-
2
-
-
70349281876
-
Engineering for biofuels: exploiting innate microbial capacity or importing biosynthetic potential?
-
Alper, H., and Stephanopoulos, G. (2009). Engineering for biofuels: exploiting innate microbial capacity or importing biosynthetic potential? Nat. Rev. Microbiol. 7, 715-723. doi: 10.1038/nrmicro2186
-
(2009)
Nat. Rev. Microbiol
, vol.7
, pp. 715-723
-
-
Alper, H.1
Stephanopoulos, G.2
-
4
-
-
83255174918
-
High ethanol titers from cellulose by using metabolically engineered thermophilic, anaerobic microbes
-
Argyros, D. A., Tripathi, S. A., Barrett, T. F., Rogers, S. R., Feinberg, L. F., Olson, D. G., et al. (2011). High ethanol titers from cellulose by using metabolically engineered thermophilic, anaerobic microbes. Appl. Environ. Microbiol. 77, 8288-8294. doi: 10.1128/AEM.00646-11
-
(2011)
Appl. Environ. Microbiol
, vol.77
, pp. 8288-8294
-
-
Argyros, D.A.1
Tripathi, S.A.2
Barrett, T.F.3
Rogers, S.R.4
Feinberg, L.F.5
Olson, D.G.6
-
5
-
-
84889449913
-
"The cellulosome: a natural bacterial strategy to combat biomass recalcitrance"
-
ed M. E. Himmel (Oxford, UK: Blackwell Publishing Ltd.)
-
Bayer, E. A., Henrissat, B., and Lamed, R. (2009). "The cellulosome: a natural bacterial strategy to combat biomass recalcitrance, " in Biomass Recalcitrance ed M. E. Himmel (Oxford, UK: Blackwell Publishing Ltd.), 407-435.
-
(2009)
Biomass Recalcitrance
, pp. 407-435
-
-
Bayer, E.A.1
Henrissat, B.2
Lamed, R.3
-
6
-
-
0021078758
-
Adherence of Clostridium thermocellum to cellulose
-
Bayer, E. A., Kenig, R., and Lamed, R. (1983). Adherence of Clostridium thermocellum to cellulose. J. Bacteriol. 156, 818-827.
-
(1983)
J. Bacteriol
, vol.156
, pp. 818-827
-
-
Bayer, E.A.1
Kenig, R.2
Lamed, R.3
-
7
-
-
0022512490
-
Ultrastructure of the cell surface cellulosome of Clostridium thermocellum and its interaction with cellulose
-
Bayer, E. A., and Lamed, R. (1986). Ultrastructure of the cell surface cellulosome of Clostridium thermocellum and its interaction with cellulose. J. Bacteriol. 167, 828-836.
-
(1986)
J. Bacteriol
, vol.167
, pp. 828-836
-
-
Bayer, E.A.1
Lamed, R.2
-
8
-
-
0021855251
-
Organization and distribution of the cellulosome in Clostridium thermocellum
-
Bayer, E., Setter, E., and Lamed, R. (1985). Organization and distribution of the cellulosome in Clostridium thermocellum. J. Bacteriol. 163, 552-559.
-
(1985)
J. Bacteriol
, vol.163
, pp. 552-559
-
-
Bayer, E.1
Setter, E.2
Lamed, R.3
-
9
-
-
84899957267
-
Thermophilic lignocellulose deconstruction
-
Blumer-Schuette, S. E., Brown, S. D., Sander, K. B., Bayer, E. A., Kataeva, I., Zurawski, J. V., et al. (2013). Thermophilic lignocellulose deconstruction. FEMS Microbiol. Rev. 38, 393-448. doi: 10.1111/1574-6976.12044
-
(2013)
FEMS Microbiol. Rev
, vol.38
, pp. 393-448
-
-
Blumer-Schuette, S.E.1
Brown, S.D.2
Sander, K.B.3
Bayer, E.A.4
Kataeva, I.5
Zurawski, J.V.6
-
10
-
-
46549086940
-
Extremely thermophilic microorganisms for biomass conversion: status and prospects
-
Blumer-Schuette, S. E., Kataeva, I., Westpheling, J., Adams, M. W., and Kelly, R. M. (2008). Extremely thermophilic microorganisms for biomass conversion: status and prospects. Curr. Opin. Biotechnol. 19, 210-217. doi: 10.1016/j.copbio.2008.04.007
-
(2008)
Curr. Opin. Biotechnol
, vol.19
, pp. 210-217
-
-
Blumer-Schuette, S.E.1
Kataeva, I.2
Westpheling, J.3
Adams, M.W.4
Kelly, R.M.5
-
11
-
-
79953158046
-
Modeling the self-assembly of the cellulosome enzyme complex
-
Bomble, Y. J., Beckham, G. T., Matthews, J. F., Nimlos, M. R., Himmel, M. E., and Crowley, M. F. (2011). Modeling the self-assembly of the cellulosome enzyme complex. J. Biol. Chem. 286, 5614-5623. doi: 10.1074/jbc.M110.186031
-
(2011)
J. Biol. Chem
, vol.286
, pp. 5614-5623
-
-
Bomble, Y.J.1
Beckham, G.T.2
Matthews, J.F.3
Nimlos, M.R.4
Himmel, M.E.5
Crowley, M.F.6
-
12
-
-
84886591052
-
Unraveling enzyme discrimination during cellulosome assembly independent of cohesin-dockerin affinity
-
Borne, R., Bayer, E. A., Pagès, S., Perret, S., and Fierobe, H. P. (2013). Unraveling enzyme discrimination during cellulosome assembly independent of cohesin-dockerin affinity. FEBS J. 280, 5764-5779. doi: 10.1111/febs.12497
-
(2013)
FEBS J
, vol.280
, pp. 5764-5779
-
-
Borne, R.1
Bayer, E.A.2
Pagès, S.3
Perret, S.4
Fierobe, H.P.5
-
13
-
-
4043143078
-
Metabolic selectivity and growth of Clostridium thermocellum in continuous culture under elevated hydrostatic pressure
-
Bothun, G. D., Knutson, B. L., Berberich, J. A., Strobel, H. J., and Nokes, S. E. (2004). Metabolic selectivity and growth of Clostridium thermocellum in continuous culture under elevated hydrostatic pressure. Appl. Microbiol. Biotechnol. 65, 149-157. doi: 10.1007/s00253-004-1554-1
-
(2004)
Appl. Microbiol. Biotechnol
, vol.65
, pp. 149-157
-
-
Bothun, G.D.1
Knutson, B.L.2
Berberich, J.A.3
Strobel, H.J.4
Nokes, S.E.5
-
14
-
-
80051980539
-
Mutant alcohol dehydrogenase leads to improved ethanol tolerance in Clostridium thermocellum
-
Brown, S. D., Guss, A. M., Karpinets, T. V., Parks, J. M., Smolin, N., Yang, S., et al. (2011). Mutant alcohol dehydrogenase leads to improved ethanol tolerance in Clostridium thermocellum. Proc. Natl. Acad. Sci. U.S.A. 108, 13752-13757. doi: 10.1073/pnas.1102444108
-
(2011)
Proc. Natl. Acad. Sci. U.S.A
, vol.108
, pp. 13752-13757
-
-
Brown, S.D.1
Guss, A.M.2
Karpinets, T.V.3
Parks, J.M.4
Smolin, N.5
Yang, S.6
-
15
-
-
84863992229
-
Draft genome sequences for Clostridium thermocellum wild-type strain YS and derived cellulose adhesion-defective mutant strain AD2
-
Brown, S. D., Lamed, R., Morag, E., Borovok, I., Shoham, Y., Klingeman, D. M., et al. (2012). Draft genome sequences for Clostridium thermocellum wild-type strain YS and derived cellulose adhesion-defective mutant strain AD2. J. Bacteriol. 194, 3290-3291. doi: 10.1128/JB.00473-12
-
(2012)
J. Bacteriol
, vol.194
, pp. 3290-3291
-
-
Brown, S.D.1
Lamed, R.2
Morag, E.3
Borovok, I.4
Shoham, Y.5
Klingeman, D.M.6
-
16
-
-
52949096100
-
'Construction and evaluation of a Clostridium thermocellum ATCC 27405 whole-genome oligonucleotide microarray'
-
eds J. R. Mielenz, K. T. Klasson, W. S. Adney, and J. D. McMillan (Nashville, TN: Humana Press)
-
Brown, S. D., Raman, B., McKeown, C. K., Kale, S. P., He, Z., and Mielenz, J. R. (2007). "Construction and evaluation of a Clostridium thermocellum ATCC 27405 whole-genome oligonucleotide microarray, " in Applied Biochemistry and Biotecnology, eds J. R. Mielenz, K. T. Klasson, W. S. Adney, and J. D. McMillan (Nashville, TN: Humana Press), 663-674.
