(2013)
Light Sci Appl
, vol.2
-
-
Ma, Z.1
Liu, Q.2
Yang, H.3
Runyan, R.B.4
Eisenberg, C.A.5
Xu, M.6
Borg, T.K.7
Markwald, R.8
Wang, Y.9
Gao, B.Z.10
-
71
-
-
84874911970
-
Microfluidic construction of minimalistic neuronal co-cultures
-
Dinh ND, Chiang YY, Hardelauf H, Baumann J, Jackson E, Waide S, Sisnaiske J, Frimat JP, van Thriel C, Janasek D, et al. Microfluidic construction of minimalistic neuronal co-cultures. Lab Chip. 2013;13:1402-12.
-
(2013)
Lab Chip
, vol.13
, pp. 1402-1412
-
-
Dinh, N.D.1
Chiang, Y.Y.2
Hardelauf, H.3
Baumann, J.4
Jackson, E.5
Waide, S.6
Sisnaiske, J.7
Frimat, J.P.8
Thriel, C.9
Janasek, D.10
-
72
-
-
1542328767
-
Inkjet printing for high-throughput cell patterning
-
Roth EA, Xu T, Das M, Gregory C, Hickman JJ, Boland T. Inkjet printing for high-throughput cell patterning. Biomaterials. 2004;25:3707-15.
-
(2004)
Biomaterials
, vol.25
, pp. 3707-3715
-
-
Roth, E.A.1
Xu, T.2
Das, M.3
Gregory, C.4
Hickman, J.J.5
Boland, T.6
-
73
-
-
22544484215
-
Engineered spatial patterns of FGF-2 immobilized on fibrin direct cell organization
-
Campbell PG, Miller ED, Fisher GW, Walker LM, Weiss LE. Engineered spatial patterns of FGF-2 immobilized on fibrin direct cell organization. Biomaterials. 2005;26:6762-70.
-
(2005)
Biomaterials
, vol.26
, pp. 6762-6770
-
-
Campbell, P.G.1
Miller, E.D.2
Fisher, G.W.3
Walker, L.M.4
Weiss, L.E.5
-
74
-
-
77953651709
-
Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates
-
Skardal A, Zhang J, Prestwich GD. Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates. Biomaterials. 2010;31:6173-81.
-
(2010)
Biomaterials
, vol.31
, pp. 6173-6181
-
-
Skardal, A.1
Zhang, J.2
Prestwich, G.D.3
-
75
-
-
84907329901
-
Three-dimensional bioprinting: new horizon for cardiac surgery
-
Beyersdorf F. Three-dimensional bioprinting: new horizon for cardiac surgery. Eur J Cardiothorac Surg. 2014;46:339-41.
-
(2014)
Eur J Cardiothorac Surg
, vol.46
, pp. 339-341
-
-
Beyersdorf, F.1
-
76
-
-
84991550909
-
Cell and protein compatible 3D bioprinting of mechanically strong constructs for bone repair
-
Sawkins MJ, Mistry P, Brown BN, Shakesheff KM, Bonassar LJ, Yang J. Cell and protein compatible 3D bioprinting of mechanically strong constructs for bone repair. Biofabrication. 2015;7:035004.
-
(2015)
Biofabrication
, vol.7
, pp. 035004
-
-
Sawkins, M.J.1
Mistry, P.2
Brown, B.N.3
Shakesheff, K.M.4
Bonassar, L.J.5
Yang, J.6
-
77
-
-
84929176653
-
3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications
-
Markstedt K, Mantas A, Tournier I, Martinez Avila H, Hagg D, Gatenholm P. 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromolecules. 2015;16:1489-96.
-
(2015)
Biomacromolecules
, vol.16
, pp. 1489-1496
-
-
Markstedt, K.1
Mantas, A.2
Tournier, I.3
Martinez Avila, H.4
Hagg, D.5
Gatenholm, P.6
-
78
-
-
84959277353
-
Personalized 3D printed model of kidney and tumor anatomy: a useful tool for patient education
-
Bernhard JC, Isotani S, Matsugasumi T, Duddalwar V, Hung AJ, Suer E, Baco E, Satkunasivam R, Djaladat H, Metcalfe C, et al. Personalized 3D printed model of kidney and tumor anatomy: a useful tool for patient education. World J Urol. 2016;34:337-45.
