메뉴 건너뛰기




Volumn 14, Issue 1, 2016, Pages

Recent advances in bioprinting techniques: Approaches, applications and future prospects

Author keywords

3D bioprinting; Artificial organs; Tissue engineering

Indexed keywords

BIOCERAMICS; BIOMATERIAL; CALCIUM PHOSPHATE; HYDROXYAPATITE; POLYVINYL ALCOHOL; SILICON DIOXIDE; ZINC OXIDE;

EID: 84988637921     PISSN: None     EISSN: 14795876     Source Type: Journal    
DOI: 10.1186/s12967-016-1028-0     Document Type: Article
Times cited : (444)

References (114)
  • 1
    • 57049090486 scopus 로고    scopus 로고
    • Government policy and organ transplantation in China
    • Huang JMY, Millis JM. Government policy and organ transplantation in China. Lancet. 2008;372:1937-8.
    • (2008) Lancet , vol.372 , pp. 1937-1938
    • Huang, J.M.Y.1    Millis, J.M.2
  • 3
    • 84930810683 scopus 로고    scopus 로고
    • The microwell-mesh: a novel device and protocol for the high throughput manufacturing of cartilage microtissues
    • Futrega K, Palmer JS, Kinney M, Lott WB, Ungrin MD, Zandstra PW, Doran MR. The microwell-mesh: a novel device and protocol for the high throughput manufacturing of cartilage microtissues. Biomaterials. 2015;62:1-12.
    • (2015) Biomaterials , vol.62 , pp. 1-12
    • Futrega, K.1    Palmer, J.S.2    Kinney, M.3    Lott, W.B.4    Ungrin, M.D.5    Zandstra, P.W.6    Doran, M.R.7
  • 4
    • 84947571159 scopus 로고    scopus 로고
    • Relevance of fiber integrated gelatin-nanohydroxyapatite composite scaffold for bone tissue regeneration
    • Shamaz BH, Anitha A, Vijayamohan M, Kuttappan S, Nair S, Nair MB. Relevance of fiber integrated gelatin-nanohydroxyapatite composite scaffold for bone tissue regeneration. Nanotechnology. 2015;26:405101.
    • (2015) Nanotechnology , vol.26 , pp. 405101
    • Shamaz, B.H.1    Anitha, A.2    Vijayamohan, M.3    Kuttappan, S.4    Nair, S.5    Nair, M.B.6
  • 6
    • 84934766709 scopus 로고    scopus 로고
    • Alginate-polyester comacromer based hydrogels as physiochemically and biologically favorable entities for cardiac tissue engineering
    • Thankam FG, Muthu J. Alginate-polyester comacromer based hydrogels as physiochemically and biologically favorable entities for cardiac tissue engineering. J Colloid Interface Sci. 2015;457:52-61.
    • (2015) J Colloid Interface Sci , vol.457 , pp. 52-61
    • Thankam, F.G.1    Muthu, J.2
  • 8
    • 58149189819 scopus 로고    scopus 로고
    • The correlation of pore morphology, interconnectivity and physical properties of 3D ceramic scaffolds with bone ingrowth
    • Jones AC, Arns CH, Hutmacher DW, Milthorpe BK, Sheppard AP, Knackstedt MA. The correlation of pore morphology, interconnectivity and physical properties of 3D ceramic scaffolds with bone ingrowth. Biomaterials. 2009;30:1440-51.
    • (2009) Biomaterials , vol.30 , pp. 1440-1451
    • Jones, A.C.1    Arns, C.H.2    Hutmacher, D.W.3    Milthorpe, B.K.4    Sheppard, A.P.5    Knackstedt, M.A.6
  • 9
    • 0035988665 scopus 로고    scopus 로고
    • Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints
    • Hollister SJ, Maddox RD, Taboas JM. Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints. Biomaterials. 2002;23:4095-103.
    • (2002) Biomaterials , vol.23 , pp. 4095-4103
    • Hollister, S.J.1    Maddox, R.D.2    Taboas, J.M.3
  • 10
    • 44949166671 scopus 로고    scopus 로고
    • Three-dimensional cell culture matrices: state of the art
    • Lee J, Cuddihy MJ, Kotov NA. Three-dimensional cell culture matrices: state of the art. Tissue Eng Part B Rev. 2008;14:61-86.
    • (2008) Tissue Eng Part B Rev , vol.14 , pp. 61-86
    • Lee, J.1    Cuddihy, M.J.2    Kotov, N.A.3
  • 13
    • 27644568924 scopus 로고    scopus 로고
    • 3D fiber-deposited scaffolds for tissue engineering: influence of pores geometry and architecture on dynamic mechanical properties
    • Moroni L, de Wijn JR, van Blitterswijk CA. 3D fiber-deposited scaffolds for tissue engineering: influence of pores geometry and architecture on dynamic mechanical properties. Biomaterials. 2006;27:974-85.
    • (2006) Biomaterials , vol.27 , pp. 974-985
    • Moroni, L.1    Wijn, J.R.2    Blitterswijk, C.A.3
  • 14
    • 84869131568 scopus 로고    scopus 로고
    • Printing and prototyping of tissues and scaffolds
    • Derby B. Printing and prototyping of tissues and scaffolds. Science. 2012;338:921-6.