-
(2007)
Applied Biochemistry and Biotecnology
, pp. 663-674
-
-
Brown, S.D.1
Raman, B.2
McKeown, C.K.3
Kale, S.P.4
He, Z.5
Mielenz, J.R.6
-
17
-
-
84870834584
-
Proteomic analysis of Clostridium thermocellum ATCC 27405 reveals the upregulation of an alternative transhydrogenase-malate pathway and nitrogen assimilation in cells grown on cellulose
-
Burton, E., and Martin, V. J. (2012). Proteomic analysis of Clostridium thermocellum ATCC 27405 reveals the upregulation of an alternative transhydrogenase-malate pathway and nitrogen assimilation in cells grown on cellulose. Can. J. Microbiol. 58, 1378-1388. doi: 10.1139/cjm-2012-0412
-
(2012)
Can. J. Microbiol
, vol.58
, pp. 1378-1388
-
-
Burton, E.1
Martin, V.J.2
-
18
-
-
48249088897
-
Pyruvate catabolism and hydrogen synthesis pathway genes of Clostridium thermocellum ATCC 27405
-
Carere, C. R., Cicek, N., Levin, D. B., Kalia, V., and Sparling, R. (2008). Pyruvate catabolism and hydrogen synthesis pathway genes of Clostridium thermocellum ATCC 27405. Indian J. Microbiol. 48, 252-266. doi: 10.1007/s12088-008-0036-z
-
(2008)
Indian J. Microbiol
, vol.48
, pp. 252-266
-
-
Carere, C.R.1
Cicek, N.2
Levin, D.B.3
Kalia, V.4
Sparling, R.5
-
19
-
-
0345564859
-
Cellulosome assembly revealed by the crystal structure of the cohesin-dockerin complex
-
Carvalho, A. L., Dias, F. M. V., Prates, J. A. M., Nagy, T., Gilbert, H. J., and Fontes, C. M. G. A. (2003). Cellulosome assembly revealed by the crystal structure of the cohesin-dockerin complex. Proc. Natl. Acad. Sci. U.S.A. 100, 13809-13814. doi: 10.1073/pnas.1936124100
-
(2003)
Proc. Natl. Acad. Sci. U.S.A
, vol.100
, pp. 13809-13814
-
-
Carvalho, A.L.1
Dias, F.M.V.2
Prates, J.A.M.3
Nagy, T.4
Gilbert, H.J.5
Fontes, C.M.G.A.6
-
20
-
-
34447319626
-
Lignin modification improves fermentable sugar yields for biofuel production
-
Chen, F., and Dixon, R. A. (2007). Lignin modification improves fermentable sugar yields for biofuel production. Nat. Biotechnol. 25, 759-761. doi: 10.1038/nbt1316
-
(2007)
Nat. Biotechnol
, vol.25
, pp. 759-761
-
-
Chen, F.1
Dixon, R.A.2
-
21
-
-
79955424834
-
Hydrogen production via thermophilic fermentation of cornstalk by Clostridium thermocellum
-
Cheng, X. Y., and Liu, C. Z. (2011). Hydrogen production via thermophilic fermentation of cornstalk by Clostridium thermocellum. Energy Fuels 25, 1714-1720. doi: 10.1021/ef2000344
-
(2011)
Energy Fuels
, vol.25
, pp. 1714-1720
-
-
Cheng, X.Y.1
Liu, C.Z.2
-
22
-
-
14944356813
-
Cellulase, Clostridia, and ethanol
-
Demain, A. L., Newcomb, M., and Wu, J. D. (2005). Cellulase, Clostridia, and ethanol. Microbiol. Mol. Biol. Rev. 69, 124-154. doi: 10.1128/MMBR.69.1.124-154.2005
-
(2005)
Microbiol. Mol. Biol. Rev
, vol.69
, pp. 124-154
-
-
Demain, A.L.1
Newcomb, M.2
Wu, J.D.3
-
23
-
-
84871402263
-
Redirecting carbon flux through exogenous pyruvate kinase to achieve high ethanol yields in Clostridium thermocellum
-
Deng, Y., Olson, D. G., Zhou, J., Herring, C. D., Joe Shaw, A., and Lynd, L. R. (2013). Redirecting carbon flux through exogenous pyruvate kinase to achieve high ethanol yields in Clostridium thermocellum. Metab. Eng. 15, 151-158. doi: 10.1016/j.ymben.2012.11.006
-
(2013)
Metab. Eng
, vol.15
, pp. 151-158
-
-
Deng, Y.1
Olson, D.G.2
Zhou, J.3
Herring, C.D.4
Joe Shaw, A.5
Lynd, L.R.6
-
24
-
-
0942288120
-
Bacteria engineered for fuel ethanol production: current status
-
Dien, B., Cotta, M., and Jeffries, T. (2003). Bacteria engineered for fuel ethanol production: current status. Appl. Microbiol. Biotechnol. 63, 258-266. doi: 10.1007/s00253-003-1444-y
-
(2003)
Appl. Microbiol. Biotechnol
, vol.63
, pp. 258-266
-
-
Dien, B.1
Cotta, M.2
Jeffries, T.3
-
25
-
-
84869854102
-
How does plant cell wall nanoscale architecture correlate with enzymatic digestibility?