-
(2016)
World J Urol
, vol.34
, pp. 337-345
-
-
Bernhard, J.C.1
Isotani, S.2
Matsugasumi, T.3
Duddalwar, V.4
Hung, A.J.5
Suer, E.6
Baco, E.7
Satkunasivam, R.8
Djaladat, H.9
Metcalfe, C.10
-
79
-
-
84873046124
-
Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds
-
Skardal A, Mack D, Kapetanovic E, Atala A, Jackson JD, Yoo J, Soker S. Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds. Stem Cells Transl Med. 2012;1:792-802.
-
(2012)
Stem Cells Transl Med
, vol.1
, pp. 792-802
-
-
Skardal, A.1
Mack, D.2
Kapetanovic, E.3
Atala, A.4
Jackson, J.D.5
Yoo, J.6
Soker, S.7
-
80
-
-
84872091789
-
Heart disease and stroke statistics-2013 update: a report from the American Heart Association
-
Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Huffman MD, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Magid D, Marcus GM, Marelli A, Matchar DB, McGuire DK, Mohler ER, Moy CS, Mussolino ME, Nichol G, Paynter NP, Schreiner PJ, Sorlie PD, Stein J, Turan TN, Virani SS, Wong ND, Woo D, Turner MB, American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics-2013 update: a report from the American Heart Association. Circulation. 2012;127:e6-245. doi: 10.1161/CIR.0b013e31828124ad.
-
(2012)
Circulation
, vol.127
, pp. e6-e245
-
-
Go, A.S.1
Mozaffarian, D.2
Roger, V.L.3
Benjamin, E.J.4
Berry, J.D.5
Borden, W.B.6
Bravata, D.M.7
Dai, S.8
Ford, E.S.9
Fox, C.S.10
Franco, S.11
Fullerton, H.J.12
Gillespie, C.13
Hailpern, S.M.14
Heit, J.A.15
Howard, V.J.16
Huffman, M.D.17
Kissela, B.M.18
Kittner, S.J.19
Lackland, D.T.20
Lichtman, J.H.21
Lisabeth, L.D.22
Magid, D.23
Marcus, G.M.24
Marelli, A.25
Matchar, D.B.26
McGuire, D.K.27
Mohler, E.R.28
Moy, C.S.29
Mussolino, M.E.30
Nichol, G.31
Paynter, N.P.32
Schreiner, P.J.33
Sorlie, P.D.34
Stein, J.35
Turan, T.N.36
Virani, S.S.37
Wong, N.D.38
Woo, D.39
Turner, M.B.40
more..
-
81
-
-
84901915693
-
Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs
-
Bertassoni LE, Cecconi M, Manoharan V, Nikkhah M, Hjortnaes J, Cristino AL, Barabaschi G, Demarchi D, Dokmeci MR, Yang Y, Khademhosseini A. Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab Chip. 2014;14:2202-11.
-
(2014)
Lab Chip
, vol.14
, pp. 2202-2211
-
-
Bertassoni, L.E.1
Cecconi, M.2
Manoharan, V.3
Nikkhah, M.4
Hjortnaes, J.5
Cristino, A.L.6
Barabaschi, G.7
Demarchi, D.8
Dokmeci, M.R.9
Yang, Y.10
Khademhosseini, A.11
-
82
-
-
84900988712
-
3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs
-
Kolesky DB, Truby RL, Gladman AS, Busbee TA, Homan KA, Lewis JA. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater. 2014;26:3124-30.
-
(2014)
Adv Mater
, vol.26
, pp. 3124-3130
-
-
Kolesky, D.B.1
Truby, R.L.2
Gladman, A.S.3
Busbee, T.A.4
Homan, K.A.5
Lewis, J.A.6
-
83
-
-
84898059103
-
Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells
-
Duan B, Kapetanovic E, Hockaday LA, Butcher JT. Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells. Acta Biomater. 2014;10:1836-46.
-
(2014)
Acta Biomater
, vol.10
, pp. 1836-1846
-
-
Duan, B.1
Kapetanovic, E.2
Hockaday, L.A.3
Butcher, J.T.4
-
84
-
-
84859074288
-
Gas-foaming calcium phosphate cement scaffold encapsulating human umbilical cord stem cells
-
Chen W, Zhou H, Tang M, Weir MD, Bao C, Xu HH. Gas-foaming calcium phosphate cement scaffold encapsulating human umbilical cord stem cells. Tissue Eng Part A. 2012;18:816-27.