    • (2012) Science , vol.338 , pp. 921-926
    • Derby, B.1
  • 15
    • 84955585664 scopus 로고    scopus 로고
    • Three-dimensional printing of surgical anatomy
    • Powers MK, Lee BR, Silberstein J. Three-dimensional printing of surgical anatomy. Curr Opin Urol. 2016;26:283-8.
    • (2016) Curr Opin Urol , vol.26 , pp. 283-288
    • Powers, M.K.1    Lee, B.R.2    Silberstein, J.3
  • 16
    • 84864302244 scopus 로고    scopus 로고
    • Synergistic action of fibroblast growth factor-2 and transforming growth factor-beta1 enhances bioprinted human neocartilage formation
    • Cui X, Breitenkamp K, Lotz M, D'Lima D. Synergistic action of fibroblast growth factor-2 and transforming growth factor-beta1 enhances bioprinted human neocartilage formation. Biotechnol Bioeng. 2012;109:2357-68.
    • (2012) Biotechnol Bioeng , vol.109 , pp. 2357-2368
    • Cui, X.1    Breitenkamp, K.2    Lotz, M.3    D'Lima, D.4
  • 19
    • 84930407913 scopus 로고    scopus 로고
    • Cell sources, liver support systems and liver tissue engineering: alternatives to liver transplantation
    • Lee SY, Kim HJ, Choi D. Cell sources, liver support systems and liver tissue engineering: alternatives to liver transplantation. Int J Stem Cells. 2015;8:36-47.
    • (2015) Int J Stem Cells , vol.8 , pp. 36-47
    • Lee, S.Y.1    Kim, H.J.2    Choi, D.3
  • 20
    • 33751182499 scopus 로고    scopus 로고
    • Application of inkjet printing to tissue engineering
    • Boland T, Xu T, Damon B, Cui X. Application of inkjet printing to tissue engineering. Biotechnol J. 2006;1:910-7.
    • (2006) Biotechnol J , vol.1 , pp. 910-917
    • Boland, T.1    Xu, T.2    Damon, B.3    Cui, X.4
  • 21
    • 77955689253 scopus 로고    scopus 로고
    • Cell damage evaluation of thermal inkjet printed Chinese hamster ovary cells
    • Cui X, Dean D, Ruggeri ZM, Boland T. Cell damage evaluation of thermal inkjet printed Chinese hamster ovary cells. Biotechnol Bioeng. 2010;106:963-9.
    • (2010) Biotechnol Bioeng , vol.106 , pp. 963-969
    • Cui, X.1    Dean, D.2    Ruggeri, Z.M.3    Boland, T.4
  • 22
    • 84905725612 scopus 로고    scopus 로고
    • 3D bioprinting of tissues and organs
    • Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32:773-85.
    • (2014) Nat Biotechnol , vol.32 , pp. 773-785
    • Murphy, S.V.1    Atala, A.2
  • 23
    • 84861698425 scopus 로고    scopus 로고
    • Thermal inkjet printing in tissue engineering and regenerative medicine
    • Cui X, Boland T, D'Lima DD, Lotz MK. Thermal inkjet printing in tissue engineering and regenerative medicine. Recent Pat Drug Deliv Formul. 2012;6:149-55.
    • (2012) Recent Pat Drug Deliv Formul , vol.6 , pp. 149-155
    • Cui, X.1    Boland, T.2    D'Lima, D.D.3    Lotz, M.K.4
  • 24
    • 84939150480 scopus 로고    scopus 로고
    • Bioprinting a cardiac valve
    • Jana S, Lerman A. Bioprinting a cardiac valve. Biotechnol Adv. 2015;33:1503-21.
    • (2015) Biotechnol Adv , vol.33 , pp. 1503-1521
    • Jana, S.1    Lerman, A.2
  • 26
    • 35549011970 scopus 로고    scopus 로고
    • Delivery of human fibroblast cells by piezoelectric drop-on-demand inkjet printing
    • Saunders RE, Gough JE, Derby B. Delivery of human fibroblast cells by piezoelectric drop-on-demand inkjet printing. Biomaterials. 2008;29:193-203.
    • (2008) Biomaterials , vol.29 , pp. 193-203
    • Saunders, R.E.1    Gough, J.E.2    Derby, B.3
  • 28
    • 0034056315 scopus 로고    scopus 로고
    • Microarray fabrication with covalent attachment of DNA using bubble jet technology
    • Okamoto T, Suzuki T, Yamamoto N. Microarray fabrication with covalent attachment of DNA using bubble jet technology. Nat Biotechnol. 2000;18:438-41.
    • (2000) Nat Biotechnol , vol.18 , pp. 438-441
    • Okamoto, T.1    Suzuki, T.2    Yamamoto, N.3
  • 30
    • 84884211629 scopus 로고    scopus 로고
    • 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels
    • Duan B, Hockaday LA, Kang KH, Butcher JT. 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J Biomed Mater Res A. 2013;101:1255-64.