-
Ding, S. Y., Liu, Y. S., Zeng, Y., Himmel, M. E., Baker, J. O., and Bayer, E. A. (2012). How does plant cell wall nanoscale architecture correlate with enzymatic digestibility? Science 338, 1055-1060. doi: 10.1126/science.1227491
-
(2012)
Science
, vol.338
, pp. 1055-1060
-
-
Ding, S.Y.1
Liu, Y.S.2
Zeng, Y.3
Himmel, M.E.4
Baker, J.O.5
Bayer, E.A.6
-
26
-
-
0038643330
-
Regulation of the cellulosomal celS (cel48A) gene of Clostridium thermocellum is growth rate dependent
-
Dror, T. W., Morag, E., Rolider, A., Bayer, E. A., Lamed, R., and Shoham, Y. (2003a). Regulation of the cellulosomal celS (cel48A) gene of Clostridium thermocellum is growth rate dependent. J. Bacteriol. 185, 3042-3048. doi: 10.1128/JB.185.10.3042-3048.2003
-
(2003)
J. Bacteriol
, vol.185
, pp. 3042-3048
-
-
Dror, T.W.1
Morag, E.2
Rolider, A.3
Bayer, E.A.4
Lamed, R.5
Shoham, Y.6
-
27
-
-
0041387504
-
Regulation of expression of scaffoldin-related genes in Clostridium thermocellum
-
Dror, T. W., Rolider, A., Bayer, E. A., Lamed, R., and Shoham, Y. (2003b). Regulation of expression of scaffoldin-related genes in Clostridium thermocellum. J. Bacteriol. 185, 5109-5116. doi: 10.1128/jb.185.17.5109-5116.2003
-
(2003)
J. Bacteriol
, vol.185
, pp. 5109-5116
-
-
Dror, T.W.1
Rolider, A.2
Bayer, E.A.3
Lamed, R.4
Shoham, Y.5
-
28
-
-
15244343830
-
Regulation of major cellulosomal endoglucanases of Clostridium thermocellum differs from that of a prominent cellulosomal xylanase
-
Dror, T. W., Rolider, A., Bayer, E. A., Lamed, R., and Shoham, Y. (2005). Regulation of major cellulosomal endoglucanases of Clostridium thermocellum differs from that of a prominent cellulosomal xylanase. J. Bacteriol. 187, 2261-2266. doi: 10.1128/JB.187.7.2261-2266.2005
-
(2005)
J. Bacteriol
, vol.187
, pp. 2261-2266
-
-
Dror, T.W.1
Rolider, A.2
Bayer, E.A.3
Lamed, R.4
Shoham, Y.5
-
29
-
-
84871906709
-
Form and function of Clostridium thermocellum biofilms
-
Dumitrache, A., Wolfaardt, G., Allen, G., Liss, S. N., and Lynd, L. R. (2013). Form and function of Clostridium thermocellum biofilms. Appl. Environ. Microbiol. 79, 231-239. doi: 10.1128/AEM.02563-12
-
(2013)
Appl. Environ. Microbiol
, vol.79
, pp. 231-239
-
-
Dumitrache, A.1
Wolfaardt, G.2
Allen, G.3
Liss, S.N.4
Lynd, L.R.5
-
30
-
-
27844584367
-
Industrial relevance of thermophilic Archaea
-
Egorova, K., and Antranikian, G. (2005). Industrial relevance of thermophilic Archaea. Curr. Opin. Microbiol. 8, 649-655. doi: 10.1016/j.mib.2005.10.015
-
(2005)
Curr. Opin. Microbiol
, vol.8
, pp. 649-655
-
-
Egorova, K.1
Antranikian, G.2
-
31
-
-
82955187557
-
Closing the carbon balance for fermentation by Clostridium thermocellum (ATCC 27405)
-
Ellis, L. D., Holwerda, E. K., Hogsett, D., Rogers, S., Shao, X., Tschaplinski, T., et al. (2012). Closing the carbon balance for fermentation by Clostridium thermocellum (ATCC 27405). Bioresour. Technol. 103, 293-299. doi: 10.1016/j.biortech.2011.09.128
-
(2012)
Bioresour. Technol
, vol.103
, pp. 293-299
-
-
Ellis, L.D.1
Holwerda, E.K.2
Hogsett, D.3
Rogers, S.4
Shao, X.5
Tschaplinski, T.6
-
32
-
-
84861455774
-
Rational approach to optimize cellulase mixtures for hydrolysis of regenerated cellulose containing residual ionic liquid
-
Engel, P., Krull, S., Seiferheld, B., and Spiess, A. C. (2012). Rational approach to optimize cellulase mixtures for hydrolysis of regenerated cellulose containing residual ionic liquid. Bioresour. Technol. 115, 27-34. doi: 10.1016/j.biortech.2011.10.080
-
(2012)
Bioresour. Technol
, vol.115
, pp. 27-34
-
-
Engel, P.1
Krull, S.2
Seiferheld, B.3
Spiess, A.C.4
-
33
-
-
84881552921
-
High activity cellulase production by recombinant Trichoderma reesei ZU-02 with the enhanced cellobiohydrolase production
-
Fang, H., and Xia, L. (2013). High activity cellulase production by recombinant Trichoderma reesei ZU-02 with the enhanced cellobiohydrolase production. Bioresour. Technol. 144, 693-697. doi: 10.1016/j.biortech.2013.06.120
-
(2013)
Bioresour. Technol
, vol.144
, pp. 693-697
-
-
Fang, H.1
Xia, L.2
-
34
-
-
79958084551
-
Complete genome sequence of the cellulolytic thermophile Clostridium thermocellum DSM1313
-
Feinberg, L., Foden, J., Barrett, T., Davenport, K. W., Bruce, D., Detter, C., et al. (2011). Complete genome sequence of the cellulolytic thermophile Clostridium thermocellum DSM1313. J. Bacteriol. 193, 2906-2907. doi: 10.1128/JB.00322-11
-
(2011)
J. Bacteriol
, vol.193
, pp. 2906-2907
-
-
Feinberg, L.1
Foden, J.2
Barrett, T.3
Davenport, K.W.4
Bruce, D.5
Detter, C.6
-
35
-
-
0033567339
-
Homologous xylanases from Clostridium thermocellum: evidence for bi-functional activity, synergism between xylanase catalytic modules and the presence of xylan-binding domains in enzyme complexes
-
Fernandes, A., Fontes, C., Gilbert, H., Hazlewood, G., Fernandes, T., and Ferreira, L. (1999). Homologous xylanases from Clostridium thermocellum: evidence for bi-functional activity, synergism between xylanase catalytic modules and the presence of xylan-binding domains in enzyme complexes. Biochem. J. 342, 105-110.