-
(2012)
Tissue Eng Part A
, vol.18
, pp. 816-827
-
-
Chen, W.1
Zhou, H.2
Tang, M.3
Weir, M.D.4
Bao, C.5
Xu, H.H.6
-
85
-
-
84879627653
-
Prevascularization of a gas-foaming macroporous calcium phosphate cement scaffold via coculture of human umbilical vein endothelial cells and osteoblasts
-
Thein-Han W, Xu HH. Prevascularization of a gas-foaming macroporous calcium phosphate cement scaffold via coculture of human umbilical vein endothelial cells and osteoblasts. Tissue Eng Part A. 2013;19:1675-85.
-
(2013)
Tissue Eng Part A
, vol.19
, pp. 1675-1685
-
-
Thein-Han, W.1
Xu, H.H.2
-
86
-
-
53649108808
-
Macroporous and nanofibrous hyaluronic acid/collagen hybrid scaffold fabricated by concurrent electrospinning and deposition/leaching of salt particles
-
Kim TG, Chung HJ, Park TG. Macroporous and nanofibrous hyaluronic acid/collagen hybrid scaffold fabricated by concurrent electrospinning and deposition/leaching of salt particles. Acta Biomater. 2008;4:1611-9.
-
(2008)
Acta Biomater
, vol.4
, pp. 1611-1619
-
-
Kim, T.G.1
Chung, H.J.2
Park, T.G.3
-
87
-
-
84855373758
-
HA/nylon 6,6 porous scaffolds fabricated by salt-leaching/solvent casting technique: effect of nano-sized filler content on scaffold properties
-
Mehrabanian M, Nasr-Esfahani M. HA/nylon 6,6 porous scaffolds fabricated by salt-leaching/solvent casting technique: effect of nano-sized filler content on scaffold properties. Int J Nanomedicine. 2011;6:1651-9.
-
(2011)
Int J Nanomedicine
, vol.6
, pp. 1651-1659
-
-
Mehrabanian, M.1
Nasr-Esfahani, M.2
-
88
-
-
50149086314
-
A novel scaffold based on formation and agglomeration of PCL microbeads by freeze-drying
-
Gercek I, Tigli RS, Gumusderelioglu M. A novel scaffold based on formation and agglomeration of PCL microbeads by freeze-drying. J Biomed Mater Res A. 2008;86:1012-22.
-
(2008)
J Biomed Mater Res A
, vol.86
, pp. 1012-1022
-
-
Gercek, I.1
Tigli, R.S.2
Gumusderelioglu, M.3
-
89
-
-
84881120123
-
Microstructure and characteristic properties of gelatin/chitosan scaffold prepared by a combined freeze-drying/leaching method
-
Alizadeh M, Abbasi F, Khoshfetrat AB, Ghaleh H. Microstructure and characteristic properties of gelatin/chitosan scaffold prepared by a combined freeze-drying/leaching method. Mater Sci Eng C Mater Biol Appl. 2013;33:3958-67.
-
(2013)
Mater Sci Eng C Mater Biol Appl
, vol.33
, pp. 3958-3967
-
-
Alizadeh, M.1
Abbasi, F.2
Khoshfetrat, A.B.3
Ghaleh, H.4
-
90
-
-
84896792598
-
Direct 3D powder printing of biphasic calcium phosphate scaffolds for substitution of complex bone defects
-
Castilho M, Moseke C, Ewald A, Gbureck U, Groll J, Pires I, Tessmar J, Vorndran E. Direct 3D powder printing of biphasic calcium phosphate scaffolds for substitution of complex bone defects. Biofabrication. 2014;6:015006.
-
(2014)
Biofabrication
, vol.6
, pp. 015006
-
-
Castilho, M.1
Moseke, C.2
Ewald, A.3
Gbureck, U.4
Groll, J.5
Pires, I.6
Tessmar, J.7
Vorndran, E.8
-
91
-
-
84908496206
-
Bioactive nanoparticles stimulate bone tissue formation in bioprinted three-dimensional scaffold and human mesenchymal stem cells
-
Gao G, Schilling AF, Yonezawa T, Wang J, Dai G, Cui X. Bioactive nanoparticles stimulate bone tissue formation in bioprinted three-dimensional scaffold and human mesenchymal stem cells. Biotechnol J. 2014;9:1304-11.
-
(2014)
Biotechnol J
, vol.9
, pp. 1304-1311
-
-
Gao, G.1
Schilling, A.F.2
Yonezawa, T.3
Wang, J.4
Dai, G.5
Cui, X.6
-
92
-
-
84899574160
-
A comparative study on collagen type I and hyaluronic acid dependent cell behavior for osteochondral tissue bioprinting
-
Park JY, Choi JC, Shim JH, Lee JS, Park H, Kim SW, Doh J, Cho DW. A comparative study on collagen type I and hyaluronic acid dependent cell behavior for osteochondral tissue bioprinting. Biofabrication. 2014;6:035004.