    • (2013) J Biomed Mater Res A , vol.101 , pp. 1255-1264
    • Duan, B.1    Hockaday, L.A.2    Kang, K.H.3    Butcher, J.T.4
  • 32
    • 84926622049 scopus 로고    scopus 로고
    • Recent advances in 3D printing of biomaterials
    • Chia HN, Wu BM. Recent advances in 3D printing of biomaterials. J Biol Eng. 2015;9:4.
    • (2015) J Biol Eng , vol.9 , pp. 4
    • Chia, H.N.1    Wu, B.M.2
  • 33
    • 84876231038 scopus 로고    scopus 로고
    • Three-dimensional printing of soy protein scaffolds for tissue regeneration
    • Chien KB, Makridakis E, Shah RN. Three-dimensional printing of soy protein scaffolds for tissue regeneration. Tissue Eng Part C Methods. 2013;19:417-26.
    • (2013) Tissue Eng Part C Methods , vol.19 , pp. 417-426
    • Chien, K.B.1    Makridakis, E.2    Shah, R.N.3
  • 35
    • 79960782567 scopus 로고    scopus 로고
    • Distinct tissue formation by heterogeneous printing of osteo- and endothelial progenitor cells
    • Fedorovich NE, Wijnberg HM, Dhert WJ, Alblas J. Distinct tissue formation by heterogeneous printing of osteo- and endothelial progenitor cells. Tissue Eng Part A. 2011;17:2113-21.
    • (2011) Tissue Eng Part A , vol.17 , pp. 2113-2121
    • Fedorovich, N.E.1    Wijnberg, H.M.2    Dhert, W.J.3    Alblas, J.4
  • 37
    • 84975297327 scopus 로고    scopus 로고
    • 3D printing of calcium phosphate ceramics for bone tissue engineering and drug delivery
    • Trombetta R, Inzana J, Schwarz EM, Kates SL, Awad HA. 3D printing of calcium phosphate ceramics for bone tissue engineering and drug delivery. Ann Biomed Eng. 2016. doi: 10.1007/s10439-016-1678-3.
    • (2016) Ann Biomed Eng
    • Trombetta, R.1    Inzana, J.2    Schwarz, E.M.3    Kates, S.L.4    Awad, H.A.5
  • 38
    • 77951216665 scopus 로고    scopus 로고
    • Laser-assisted cell printing: principle, physical parameters versus cell fate and perspectives in tissue engineering
    • Guillemot F, Souquet A, Catros S, Guillotin B. Laser-assisted cell printing: principle, physical parameters versus cell fate and perspectives in tissue engineering. Nanomedicine. 2010;5:507-15.
    • (2010) Nanomedicine , vol.5 , pp. 507-515
    • Guillemot, F.1    Souquet, A.2    Catros, S.3    Guillotin, B.4
  • 40
    • 3042597735 scopus 로고    scopus 로고
    • Biological laser printing: a novel technique for creating heterogeneous 3-dimensional cell patterns
    • Barron JA, Wu P, Ladouceur HD, Ringeisen BR. Biological laser printing: a novel technique for creating heterogeneous 3-dimensional cell patterns. Biomed Microdevices. 2004;6:139-47.
    • (2004) Biomed Microdevices , vol.6 , pp. 139-147
    • Barron, J.A.1    Wu, P.2    Ladouceur, H.D.3    Ringeisen, B.R.4
  • 42
    • 84874591959 scopus 로고    scopus 로고
    • Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice
    • Michael S, Sorg H, Peck CT, Koch L, Deiwick A, Chichkov B, Vogt PM, Reimers K. Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice. PLoS ONE. 2013;8:e57741.
    • (2013) PLoS ONE , vol.8
    • Michael, S.1    Sorg, H.2    Peck, C.T.3    Koch, L.4    Deiwick, A.5    Chichkov, B.6    Vogt, P.M.7    Reimers, K.8
  • 45
    • 84914689347 scopus 로고    scopus 로고
    • Controlling laser-induced jet formation for bioprinting mesenchymal stem cells with high viability and high resolution
    • Ali M, Pages E, Ducom A, Fontaine A, Guillemot F. Controlling laser-induced jet formation for bioprinting mesenchymal stem cells with high viability and high resolution. Biofabrication. 2014;6:045001.
    • (2014) Biofabrication , vol.6 , pp. 045001
    • Ali, M.1    Pages, E.2    Ducom, A.3    Fontaine, A.4    Guillemot, F.5
  • 46
    • 77953651502 scopus 로고    scopus 로고
    • A review on stereolithography and its applications in biomedical engineering
    • Melchels FP, Feijen J, Grijpma DW. A review on stereolithography and its applications in biomedical engineering. Biomaterials. 2010;31:6121-30.
    • (2010) Biomaterials , vol.31 , pp. 6121-6130
    • Melchels, F.P.1    Feijen, J.2    Grijpma, D.W.3
  • 47
    • 84954182752 scopus 로고    scopus 로고
    • A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks
    • Wang Z, Abdulla R, Parker B, Samanipour R, Ghosh S, Kim K. A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks. Biofabrication. 2015;7:045009.