-
(1999)
Biochem. J
, vol.342
, pp. 105-110
-
-
Fernandes, A.1
Fontes, C.2
Gilbert, H.3
Hazlewood, G.4
Fernandes, T.5
Ferreira, L.6
-
36
-
-
83055171617
-
Chemically defined medium for growth of Clostridium thermocellum, a cellulolytic thermophilic anaerobe
-
Fleming, R., and Quinn, L. (1971). Chemically defined medium for growth of Clostridium thermocellum, a cellulolytic thermophilic anaerobe. Appl. Microbiol. 21, 967.
-
(1971)
Appl. Microbiol
, vol.21
, pp. 967
-
-
Fleming, R.1
Quinn, L.2
-
37
-
-
77953631886
-
Cellulosomes: highly efficient nanomachines designed to deconstruct plant cell wall complex carbohydrates
-
Fontes, C. M., and Gilbert, H. J. (2010). Cellulosomes: highly efficient nanomachines designed to deconstruct plant cell wall complex carbohydrates. Annu. Rev. Biochem. 79, 655-681. doi: 10.1146/annurev-biochem-091208-085603
-
(2010)
Annu. Rev. Biochem
, vol.79
, pp. 655-681
-
-
Fontes, C.M.1
Gilbert, H.J.2
-
38
-
-
0000591894
-
Characterization of Clostridium thermocellum JW20
-
Freier, D., Mothershed, C. P., and Wiegel, J. (1988). Characterization of Clostridium thermocellum JW20. Appl. Environ. Microbiol. 54, 204-211.
-
(1988)
Appl. Environ. Microbiol
, vol.54
, pp. 204-211
-
-
Freier, D.1
Mothershed, C.P.2
Wiegel, J.3
-
39
-
-
79952762070
-
Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass
-
Fu, C., Mielenz, J. R., Xiao, X., Ge, Y., Hamilton, C. Y., Rodriguez, M., et al. (2011). Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass. Proc. Natl. Acad. Sci. U.S.A. 108, 3803-3808. doi: 10.1073/pnas.1100310108
-
(2011)
Proc. Natl. Acad. Sci. U.S.A
, vol.108
, pp. 3803-3808
-
-
Fu, C.1
Mielenz, J.R.2
Xiao, X.3
Ge, Y.4
Hamilton, C.Y.5
Rodriguez, M.6
-
40
-
-
0018869497
-
Studies on cellulase production by Clostridium thermocellum
-
Garcia-Martinez, D. V., Shinmyo, A., Madia, A., and Demain, A. L. (1980). Studies on cellulase production by Clostridium thermocellum. Eur. J. Appl. Microbiol. Biotechnol. 9, 189-197. doi: 10.1007/BF00504485
-
(1980)
Eur. J. Appl. Microbiol. Biotechnol
, vol.9
, pp. 189-197
-
-
Garcia-Martinez, D.V.1
Shinmyo, A.2
Madia, A.3
Demain, A.L.4
-
41
-
-
84863009629
-
Enhanced cellulose degradation by targeted integration of a cohesin-fused β-glucosidase into the Clostridium thermocellum cellulosome
-
Gefen, G., Anbar, M., Morag, E., Lamed, R., and Bayer, E. A. (2012). Enhanced cellulose degradation by targeted integration of a cohesin-fused β-glucosidase into the Clostridium thermocellum cellulosome. Proc. Natl. Acad. Sci. U.S.A. 109, 10298-10303. doi: 10.1073/pnas.1202747109
-
(2012)
Proc. Natl. Acad. Sci. U.S.A
, vol.109
, pp. 10298-10303
-
-
Gefen, G.1
Anbar, M.2
Morag, E.3
Lamed, R.4
Bayer, E.A.5
-
42
-
-
76749100206
-
Effect of key factors on hydrogen production from cellulose in a co-culture of Clostridium thermocellum and Clostridium thermopalmarium
-
Geng, A., He, Y., Qian, C., Yan, X., and Zhou, Z. (2010). Effect of key factors on hydrogen production from cellulose in a co-culture of Clostridium thermocellum and Clostridium thermopalmarium. Bioresour. Technol. 101, 4029-4033. doi: 10.1016/j.biortech.2010.01.042
-
(2010)
Bioresour. Technol
, vol.101
, pp. 4029-4033
-
-
Geng, A.1
He, Y.2
Qian, C.3
Yan, X.4
Zhou, Z.5
-
43
-
-
70349971135
-
Metabolic pathways of Clostridia for producing butanol
-
Gheshlaghi, R., Scharer, J., Moo-Young, M., and Chou, C. (2009). Metabolic pathways of Clostridia for producing butanol. Biotechnol. Adv. 27, 764-781. doi: 10.1016/j.biotechadv.2009.06.002
-
(2009)
Biotechnol. Adv
, vol.27
, pp. 764-781
-
-
Gheshlaghi, R.1
Scharer, J.2
Moo-Young, M.3
Chou, C.4
-
44
-
-
84867464292
-
The hierarchical structure and mechanics of plant materials
-
Gibson, L. J. (2012). The hierarchical structure and mechanics of plant materials. J. R. Soc. Interface 9, 2749-2766. doi: 10.1098/rsif.2012.0341
-
(2012)
J. R. Soc. Interface
, vol.9
, pp. 2749-2766
-
-
Gibson, L.J.1
-
45
-
-
33947256880
-
Cellulosomes: microbial nanomachines that display plasticity in quaternary structure
-
Gilbert, H. J. (2007). Cellulosomes: microbial nanomachines that display plasticity in quaternary structure. Mol. Microbiol. 63, 1568-1576. doi: 10.1111/j.1365-2958.2007.05640.x
-
(2007)
Mol. Microbiol
, vol.63
, pp. 1568-1576
-
-
Gilbert, H.J.1
-
46
-
-
34948817185
-
Global view of the Clostridium thermocellum cellulosome revealed by quantitative proteomic analysis
-
Gold, N. D., and Martin, V. J. (2007). Global view of the Clostridium thermocellum cellulosome revealed by quantitative proteomic analysis. J. Bacteriol. 189, 6787-6795. doi: 10.1128/JB.00882-07
-
(2007)
J. Bacteriol
, vol.189
, pp. 6787-6795
-
-
Gold, N.D.1
Martin, V.J.2
-
48
-
-
77749315426
-
Cellulose crystallinity-a key predictor of the enzymatic hydrolysis rate
-
Hall, M., Bansal, P., Lee, J. H., Realff, M. J., and Bommarius, A. S. (2010). Cellulose crystallinity-a key predictor of the enzymatic hydrolysis rate. FEBS J. 277, 1571-1582. doi: 10.1111/j.1742-4658.2010.07585.x
-
(2010)
FEBS J
, vol.277
, pp. 1571-1582
-
-
Hall, M.1
Bansal, P.2
Lee, J.H.3
Realff, M.J.4
Bommarius, A.S.5
-
49
-
-
0036036491
-
Construction of a stable microbial community with high cellulose-degradation ability
-
Haruta, S., Cui, Z., Huang, Z., Li, M., Ishii, M., and Igarashi, Y. (2002). Construction of a stable microbial community with high cellulose-degradation ability. Appl. Microbiol. Biotechnol. 59, 529-534. doi: 10.1007/s00253-002-1026-4
-
(2002)
Appl. Microbiol. Biotechnol
, vol.59
, pp. 529-534
-
-
Haruta, S.1
Cui, Z.2
Huang, Z.3
Li, M.4
Ishii, M.5
Igarashi, Y.6
-
50
-
-
84876493591
-
A review of enzymes and microbes for lignocellulosic biorefinery and the possibility of their application to consolidated bioprocessing technology
-
Hasunuma, T., Okazaki, F., Okai, N., Hara, K. Y., Ishii, J., and Kondo, A. (2013). A review of enzymes and microbes for lignocellulosic biorefinery and the possibility of their application to consolidated bioprocessing technology. Bioresour. Technol. 135, 513-522. doi: 10.1016/j.biortech.2012.10.047
-
(2013)
Bioresour. Technol
, vol.135
, pp. 513-522
-
-
Hasunuma, T.1
Okazaki, F.2
Okai, N.3
Hara, K.Y.4
Ishii, J.5
Kondo, A.6
-
51
-
-
84987657875
-
-
(Accessed May 8, 2014)
-
Hauser, L., Land, M., and Larimer, F. (2010). Clostridium Thermocellum ATCC 27405 Analysis Files. Available online at: http://genome.ornl.gov/microbial/cthe/(Accessed May 8, 2014).