-
(2014)
Biofabrication
, vol.6
, pp. 035004
-
-
Park, J.Y.1
Choi, J.C.2
Shim, J.H.3
Lee, J.S.4
Park, H.5
Kim, S.W.6
Doh, J.7
Cho, D.W.8
-
93
-
-
84901016012
-
Design and fabrication of human skin by three-dimensional bioprinting
-
Lee V, Singh G, Trasatti JP, Bjornsson C, Xu X, Tran TN, Yoo SS, Dai G, Karande P. Design and fabrication of human skin by three-dimensional bioprinting. Tissue Eng Part C Methods. 2014;20:473-84.
-
(2014)
Tissue Eng Part C Methods
, vol.20
, pp. 473-484
-
-
Lee, V.1
Singh, G.2
Trasatti, J.P.3
Bjornsson, C.4
Xu, X.5
Tran, T.N.6
Yoo, S.S.7
Dai, G.8
Karande, P.9
-
94
-
-
84889080620
-
Three-dimensional print of a liver for preoperative planning in living donor liver transplantation
-
Zein NN, Hanouneh IA, Bishop PD, Samaan M, Eghtesad B, Quintini C, Miller C, Yerian L, Klatte R. Three-dimensional print of a liver for preoperative planning in living donor liver transplantation. Liver Transpl. 2013;19:1304-10.
-
(2013)
Liver Transpl
, vol.19
, pp. 1304-1310
-
-
Zein, N.N.1
Hanouneh, I.A.2
Bishop, P.D.3
Samaan, M.4
Eghtesad, B.5
Quintini, C.6
Miller, C.7
Yerian, L.8
Klatte, R.9
-
95
-
-
84907016464
-
In vitro platforms for evaluating liver toxicity
-
Bale SS, Vernetti L, Senutovitch N, Jindal R, Hegde M, Gough A, McCarty WJ, Bakan A, Bhushan A, Shun TY, et al. In vitro platforms for evaluating liver toxicity. Exp Biol Med. 2014;239:1180-91.
-
(2014)
Exp Biol Med
, vol.239
, pp. 1180-1191
-
-
Bale, S.S.1
Vernetti, L.2
Senutovitch, N.3
Jindal, R.4
Hegde, M.5
Gough, A.6
McCarty, W.J.7
Bakan, A.8
Bhushan, A.9
Shun, T.Y.10
-
96
-
-
85027934971
-
Transplantation: 3D printing of the liver in living donor liver transplantation
-
Ikegami T, Maehara Y. Transplantation: 3D printing of the liver in living donor liver transplantation. Nat Rev Gastroenterol Hepatol. 2013;10:697-8.
-
(2013)
Nat Rev Gastroenterol Hepatol
, vol.10
, pp. 697-698
-
-
Ikegami, T.1
Maehara, Y.2
-
97
-
-
79959866368
-
Bile canaliculi formation by aligning rat primary hepatocytes in a microfluidic device
-
Nakao Y, Kimura H, Sakai Y, Fujii T. Bile canaliculi formation by aligning rat primary hepatocytes in a microfluidic device. Biomicrofluidics. 2011;5:22212.
-
(2011)
Biomicrofluidics
, vol.5
, pp. 22212
-
-
Nakao, Y.1
Kimura, H.2
Sakai, Y.3
Fujii, T.4
-
98
-
-
84859874115
-
Tissue specific synthetic ECM hydrogels for 3D in vitro maintenance of hepatocyte function
-
Skardal A, Smith L, Bharadwaj S, Atala A, Soker S, Zhang Y. Tissue specific synthetic ECM hydrogels for 3D in vitro maintenance of hepatocyte function. Biomaterials. 2012;33:4565-75.
-
(2012)
Biomaterials
, vol.33
, pp. 4565-4575
-
-
Skardal, A.1
Smith, L.2
Bharadwaj, S.3
Atala, A.4
Soker, S.5
Zhang, Y.6
-
99
-
-
79953002875
-
Biofabrication of a three-dimensional liver micro-organ as an in vitro drug metabolism model
-
Chang R, Emami K, Wu H, Sun W. Biofabrication of a three-dimensional liver micro-organ as an in vitro drug metabolism model. Biofabrication. 2010;2:045004.