    • (2015) Biofabrication , vol.7 , pp. 045009
    • Wang, Z.1    Abdulla, R.2    Parker, B.3    Samanipour, R.4    Ghosh, S.5    Kim, K.6
  • 48
    • 84874163690 scopus 로고    scopus 로고
    • 3D cell bioprinting for regenerative medicine research and therapies
    • Khatiwala C, Law R, Shepherd B, Dorfman S, Csete M. 3D cell bioprinting for regenerative medicine research and therapies. Gene Ther. 2012;7:1-19.
    • (2012) Gene Ther , vol.7 , pp. 1-19
    • Khatiwala, C.1    Law, R.2    Shepherd, B.3    Dorfman, S.4    Csete, M.5
  • 49
    • 84871703021 scopus 로고    scopus 로고
    • Bioprinting for stem cell research
    • Tasoglu S, Demirci U. Bioprinting for stem cell research. Trends Biotechnol. 2013;31:10-9.
    • (2013) Trends Biotechnol , vol.31 , pp. 10-19
    • Tasoglu, S.1    Demirci, U.2
  • 50
    • 45249104205 scopus 로고    scopus 로고
    • Cell encapsulation in biodegradable hydrogels for tissue engineering applications
    • Nicodemus GD, Bryant SJ. Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Eng Part B Rev. 2008;14:149-65.
    • (2008) Tissue Eng Part B Rev , vol.14 , pp. 149-165
    • Nicodemus, G.D.1    Bryant, S.J.2
  • 51
    • 84896549846 scopus 로고    scopus 로고
    • Tunable hydrogel composite with two-step processing in combination with innovative hardware upgrade for cell-based three-dimensional bioprinting
    • Wust S, Godla ME, Muller R, Hofmann S. Tunable hydrogel composite with two-step processing in combination with innovative hardware upgrade for cell-based three-dimensional bioprinting. Acta Biomater. 2014;10:630-40.
    • (2014) Acta Biomater , vol.10 , pp. 630-640
    • Wust, S.1    Godla, M.E.2    Muller, R.3    Hofmann, S.4
  • 52
    • 84923301073 scopus 로고    scopus 로고
    • Scaffold mean pore size influences mesenchymal stem cell chondrogenic differentiation and matrix deposition
    • Matsiko A, Gleeson JP, O'Brien FJ. Scaffold mean pore size influences mesenchymal stem cell chondrogenic differentiation and matrix deposition. Tissue Eng Part A. 2015;21:486-97.
    • (2015) Tissue Eng Part A , vol.21 , pp. 486-497
    • Matsiko, A.1    Gleeson, J.P.2    O'Brien, F.J.3
  • 53
    • 84889059684 scopus 로고    scopus 로고
    • The first systematic analysis of 3D rapid prototyped poly(epsilon-caprolactone) scaffolds manufactured through BioCell printing: the effect of pore size and geometry on compressive mechanical behaviour and in vitro hMSC viability
    • Domingos M, Intranuovo F, Russo T, De Santis R, Gloria A, Ambrosio L, Ciurana J, Bartolo P. The first systematic analysis of 3D rapid prototyped poly(epsilon-caprolactone) scaffolds manufactured through BioCell printing: the effect of pore size and geometry on compressive mechanical behaviour and in vitro hMSC viability. Biofabrication. 2013;5:045004.
    • (2013) Biofabrication , vol.5 , pp. 045004
    • Domingos, M.1    Intranuovo, F.2    Russo, T.3    Santis, R.4    Gloria, A.5    Ambrosio, L.6    Ciurana, J.7    Bartolo, P.8
  • 54
    • 84920761346 scopus 로고    scopus 로고
    • Structure and properties of PLLA/beta-TCP nanocomposite scaffolds for bone tissue engineering
    • Lou T, Wang X, Song G, Gu Z, Yang Z. Structure and properties of PLLA/beta-TCP nanocomposite scaffolds for bone tissue engineering. J Mater Sci Mater Med. 2015;26:5366.
    • (2015) J Mater Sci Mater Med , vol.26 , pp. 5366
    • Lou, T.1    Wang, X.2    Song, G.3    Gu, Z.4    Yang, Z.5
  • 55
    • 84924341136 scopus 로고    scopus 로고
    • Three-dimensional CaP/gelatin lattice scaffolds with integrated osteoinductive surface topographies for bone tissue engineering
    • Nadeem D, Smith CA, Dalby MJ, Meek RM, Lin S, Li G, Su B. Three-dimensional CaP/gelatin lattice scaffolds with integrated osteoinductive surface topographies for bone tissue engineering. Biofabrication. 2015;7:015005.
    • (2015) Biofabrication , vol.7 , pp. 015005
    • Nadeem, D.1    Smith, C.A.2    Dalby, M.J.3    Meek, R.M.4    Lin, S.5    Li, G.6    Su, B.7
  • 56
    • 84983573846 scopus 로고    scopus 로고
    • Design, construction and mechanical testing of digital 3D anatomical data-based PCL-HA bone tissue engineering scaffold
    • Yao Q, Wei B, Guo Y, Jin C, Du X, Yan C, Yan J, Hu W, Xu Y, Zhou Z, et al. Design, construction and mechanical testing of digital 3D anatomical data-based PCL-HA bone tissue engineering scaffold. J Mater Sci Mater Med. 2015;26:5360.