-
(2010)
Clostridium Thermocellum ATCC 27405 Analysis Files
-
-
Hauser, L.1
Land, M.2
Larimer, F.3
-
52
-
-
80052735227
-
Mechanisms of enhanced cellulosic bioethanol fermentation by co-cultivation of Clostridium and Thermoanaerobacter spp
-
He, Q., Hemme, C. L., Jiang, H., He, Z., and Zhou, J. (2011). Mechanisms of enhanced cellulosic bioethanol fermentation by co-cultivation of Clostridium and Thermoanaerobacter spp. Bioresour. Technol. 102, 9586-9592. doi: 10.1016/j.biortech.2011.07.098
-
(2011)
Bioresour. Technol
, vol.102
, pp. 9586-9592
-
-
He, Q.1
Hemme, C.L.2
Jiang, H.3
He, Z.4
Zhou, J.5
-
53
-
-
78649689623
-
Sequencing of multiple clostridial genomes related to biomass conversion and biofuel production
-
Hemme, C. L., Mouttaki, H., Lee, Y. J., Zhang, G., Goodwin, L., Lucas, S., et al. (2010). Sequencing of multiple clostridial genomes related to biomass conversion and biofuel production. J. Bacteriol. 192, 6494-6496. doi: 10.1128/JB.01064-10
-
(2010)
J. Bacteriol
, vol.192
, pp. 6494-6496
-
-
Hemme, C.L.1
Mouttaki, H.2
Lee, Y.J.3
Zhang, G.4
Goodwin, L.5
Lucas, S.6
-
54
-
-
0019158897
-
Development of ethanol tolerance in Clostridium thermocellum: effect of growth temperature
-
Herrero, A., and Gomez, R. (1980). Development of ethanol tolerance in Clostridium thermocellum: effect of growth temperature. Appl. Environ. Microbiol. 40, 571-577.
-
(1980)
Appl. Environ. Microbiol
, vol.40
, pp. 571-577
-
-
Herrero, A.1
Gomez, R.2
-
55
-
-
68649120176
-
Genetic modification of lignin biosynthesis for improved biofuel production
-
Hisano, H., Nandakumar, R., and Wang, Z. Y. (2009). Genetic modification of lignin biosynthesis for improved biofuel production. In Vitro Cell. Dev. Biol. Plant 45, 306-313. doi: 10.1007/s11627-009-9219-5
-
(2009)
In Vitro Cell. Dev. Biol. Plant
, vol.45
, pp. 306-313
-
-
Hisano, H.1
Nandakumar, R.2
Wang, Z.Y.3
-
56
-
-
0000694110
-
Ethanol production by Clostridium thermocellum grown on hydrothermally and organosolv-pretreated lignocellulosic materials
-
Hörmeyer, H. F., Tailliez, P., Millet, J., Girard, H., Bonn, G., Bobleter, O., et al. (1988). Ethanol production by Clostridium thermocellum grown on hydrothermally and organosolv-pretreated lignocellulosic materials. Appl. Microbiol. Biotechnol. 29, 528-535. doi: 10.1007/BF00260980
-
(1988)
Appl. Microbiol. Biotechnol
, vol.29
, pp. 528-535
-
-
Hörmeyer, H.F.1
Tailliez, P.2
Millet, J.3
Girard, H.4
Bonn, G.5
Bobleter, O.6
-
58
-
-
80053500301
-
The enhancement of enzymatic hydrolysis of lignocellulosic substrates by the addition of accessory enzymes such as xylanase: is it an additive or synergistic effect?