-
(2010)
Biofabrication
, vol.2
, pp. 045004
-
-
Chang, R.1
Emami, K.2
Wu, H.3
Sun, W.4
-
100
-
-
84947490008
-
Three-dimensional printing of cerium-incorporated mesoporous calcium-silicate scaffolds for bone repair
-
Zhu MZJ. Three-dimensional printing of cerium-incorporated mesoporous calcium-silicate scaffolds for bone repair. J Mater Sci. 2016;51:836-44.
-
(2016)
J Mater Sci
, vol.51
, pp. 836-844
-
-
Zhu, M.Z.J.1
-
101
-
-
79952200356
-
Microprinting of liver micro-organ for drug metabolism study
-
Chang RC, Emami K, Jeevarajan A, Wu H, Sun W. Microprinting of liver micro-organ for drug metabolism study. Methods Mol Biol. 2011;671:219-38.
-
(2011)
Methods Mol Biol
, vol.671
, pp. 219-238
-
-
Chang, R.C.1
Emami, K.2
Jeevarajan, A.3
Wu, H.4
Sun, W.5
-
102
-
-
84885027452
-
In vivo acute and humoral response to three-dimensional porous soy protein scaffolds
-
Chien KB, Aguado BA, Bryce PJ, Shah RN. In vivo acute and humoral response to three-dimensional porous soy protein scaffolds. Acta Biomater. 2013;9:8983-90.
-
(2013)
Acta Biomater
, vol.9
, pp. 8983-8990
-
-
Chien, K.B.1
Aguado, B.A.2
Bryce, P.J.3
Shah, R.N.4
-
103
-
-
77951170997
-
Bone repair by cell-seeded 3D-bioplotted composite scaffolds made of collagen treated tricalciumphosphate or tricalciumphosphate-chitosan-collagen hydrogel or PLGA in ovine critical-sized calvarial defects
-
Haberstroh K, Ritter K, Kuschnierz J, Bormann KH, Kaps C, Carvalho C, Mulhaupt R, Sittinger M, Gellrich NC. Bone repair by cell-seeded 3D-bioplotted composite scaffolds made of collagen treated tricalciumphosphate or tricalciumphosphate-chitosan-collagen hydrogel or PLGA in ovine critical-sized calvarial defects. J Biomed Mater Res B Appl Biomater. 2010;93:520-30.
-
(2010)
J Biomed Mater Res B Appl Biomater
, vol.93
, pp. 520-530
-
-
Haberstroh, K.1
Ritter, K.2
Kuschnierz, J.3
Bormann, K.H.4
Kaps, C.5
Carvalho, C.6
Mulhaupt, R.7
Sittinger, M.8
Gellrich, N.C.9
-
104
-
-
77956487717
-
Cryogenic prototyping of chitosan scaffolds with controlled micro and macro architecture and their effect on in vivo neo-vascularization and cellular infiltration
-
Lim TC, Chian KS, Leong KF. Cryogenic prototyping of chitosan scaffolds with controlled micro and macro architecture and their effect on in vivo neo-vascularization and cellular infiltration. J Biomed Mater Res A. 2010;94:1303-11.
-
(2010)
J Biomed Mater Res A
, vol.94
, pp. 1303-1311
-
-
Lim, T.C.1
Chian, K.S.2
Leong, K.F.3
-
105
-
-
84855815432
-
Effects of silica and zinc oxide doping on mechanical and biological properties of 3D printed tricalcium phosphate tissue engineering scaffolds
-
Fielding GA, Bandyopadhyay A, Bose S. Effects of silica and zinc oxide doping on mechanical and biological properties of 3D printed tricalcium phosphate tissue engineering scaffolds. Dent Mater. 2012;28:113-22.
-
(2012)
Dent Mater
, vol.28
, pp. 113-122
-
-
Fielding, G.A.1
Bandyopadhyay, A.2
Bose, S.3
-
106
-
-
84933056143
-
Fabrication and characterization of toughness-enhanced scaffolds comprising beta-TCP/POC using the freeform fabrication system with micro-droplet jetting
-
Gao L, Li C, Chen F, Liu C. Fabrication and characterization of toughness-enhanced scaffolds comprising beta-TCP/POC using the freeform fabrication system with micro-droplet jetting. Biomed Mater. 2015;10:035009.
-
(2015)
Biomed Mater
, vol.10
, pp. 035009
-
-
Gao, L.1
Li, C.2
Chen, F.3
Liu, C.4
-
107
-
-
84957080884
-
3D printing bioceramic porous scaffolds with good mechanical property and cell affinity
-
Chang CH, Lin CY, Liu FH, Chen MH, Lin CP, Ho HN, Liao YS. 3D printing bioceramic porous scaffolds with good mechanical property and cell affinity. PLoS ONE. 2015;10:e0143713.