    • (2015) J Mater Sci Mater Med , vol.26 , pp. 5360
    • Yao, Q.1    Wei, B.2    Guo, Y.3    Jin, C.4    Du, X.5    Yan, C.6    Yan, J.7    Hu, W.8    Xu, Y.9    Zhou, Z.10
  • 57
    • 72049121885 scopus 로고    scopus 로고
    • Response of human bone marrow stromal cells to a resorbable P(2)O(5)-SiO(2)-CaO-MgO-Na(2)O-K(2)O phosphate glass ceramic for tissue engineering applications
    • Leonardi E, Ciapetti G, Baldini N, Novajra G, Verne E, Baino F, Vitale-Brovarone C. Response of human bone marrow stromal cells to a resorbable P(2)O(5)-SiO(2)-CaO-MgO-Na(2)O-K(2)O phosphate glass ceramic for tissue engineering applications. Acta Biomater. 2010;6:598-606.
    • (2010) Acta Biomater , vol.6 , pp. 598-606
    • Leonardi, E.1    Ciapetti, G.2    Baldini, N.3    Novajra, G.4    Verne, E.5    Baino, F.6    Vitale-Brovarone, C.7
  • 60
    • 84961215599 scopus 로고    scopus 로고
    • Understanding the role of ECM protein composition and geometric micropatterning for engineering human skeletal muscle
    • Duffy RMSY, Feinberg AW. Understanding the role of ECM protein composition and geometric micropatterning for engineering human skeletal muscle. Ann Biomed Eng. 2016;44:2076-89.
    • (2016) Ann Biomed Eng , vol.44 , pp. 2076-2089
    • Duffy, R.M.S.Y.1    Feinberg, A.W.2
  • 63
    • 84905458725 scopus 로고    scopus 로고
    • Engineering a morphogenetically active hydrogel for bioprinting of bioartificial tissue derived from human osteoblast-like SaOS-2 cells
    • Neufurth M, Wang X, Schroder HC, Feng Q, Diehl-Seifert B, Ziebart T, Steffen R, Wang S, Muller WE. Engineering a morphogenetically active hydrogel for bioprinting of bioartificial tissue derived from human osteoblast-like SaOS-2 cells. Biomaterials. 2014;35:8810-9.
    • (2014) Biomaterials , vol.35 , pp. 8810-8819
    • Neufurth, M.1    Wang, X.2    Schroder, H.C.3    Feng, Q.4    Diehl-Seifert, B.5    Ziebart, T.6    Steffen, R.7    Wang, S.8    Muller, W.E.9
  • 64
    • 84896744666 scopus 로고    scopus 로고
    • Adult rat retinal ganglion cells and glia can be printed by piezoelectric inkjet printing
    • Lorber B, Hsiao WK, Hutchings IM, Martin KR. Adult rat retinal ganglion cells and glia can be printed by piezoelectric inkjet printing. Biofabrication. 2014;6:015001.
    • (2014) Biofabrication , vol.6 , pp. 015001
    • Lorber, B.1    Hsiao, W.K.2    Hutchings, I.M.3    Martin, K.R.4
  • 68
    • 84868210194 scopus 로고    scopus 로고
    • Application of visible light-based projection stereolithography for live cell-scaffold fabrication with designed architecture
    • Lin H, Zhang D, Alexander PG, Yang G, Tan J, Cheng AW, Tuan RS. Application of visible light-based projection stereolithography for live cell-scaffold fabrication with designed architecture. Biomaterials. 2013;34:331-9.
    • (2013) Biomaterials , vol.34 , pp. 331-339
    • Lin, H.1    Zhang, D.2    Alexander, P.G.3    Yang, G.4    Tan, J.5    Cheng, A.W.6    Tuan, R.S.7
  • 73
    • 22544484215 scopus 로고    scopus 로고
    • Engineered spatial patterns of FGF-2 immobilized on fibrin direct cell organization
    • Campbell PG, Miller ED, Fisher GW, Walker LM, Weiss LE. Engineered spatial patterns of FGF-2 immobilized on fibrin direct cell organization. Biomaterials. 2005;26:6762-70.
    • (2005) Biomaterials , vol.26 , pp. 6762-6770
    • Campbell, P.G.1    Miller, E.D.2    Fisher, G.W.3    Walker, L.M.4    Weiss, L.E.5
  • 74
    • 77953651709 scopus 로고    scopus 로고
    • Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates
    • Skardal A, Zhang J, Prestwich GD. Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates. Biomaterials. 2010;31:6173-81.
    • (2010) Biomaterials , vol.31 , pp. 6173-6181
    • Skardal, A.1    Zhang, J.2    Prestwich, G.D.3
  • 75
    • 84907329901 scopus 로고    scopus 로고
    • Three-dimensional bioprinting: new horizon for cardiac surgery
    • Beyersdorf F. Three-dimensional bioprinting: new horizon for cardiac surgery. Eur J Cardiothorac Surg. 2014;46:339-41.
    • (2014) Eur J Cardiothorac Surg , vol.46 , pp. 339-341
    • Beyersdorf, F.1
  • 77
    • 84929176653 scopus 로고    scopus 로고
    • 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications
    • Markstedt K, Mantas A, Tournier I, Martinez Avila H, Hagg D, Gatenholm P. 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromolecules. 2015;16:1489-96.