-
Hu, J., Arantes, V., and Saddler, J. (2011). The enhancement of enzymatic hydrolysis of lignocellulosic substrates by the addition of accessory enzymes such as xylanase: is it an additive or synergistic effect? Biotechnol. Biofuels 4, 1-14. doi: 10.1186/1754-6834-4-36
-
(2011)
Biotechnol. Biofuels
, vol.4
, pp. 1-14
-
-
Hu, J.1
Arantes, V.2
Saddler, J.3
-
59
-
-
0038041246
-
Enhancement of enzymatic hydrolysis of lignocellulosic wastes by microwave pretreatment under atmospheric pressure
-
Intanakul, P., Krairiksh, M., and Kitchaiya, P. (2003). Enhancement of enzymatic hydrolysis of lignocellulosic wastes by microwave pretreatment under atmospheric pressure. J. Wood Chem. Technol. 23, 217-225. doi: 10.1081/WCT-120021926
-
(2003)
J. Wood Chem. Technol
, vol.23
, pp. 217-225
-
-
Intanakul, P.1
Krairiksh, M.2
Kitchaiya, P.3
-
60
-
-
58549116354
-
Influence of initial cellulose concentration on the carbon flow distribution during batch fermentation by Clostridium thermocellum ATCC 27405
-
Islam, R., Cicek, N., Sparling, R., and Levin, D. (2009). Influence of initial cellulose concentration on the carbon flow distribution during batch fermentation by Clostridium thermocellum ATCC 27405. Appl. Microbiol. Biotechnol. 82, 141-148. doi: 10.1007/s00253-008-1763-0
-
(2009)
Appl. Microbiol. Biotechnol
, vol.82
, pp. 141-148
-
-
Islam, R.1
Cicek, N.2
Sparling, R.3
Levin, D.4
-
61
-
-
77953109724
-
Diversity of bacteria and glycosyl hydrolase family 48 genes in cellulolytic consortia enriched from thermophilic biocompost
-
Izquierdo, J. A., Sizova, M. V., and Lynd, L. R. (2010). Diversity of bacteria and glycosyl hydrolase family 48 genes in cellulolytic consortia enriched from thermophilic biocompost. Appl. Environ. Microbiol. 76, 3545-3553. doi: 10.1128/AEM.02689-09
-
(2010)
Appl. Environ. Microbiol
, vol.76
, pp. 3545-3553
-
-
Izquierdo, J.A.1
Sizova, M.V.2
Lynd, L.R.3
-
62
-
-
0019503894
-
Chemically defined minimal medium for growth of the anaerobic cellulolytic thermophile Clostridium thermocellum
-
Johnson, E. A., Madia, A., and Demain, A. L. (1981). Chemically defined minimal medium for growth of the anaerobic cellulolytic thermophile Clostridium thermocellum. Appl. Environ. Microbiol. 41, 1060-1062.
-
(1981)
Appl. Environ. Microbiol
, vol.41
, pp. 1060-1062
-
-
Johnson, E.A.1
Madia, A.2
Demain, A.L.3
-
63
-
-
0019974576
-
Saccharification of complex cellulosic substrates by the cellulase system from Clostridium thermocellum
-
Johnson, E. A., Sakajoh, M., Halliwell, G., Madia, A., and Demain, A. L. (1982). Saccharification of complex cellulosic substrates by the cellulase system from Clostridium thermocellum. Appl. Environ. Microbiol. 43, 1125-1132.
-
(1982)
Appl. Environ. Microbiol
, vol.43
, pp. 1125-1132
-
-
Johnson, E.A.1
Sakajoh, M.2
Halliwell, G.3
Madia, A.4
Demain, A.L.5
-
64
-
-
84987600036
-
"Engineering more thermostable metabolic enzymes for improving CBP organisms"
-
(Clearwater, FL: Society for Industrial Microbiology)
-
Kastelowitz, N., Sammond, D., Akahuhta, M., Wui, H., Lin, P., Guss, A., et al. (2014). "Engineering more thermostable metabolic enzymes for improving CBP organisms, " in 36th Symposium on Biotechnology for Fuels and Chemicals (Clearwater, FL: Society for Industrial Microbiology).
-
(2014)
36th Symposium on Biotechnology for Fuels and Chemicals
-
-
Kastelowitz, N.1
Sammond, D.2
Akahuhta, M.3
Wui, H.4
Lin, P.5
Guss, A.6
-
65
-
-
10644262383
-
Effective cellulose degradation by a mixed-culture system composed of a cellulolytic Clostridium and aerobic non-cellulolytic bacteria
-
Kato, S., Haruta, S., Cui, Z. J., Ishii, M., and Igarashi, Y. (2004). Effective cellulose degradation by a mixed-culture system composed of a cellulolytic Clostridium and aerobic non-cellulolytic bacteria. FEMS Microbiol. Ecol. 51, 133-142. doi: 10.1016/j.femsec.2004.07.015
-
(2004)
FEMS Microbiol. Ecol
, vol.51
, pp. 133-142
-
-
Kato, S.1
Haruta, S.2
Cui, Z.J.3
Ishii, M.4
Igarashi, Y.5
-
66
-
-
84883873027
-
Draft genome sequence of the cellulolytic Clostridium thermocellum wild-type strain BC1 playing a role in cellulosic biomass degradation
-
Koeck, D. E., Wibberg, D., Koellmeier, T., Blom, J., Jaenicke, S., Winkler, A., et al. (2013). Draft genome sequence of the cellulolytic Clostridium thermocellum wild-type strain BC1 playing a role in cellulosic biomass degradation. J. Biotechnol. 168, 62-63. doi: 10.1016/j.jbiotec.2013.08.011
-
(2013)
J. Biotechnol
, vol.168
, pp. 62-63
-
-
Koeck, D.E.1
Wibberg, D.2
Koellmeier, T.3
Blom, J.4
Jaenicke, S.5
Winkler, A.6
-
67
-
-
84864089016
-
In vitro reconstitution of the complete Clostridium thermocellum cellulosome and synergistic activity on crystalline cellulose
-
Krauss, J., Zverlov, V. V., and Schwarz, W. H. (2012). In vitro reconstitution of the complete Clostridium thermocellum cellulosome and synergistic activity on crystalline cellulose. Appl. Environ. Microbiol. 78, 4301-4307. doi: 10.1128/aem.07959-11
-
(2012)
Appl. Environ. Microbiol
, vol.78
, pp. 4301-4307
-
-
Krauss, J.1
Zverlov, V.V.2
Schwarz, W.H.3
-
68
-
-
84872663253
-
Carbohydrate derived-pseudo-lignin can retard cellulose biological conversion
-
Kumar, R., Hu, F., Sannigrahi, P., Jung, S., Ragauskas, A. J., and Wyman, C. E. (2013). Carbohydrate derived-pseudo-lignin can retard cellulose biological conversion. Biotechnol. Bioeng. 110, 737-753. doi: 10.1002/bit.24744
-
(2013)
Biotechnol. Bioeng
, vol.110
, pp. 737-753
-
-
Kumar, R.1
Hu, F.2
Sannigrahi, P.3
Jung, S.4
Ragauskas, A.J.5
Wyman, C.E.6
-
69
-
-
67650713527
-
Hydrogen production from cellulose in a two-stage process combining fermentation and electrohydrogenesis
-
Lalaurette, E., Thammannagowda, S., Mohagheghi, A., Maness, P. C., and Logan, B. E. (2009). Hydrogen production from cellulose in a two-stage process combining fermentation and electrohydrogenesis. Int. J. Hydrogen Energy 34, 6201-6210. doi: 10.1016/j.ijhydene.2009.05.112
-
(2009)
Int. J. Hydrogen Energy
, vol.34
, pp. 6201-6210
-
-
Lalaurette, E.1
Thammannagowda, S.2
Mohagheghi, A.3
Maness, P.C.4
Logan, B.E.5
-
70
-
-
0000304953
-
Effects of stirring and hydrogen on fermentation products of Clostridium thermocellum
-
Lamed, R., Lobos, J., and Su, T. (1988). Effects of stirring and hydrogen on fermentation products of Clostridium thermocellum. Appl. Environ. Microbiol. 54, 1216-1221.