-
(2015)
PLoS ONE
, vol.10
-
-
Chang, C.H.1
Lin, C.Y.2
Liu, F.H.3
Chen, M.H.4
Lin, C.P.5
Ho, H.N.6
Liao, Y.S.7
-
108
-
-
84925630987
-
SrO- and MgO-doped microwave sintered 3D printed tricalcium phosphate scaffolds: mechanical properties and in vivo osteogenesis in a rabbit model
-
Tarafder S, Dernell WS, Bandyopadhyay A, Bose S. SrO- and MgO-doped microwave sintered 3D printed tricalcium phosphate scaffolds: mechanical properties and in vivo osteogenesis in a rabbit model. J Biomed Mater Res B Appl Biomater. 2015;103:679-90.
-
(2015)
J Biomed Mater Res B Appl Biomater
, vol.103
, pp. 679-690
-
-
Tarafder, S.1
Dernell, W.S.2
Bandyopadhyay, A.3
Bose, S.4
-
109
-
-
84912525884
-
3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications
-
Cox SC, Thornby JA, Gibbons GJ, Williams MA, Mallick KK. 3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications. Mater Sci Eng C Mater Biol Appl. 2015;47:237-47.
-
(2015)
Mater Sci Eng C Mater Biol Appl
, vol.47
, pp. 237-247
-
-
Cox, S.C.1
Thornby, J.A.2
Gibbons, G.J.3
Williams, M.A.4
Mallick, K.K.5
-
110
-
-
84946846792
-
Three-dimensional printing of hollow-struts-packed bioceramic scaffolds for bone regeneration
-
Luo Y, Zhai D, Huan Z, Zhu H, Xia L, Chang J, Wu C. Three-dimensional printing of hollow-struts-packed bioceramic scaffolds for bone regeneration. ACS Appl Mater Interfaces. 2015;7:24377-83.
-
(2015)
ACS Appl Mater Interfaces
, vol.7
, pp. 24377-24383
-
-
Luo, Y.1
Zhai, D.2
Huan, Z.3
Zhu, H.4
Xia, L.5
Chang, J.6
Wu, C.7
-
111
-
-
84929266861
-
Tissue vascularization through 3D printing: will technology bring us flow?
-
Paulsen SJ, Miller JS. Tissue vascularization through 3D printing: will technology bring us flow? Dev Dyn. 2015;244:629-40.
-
(2015)
Dev Dyn
, vol.244
, pp. 629-640
-
-
Paulsen, S.J.1
Miller, J.S.2
-
112
-
-
84890381496
-
Bone tissue engineering using 3D printing
-
Bose SVS, Bandyopadhyay A. Bone tissue engineering using 3D printing. Mater Today. 2013;16:496-504.
-
(2013)
Mater Today
, vol.16
, pp. 496-504
-
-
Bose, S.V.S.1
Bandyopadhyay, A.2
-
113
-
-
84887331253
-
Selective laser sintering fabrication of nano-hydroxyapatite/poly-epsilon-caprolactone scaffolds for bone tissue engineering applications
-
Xia Y, Zhou P, Cheng X, Xie Y, Liang C, Li C, Xu S. Selective laser sintering fabrication of nano-hydroxyapatite/poly-epsilon-caprolactone scaffolds for bone tissue engineering applications. Int J Nanomedicine. 2013;8:4197-213.
-
(2013)
Int J Nanomedicine
, vol.8
, pp. 4197-4213
-
-
Xia, Y.1
Zhou, P.2
Cheng, X.3
Xie, Y.4
Liang, C.5
Li, C.6
Xu, S.7
-
114
-
-
84959010634
-
Development of a 3D cell printed construct considering angiogenesis for liver tissue engineering
-
Lee JW, Choi YJ, Yong WJ, Pati F, Shim JH, Kang KS, Kang IH, Park J, Cho DW. Development of a 3D cell printed construct considering angiogenesis for liver tissue engineering. Biofabrication. 2016;8:015007.
-
(2016)
Biofabrication
, vol.8
, pp. 015007
-
-
Lee, J.W.1
Choi, Y.J.2
Yong, W.J.3
Pati, F.4
Shim, J.H.5
Kang, K.S.6
Kang, I.H.7
Park, J.8
Cho, D.W.9
|