    • (2015) Biomacromolecules , vol.16 , pp. 1489-1496
    • Markstedt, K.1    Mantas, A.2    Tournier, I.3    Martinez Avila, H.4    Hagg, D.5    Gatenholm, P.6
  • 83
    • 84898059103 scopus 로고    scopus 로고
    • Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells
    • Duan B, Kapetanovic E, Hockaday LA, Butcher JT. Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells. Acta Biomater. 2014;10:1836-46.
    • (2014) Acta Biomater , vol.10 , pp. 1836-1846
    • Duan, B.1    Kapetanovic, E.2    Hockaday, L.A.3    Butcher, J.T.4
  • 84
    • 84859074288 scopus 로고    scopus 로고
    • Gas-foaming calcium phosphate cement scaffold encapsulating human umbilical cord stem cells
    • Chen W, Zhou H, Tang M, Weir MD, Bao C, Xu HH. Gas-foaming calcium phosphate cement scaffold encapsulating human umbilical cord stem cells. Tissue Eng Part A. 2012;18:816-27.
    • (2012) Tissue Eng Part A , vol.18 , pp. 816-827
    • Chen, W.1    Zhou, H.2    Tang, M.3    Weir, M.D.4    Bao, C.5    Xu, H.H.6
  • 85
    • 84879627653 scopus 로고    scopus 로고
    • Prevascularization of a gas-foaming macroporous calcium phosphate cement scaffold via coculture of human umbilical vein endothelial cells and osteoblasts
    • Thein-Han W, Xu HH. Prevascularization of a gas-foaming macroporous calcium phosphate cement scaffold via coculture of human umbilical vein endothelial cells and osteoblasts. Tissue Eng Part A. 2013;19:1675-85.
    • (2013) Tissue Eng Part A , vol.19 , pp. 1675-1685
    • Thein-Han, W.1    Xu, H.H.2
  • 86
    • 53649108808 scopus 로고    scopus 로고
    • Macroporous and nanofibrous hyaluronic acid/collagen hybrid scaffold fabricated by concurrent electrospinning and deposition/leaching of salt particles
    • Kim TG, Chung HJ, Park TG. Macroporous and nanofibrous hyaluronic acid/collagen hybrid scaffold fabricated by concurrent electrospinning and deposition/leaching of salt particles. Acta Biomater. 2008;4:1611-9.
    • (2008) Acta Biomater , vol.4 , pp. 1611-1619
    • Kim, T.G.1    Chung, H.J.2    Park, T.G.3
  • 87
    • 84855373758 scopus 로고    scopus 로고
    • HA/nylon 6,6 porous scaffolds fabricated by salt-leaching/solvent casting technique: effect of nano-sized filler content on scaffold properties
    • Mehrabanian M, Nasr-Esfahani M. HA/nylon 6,6 porous scaffolds fabricated by salt-leaching/solvent casting technique: effect of nano-sized filler content on scaffold properties. Int J Nanomedicine. 2011;6:1651-9.
    • (2011) Int J Nanomedicine , vol.6 , pp. 1651-1659
    • Mehrabanian, M.1    Nasr-Esfahani, M.2
  • 88
    • 50149086314 scopus 로고    scopus 로고
    • A novel scaffold based on formation and agglomeration of PCL microbeads by freeze-drying
    • Gercek I, Tigli RS, Gumusderelioglu M. A novel scaffold based on formation and agglomeration of PCL microbeads by freeze-drying. J Biomed Mater Res A. 2008;86:1012-22.
    • (2008) J Biomed Mater Res A , vol.86 , pp. 1012-1022
    • Gercek, I.1    Tigli, R.S.2    Gumusderelioglu, M.3
  • 89
    • 84881120123 scopus 로고    scopus 로고
    • Microstructure and characteristic properties of gelatin/chitosan scaffold prepared by a combined freeze-drying/leaching method
    • Alizadeh M, Abbasi F, Khoshfetrat AB, Ghaleh H. Microstructure and characteristic properties of gelatin/chitosan scaffold prepared by a combined freeze-drying/leaching method. Mater Sci Eng C Mater Biol Appl. 2013;33:3958-67.
    • (2013) Mater Sci Eng C Mater Biol Appl , vol.33 , pp. 3958-3967
    • Alizadeh, M.1    Abbasi, F.2    Khoshfetrat, A.B.3    Ghaleh, H.4
  • 91
    • 84908496206 scopus 로고    scopus 로고
    • Bioactive nanoparticles stimulate bone tissue formation in bioprinted three-dimensional scaffold and human mesenchymal stem cells
    • Gao G, Schilling AF, Yonezawa T, Wang J, Dai G, Cui X. Bioactive nanoparticles stimulate bone tissue formation in bioprinted three-dimensional scaffold and human mesenchymal stem cells. Biotechnol J. 2014;9:1304-11.