-
(1988)
Appl. Environ. Microbiol
, vol.54
, pp. 1216-1221
-
-
Lamed, R.1
Lobos, J.2
Su, T.3
-
71
-
-
0021016163
-
Characterization of a cellulose-binding, cellulase-containing complex in Clostridium thermocellum
-
Lamed, R., Setter, E., and Bayer, E. (1983). Characterization of a cellulose-binding, cellulase-containing complex in Clostridium thermocellum. J. Bacteriol. 156, 828-836.
-
(1983)
J. Bacteriol
, vol.156
, pp. 828-836
-
-
Lamed, R.1
Setter, E.2
Bayer, E.3
-
72
-
-
0019291045
-
Ethanol production by thermophilic bacteria: relationship between fermentation product yields of and catabolic enzyme activities in Clostridium thermocellum and Thermoanaerobium brockii
-
Lamed, R., and Zeikus, J. (1980). Ethanol production by thermophilic bacteria: relationship between fermentation product yields of and catabolic enzyme activities in Clostridium thermocellum and Thermoanaerobium brockii. J. Bacteriol. 144, 569-578.
-
(1980)
J. Bacteriol
, vol.144
, pp. 569-578
-
-
Lamed, R.1
Zeikus, J.2
-
73
-
-
0036405483
-
The acid hydrolysis of sugarcane bagasse hemicellulose to produce xylose, arabinose, glucose and other products
-
Lavarack, B. P., Griffin, G. J., and Rodman, D. (2002). The acid hydrolysis of sugarcane bagasse hemicellulose to produce xylose, arabinose, glucose and other products. Biomass Bioenergy 23, 367-380. doi: 10.1016/S0961-9534(02)00066-1
-
(2002)
Biomass Bioenergy
, vol.23
, pp. 367-380
-
-
Lavarack, B.P.1
Griffin, G.J.2
Rodman, D.3
-
74
-
-
0021207646
-
Homoacetogenic fermentation of cellulose by a coculture of Clostridium thermocellum and Acetogenium kivui
-
Le Ruyet, P., Dubourguier, H., and Albagnac, G. (1984). Homoacetogenic fermentation of cellulose by a coculture of Clostridium thermocellum and Acetogenium kivui. Appl. Environ. Microbiol. 48, 893-894.
-
(1984)
Appl. Environ. Microbiol
, vol.48
, pp. 893-894
-
-
Le Ruyet, P.1
Dubourguier, H.2
Albagnac, G.3
-
75
-
-
84857912747
-
Metabolic control of Clostridium thermocellum via inhibition of hydrogenase activity and the glucose transport rate
-
Li, H. F., Knutson, B. L., Nokes, S. E., Lynn, B. C., and Flythe, M. D. (2012). Metabolic control of Clostridium thermocellum via inhibition of hydrogenase activity and the glucose transport rate. Appl. Microbiol. Biotechnol. 93, 1777-1784. doi: 10.1007/s00253-011-3812-3
-
(2012)
Appl. Microbiol. Biotechnol
, vol.93
, pp. 1777-1784
-
-
Li, H.F.1
Knutson, B.L.2
Nokes, S.E.3
Lynn, B.C.4
Flythe, M.D.5
-
76
-
-
84886938785
-
Industrial robustness: understanding the mechanism of tolerance for the populus hydrolysate-tolerant mutant strain of Clostridium thermocellum
-
Linville, J. L., Rodriguez, M. Jr., Land, M., Syed, M. H., Engle, N. L., Tschaplinski, T. J., et al. (2013). Industrial robustness: understanding the mechanism of tolerance for the populus hydrolysate-tolerant mutant strain of Clostridium thermocellum. PLoS ONE 8:e78829. doi: 10.1371/journal.pone.0078829
-
(2013)
PLoS ONE
, vol.8
-
-
Linville, J.L.1
Rodriguez, M.2
Land, M.3
Syed, M.H.4
Engle, N.L.5
Tschaplinski, T.J.6
-
77
-
-
84890566765
-
Enhancing the cellulose-degrading activity of cellulolytic bacteria CTL-6 (Clostridium thermocellum) by co-culture with non-cellulolytic bacteria W2-10 (Geobacillus sp.)
-
Lü, Y., Li, N., Yuan, X., Hua, B., Wang, J., Ishii, M., et al. (2013). Enhancing the cellulose-degrading activity of cellulolytic bacteria CTL-6 (Clostridium thermocellum) by co-culture with non-cellulolytic bacteria W2-10 (Geobacillus sp.). Appl. Biochem. Biotechnol. 171, 1578-1588. doi: 10.1007/s12010-013-0431-8
-
(2013)
Appl. Biochem. Biotechnol
, vol.171
, pp. 1578-1588
-
-
Lü, Y.1
Li, N.2
Yuan, X.3
Hua, B.4
Wang, J.5
Ishii, M.6
-
78
-
-
33750838967
-
Enzyme-microbe synergy during cellulose hydrolysis by Clostridium thermocellum
-
Lu, Y., Zhang, Y.-H. P., and Lynd, L. R. (2006). Enzyme-microbe synergy during cellulose hydrolysis by Clostridium thermocellum. Proc. Natl. Acad. Sci. U.S.A. 103, 16165-16169. doi: 10.1073/pnas.0605381103
-
(2006)
Proc. Natl. Acad. Sci. U.S.A
, vol.103
, pp. 16165-16169
-
-
Lu, Y.1
Zhang, Y.-H.P.2
Lynd, L.R.3
-
79
-
-
84875486419
-
Isolation and characterization of two thermophilic cellulolytic strains of Clostridium thermocellum from a compost sample
-
Lv, W., and Yu, Z. (2013). Isolation and characterization of two thermophilic cellulolytic strains of Clostridium thermocellum from a compost sample. J. Appl. Microbiol. 114, 1001-1007. doi: 10.1111/jam.12112
-
(2013)
J. Appl. Microbiol
, vol.114
, pp. 1001-1007
-
-
Lv, W.1
Yu, Z.2
-
80
-
-
0030378473
-
Overview and evaluation of fuel ethanol from cellulosic biomass: technology, economics, the environment, and policy
-
Lynd, L. R. (1996). Overview and evaluation of fuel ethanol from cellulosic biomass: technology, economics, the environment, and policy. Annu. Rev. Energy Environ. 21, 403-465. doi: 10.1146/annurev.energy.21.1.403
-
(1996)
Annu. Rev. Energy Environ
, vol.21
, pp. 403-465
-
-
Lynd, L.R.1
-
81
-
-
0024404585
-
Fermentation of cellulosic substrates in batch and continuous culture by Clostridium thermocellum
-
Lynd, L. R., Grethlein, H. E., and Wolkin, R. H. (1989). Fermentation of cellulosic substrates in batch and continuous culture by Clostridium thermocellum. Appl. Environ. Microbiol. 55, 3131-3139.