    • (2014) Biotechnol J , vol.9 , pp. 1304-1311
    • Gao, G.1    Schilling, A.F.2    Yonezawa, T.3    Wang, J.4    Dai, G.5    Cui, X.6
  • 92
    • 84899574160 scopus 로고    scopus 로고
    • A comparative study on collagen type I and hyaluronic acid dependent cell behavior for osteochondral tissue bioprinting
    • Park JY, Choi JC, Shim JH, Lee JS, Park H, Kim SW, Doh J, Cho DW. A comparative study on collagen type I and hyaluronic acid dependent cell behavior for osteochondral tissue bioprinting. Biofabrication. 2014;6:035004.
    • (2014) Biofabrication , vol.6 , pp. 035004
    • Park, J.Y.1    Choi, J.C.2    Shim, J.H.3    Lee, J.S.4    Park, H.5    Kim, S.W.6    Doh, J.7    Cho, D.W.8
  • 96
    • 85027934971 scopus 로고    scopus 로고
    • Transplantation: 3D printing of the liver in living donor liver transplantation
    • Ikegami T, Maehara Y. Transplantation: 3D printing of the liver in living donor liver transplantation. Nat Rev Gastroenterol Hepatol. 2013;10:697-8.
    • (2013) Nat Rev Gastroenterol Hepatol , vol.10 , pp. 697-698
    • Ikegami, T.1    Maehara, Y.2
  • 97
    • 79959866368 scopus 로고    scopus 로고
    • Bile canaliculi formation by aligning rat primary hepatocytes in a microfluidic device
    • Nakao Y, Kimura H, Sakai Y, Fujii T. Bile canaliculi formation by aligning rat primary hepatocytes in a microfluidic device. Biomicrofluidics. 2011;5:22212.
    • (2011) Biomicrofluidics , vol.5 , pp. 22212
    • Nakao, Y.1    Kimura, H.2    Sakai, Y.3    Fujii, T.4
  • 98
    • 84859874115 scopus 로고    scopus 로고
    • Tissue specific synthetic ECM hydrogels for 3D in vitro maintenance of hepatocyte function
    • Skardal A, Smith L, Bharadwaj S, Atala A, Soker S, Zhang Y. Tissue specific synthetic ECM hydrogels for 3D in vitro maintenance of hepatocyte function. Biomaterials. 2012;33:4565-75.
    • (2012) Biomaterials , vol.33 , pp. 4565-4575
    • Skardal, A.1    Smith, L.2    Bharadwaj, S.3    Atala, A.4    Soker, S.5    Zhang, Y.6
  • 99
    • 79953002875 scopus 로고    scopus 로고
    • Biofabrication of a three-dimensional liver micro-organ as an in vitro drug metabolism model
    • Chang R, Emami K, Wu H, Sun W. Biofabrication of a three-dimensional liver micro-organ as an in vitro drug metabolism model. Biofabrication. 2010;2:045004.
    • (2010) Biofabrication , vol.2 , pp. 045004
    • Chang, R.1    Emami, K.2    Wu, H.3    Sun, W.4
  • 100
    • 84947490008 scopus 로고    scopus 로고
    • Three-dimensional printing of cerium-incorporated mesoporous calcium-silicate scaffolds for bone repair
    • Zhu MZJ. Three-dimensional printing of cerium-incorporated mesoporous calcium-silicate scaffolds for bone repair. J Mater Sci. 2016;51:836-44.
    • (2016) J Mater Sci , vol.51 , pp. 836-844
    • Zhu, M.Z.J.1
  • 101
  • 102
    • 84885027452 scopus 로고    scopus 로고
    • In vivo acute and humoral response to three-dimensional porous soy protein scaffolds
    • Chien KB, Aguado BA, Bryce PJ, Shah RN. In vivo acute and humoral response to three-dimensional porous soy protein scaffolds. Acta Biomater. 2013;9:8983-90.
    • (2013) Acta Biomater , vol.9 , pp. 8983-8990
    • Chien, K.B.1    Aguado, B.A.2    Bryce, P.J.3    Shah, R.N.4
  • 103
    • 77951170997 scopus 로고    scopus 로고
    • Bone repair by cell-seeded 3D-bioplotted composite scaffolds made of collagen treated tricalciumphosphate or tricalciumphosphate-chitosan-collagen hydrogel or PLGA in ovine critical-sized calvarial defects
    • Haberstroh K, Ritter K, Kuschnierz J, Bormann KH, Kaps C, Carvalho C, Mulhaupt R, Sittinger M, Gellrich NC. Bone repair by cell-seeded 3D-bioplotted composite scaffolds made of collagen treated tricalciumphosphate or tricalciumphosphate-chitosan-collagen hydrogel or PLGA in ovine critical-sized calvarial defects. J Biomed Mater Res B Appl Biomater. 2010;93:520-30.
    • (2010) J Biomed Mater Res B Appl Biomater , vol.93 , pp. 520-530
    • Haberstroh, K.1    Ritter, K.2    Kuschnierz, J.3    Bormann, K.H.4    Kaps, C.5    Carvalho, C.6    Mulhaupt, R.7    Sittinger, M.8    Gellrich, N.C.9
  • 104
    • 77956487717 scopus 로고    scopus 로고
    • Cryogenic prototyping of chitosan scaffolds with controlled micro and macro architecture and their effect on in vivo neo-vascularization and cellular infiltration
    • Lim TC, Chian KS, Leong KF. Cryogenic prototyping of chitosan scaffolds with controlled micro and macro architecture and their effect on in vivo neo-vascularization and cellular infiltration. J Biomed Mater Res A. 2010;94:1303-11.
    • (2010) J Biomed Mater Res A , vol.94 , pp. 1303-1311
    • Lim, T.C.1    Chian, K.S.2    Leong, K.F.3
  • 105
    • 84855815432 scopus 로고    scopus 로고
    • Effects of silica and zinc oxide doping on mechanical and biological properties of 3D printed tricalcium phosphate tissue engineering scaffolds
    • Fielding GA, Bandyopadhyay A, Bose S. Effects of silica and zinc oxide doping on mechanical and biological properties of 3D printed tricalcium phosphate tissue engineering scaffolds. Dent Mater. 2012;28:113-22.
    • (2012) Dent Mater , vol.28 , pp. 113-122
    • Fielding, G.A.1    Bandyopadhyay, A.2    Bose, S.3
  • 106
    • 84933056143 scopus 로고    scopus 로고
    • Fabrication and characterization of toughness-enhanced scaffolds comprising beta-TCP/POC using the freeform fabrication system with micro-droplet jetting
    • Gao L, Li C, Chen F, Liu C. Fabrication and characterization of toughness-enhanced scaffolds comprising beta-TCP/POC using the freeform fabrication system with micro-droplet jetting. Biomed Mater. 2015;10:035009.
    • (2015) Biomed Mater , vol.10 , pp. 035009
    • Gao, L.1    Li, C.2    Chen, F.3    Liu, C.4
  • 107
    • 84957080884 scopus 로고    scopus 로고
    • 3D printing bioceramic porous scaffolds with good mechanical property and cell affinity
    • Chang CH, Lin CY, Liu FH, Chen MH, Lin CP, Ho HN, Liao YS. 3D printing bioceramic porous scaffolds with good mechanical property and cell affinity. PLoS ONE. 2015;10:e0143713.
    • (2015) PLoS ONE , vol.10
    • Chang, C.H.1    Lin, C.Y.2    Liu, F.H.3    Chen, M.H.4    Lin, C.P.5    Ho, H.N.6    Liao, Y.S.7
  • 108
    • 84925630987 scopus 로고    scopus 로고
    • SrO- and MgO-doped microwave sintered 3D printed tricalcium phosphate scaffolds: mechanical properties and in vivo osteogenesis in a rabbit model
    • Tarafder S, Dernell WS, Bandyopadhyay A, Bose S. SrO- and MgO-doped microwave sintered 3D printed tricalcium phosphate scaffolds: mechanical properties and in vivo osteogenesis in a rabbit model. J Biomed Mater Res B Appl Biomater. 2015;103:679-90.
    • (2015) J Biomed Mater Res B Appl Biomater , vol.103 , pp. 679-690
    • Tarafder, S.1    Dernell, W.S.2    Bandyopadhyay, A.3    Bose, S.4
  • 110
    • 84946846792 scopus 로고    scopus 로고
    • Three-dimensional printing of hollow-struts-packed bioceramic scaffolds for bone regeneration
    • Luo Y, Zhai D, Huan Z, Zhu H, Xia L, Chang J, Wu C. Three-dimensional printing of hollow-struts-packed bioceramic scaffolds for bone regeneration. ACS Appl Mater Interfaces. 2015;7:24377-83.
    • (2015) ACS Appl Mater Interfaces , vol.7 , pp. 24377-24383
    • Luo, Y.1    Zhai, D.2    Huan, Z.3    Zhu, H.4    Xia, L.5    Chang, J.6    Wu, C.7
  • 111
    • 84929266861 scopus 로고    scopus 로고
    • Tissue vascularization through 3D printing: will technology bring us flow?
    • Paulsen SJ, Miller JS. Tissue vascularization through 3D printing: will technology bring us flow? Dev Dyn. 2015;244:629-40.
    • (2015) Dev Dyn , vol.244 , pp. 629-640
    • Paulsen, S.J.1    Miller, J.S.2
  • 112
    • 84890381496 scopus 로고    scopus 로고
    • Bone tissue engineering using 3D printing
    • Bose SVS, Bandyopadhyay A. Bone tissue engineering using 3D printing. Mater Today. 2013;16:496-504.
    • (2013) Mater Today , vol.16 , pp. 496-504
    • Bose, S.V.S.1    Bandyopadhyay, A.2
  • 113
    • 84887331253 scopus 로고    scopus 로고
    • Selective laser sintering fabrication of nano-hydroxyapatite/poly-epsilon-caprolactone scaffolds for bone tissue engineering applications
    • Xia Y, Zhou P, Cheng X, Xie Y, Liang C, Li C, Xu S. Selective laser sintering fabrication of nano-hydroxyapatite/poly-epsilon-caprolactone scaffolds for bone tissue engineering applications. Int J Nanomedicine. 2013;8:4197-213.
    • (2013) Int J Nanomedicine , vol.8 , pp. 4197-4213
    • Xia, Y.1    Zhou, P.2    Cheng, X.3    Xie, Y.4    Liang, C.5    Li, C.6    Xu, S.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.