-
(1989)
Appl. Environ. Microbiol
, vol.55
, pp. 3131-3139
-
-
Lynd, L.R.1
Grethlein, H.E.2
Wolkin, R.H.3
-
82
-
-
25844505728
-
Consolidated bioprocessing of cellulosic biomass: an update
-
Lynd, L. R., van Zyl, W. H., McBride, J. E., and Laser, M. (2005). Consolidated bioprocessing of cellulosic biomass: an update. Curr. Opin. Biotechnol. 16, 577-583. doi: 10.1016/j.copbio.2005.08.009
-
(2005)
Curr. Opin. Biotechnol
, vol.16
, pp. 577-583
-
-
Lynd, L.R.1
van Zyl, W.H.2
McBride, J.E.3
Laser, M.4
-
83
-
-
0036714783
-
Microbial cellulose utilization: fundamentals and biotechnology
-
Lynd, L. R., Weimer, P. J., van Zyl, W. H., and Pretorius, I. S. (2002). Microbial cellulose utilization: fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66, 506-577. doi: 10.1128/MMBR.66.3.506-577.2002
-
(2002)
Microbiol. Mol. Biol. Rev
, vol.66
, pp. 506-577
-
-
Lynd, L.R.1
Weimer, P.J.2
van Zyl, W.H.3
Pretorius, I.S.4
-
84
-
-
14944364633
-
The culture and physiology of a thermophilic cellulose-fermenting bacterium
-
McBee, R. (1948). The culture and physiology of a thermophilic cellulose-fermenting bacterium. J. Bacteriol. 56, 653-663.
-
(1948)
J. Bacteriol
, vol.56
, pp. 653-663
-
-
McBee, R.1
-
85
-
-
0008771953
-
The anaerobic thermophilic cellulolytic bacteria
-
McBee, R. (1950). The anaerobic thermophilic cellulolytic bacteria. Bacteriol. Rev. 14, 51-63.
-
(1950)
Bacteriol. Rev
, vol.14
, pp. 51-63
-
-
McBee, R.1
-
86
-
-
0038030390
-
The characteristics of Clostridium thermocellum
-
McBee, R. (1954). The characteristics of Clostridium thermocellum. J. Bacteriol. 67, 505-506.
-
(1954)
J. Bacteriol
, vol.67
, pp. 505-506
-
-
McBee, R.1
-
87
-
-
68349131626
-
The rosettazyme: a synthetic cellulosome
-
Mitsuzawa, S., Kagawa, H., Li, Y., Chan, S. L., Paavola, C. D., and Trent, J. D. (2009). The rosettazyme: a synthetic cellulosome. J. Biotechnol. 143, 139-144. doi: 10.1016/j.jbiotec.2009.06.019
-
(2009)
J. Biotechnol
, vol.143
, pp. 139-144
-
-
Mitsuzawa, S.1
Kagawa, H.2
Li, Y.3
Chan, S.L.4
Paavola, C.D.5
Trent, J.D.6
-
88
-
-
84879973036
-
A targetron system for gene targeting in thermophiles and its application in Clostridium thermocellum
-
Mohr, G., Hong, W., Zhang, J., Cui, G.-Z., Yang, Y., Cui, Q., et al. (2013). A targetron system for gene targeting in thermophiles and its application in Clostridium thermocellum. PLoS ONE 8:e69032. doi: 10.1371/journal.pone.0069032
-
(2013)
PLoS ONE
, vol.8
-
-
Mohr, G.1
Hong, W.2
Zhang, J.3
Cui, G.-Z.4
Yang, Y.5
Cui, Q.6
-
89
-
-
0025064311
-
Characterization of a symbiotic coculture of Clostridium thermohydrosulfuricum YM3 and Clostridium thermocellum YM4
-
Mori, Y. (1990). Characterization of a symbiotic coculture of Clostridium thermohydrosulfuricum YM3 and Clostridium thermocellum YM4. Appl. Environ. Microbiol. 56, 37-42.
-
(1990)
Appl. Environ. Microbiol
, vol.56
, pp. 37-42
-
-
Mori, Y.1
-
90
-
-
80052808117
-
Butanol production from crystalline cellulose by cocultured Clostridium thermocellum and Clostridium saccharoperbutylacetonicum N1-4
-
Nakayama, S., Kiyoshi, K., Kadokura, T., and Nakazato, A. (2011). Butanol production from crystalline cellulose by cocultured Clostridium thermocellum and Clostridium saccharoperbutylacetonicum N1-4. Appl. Environ. Microbiol. 77, 6470-6475. doi: 10.1128/AEM.00706-11
-
(2011)
Appl. Environ. Microbiol
, vol.77
, pp. 6470-6475
-
-
Nakayama, S.1
Kiyoshi, K.2
Kadokura, T.3
Nakazato, A.4
-
91
-
-
58149479219
-
Cellodextrin and laminaribiose ABC transporters in Clostridium thermocellum
-
Nataf, Y., Yaron, S., Stahl, F., Lamed, R., Bayer, E. A., Scheper, T. H., et al. (2009). Cellodextrin and laminaribiose ABC transporters in Clostridium thermocellum. J. Bacteriol. 191, 203-209. doi: 10.1128/jb.01190-08
-
(2009)
J. Bacteriol
, vol.191
, pp. 203-209
-
-
Nataf, Y.1
Yaron, S.2
Stahl, F.3
Lamed, R.4
Bayer, E.A.5
Scheper, T.H.6
-
92
-
-
0019488602
-
Ethanol production by thermophilic bacteria: fermentation of cellulosic substrates by cocultures of Clostridium thermocellum and Clostridium thermohydrosulfuricum
-
Ng, T. K., Ben-Bassat, A., and Zeikus, J. (1981). Ethanol production by thermophilic bacteria: fermentation of cellulosic substrates by cocultures of Clostridium thermocellum and Clostridium thermohydrosulfuricum. Appl. Environ. Microbiol. 41, 1337-1343.
-
(1981)
Appl. Environ. Microbiol
, vol.41
, pp. 1337-1343
-
-
Ng, T.K.1
Ben-Bassat, A.2
Zeikus, J.3
-
93
-
-
0019852209
-
Purification and characterization of an endoglucanase (1, 4-beta-D-glucan glucanohydrolase) from Clostridium thermocellum
-
Ng, T. K., and Zeikus, J. G. (1981). Purification and characterization of an endoglucanase (1, 4-beta-D-glucan glucanohydrolase) from Clostridium thermocellum. Biochem. J. 199, 341-350.
-
(1981)
Biochem. J
, vol.199
, pp. 341-350
-
-
Ng, T.K.1
Zeikus, J.G.2
-
94
-
-
84860791422
-
Computational design and characterization of a temperature-sensitive plasmid replicon for gram positive thermophiles
-
Olson, D. G., and Lynd, L. R. (2012a). Computational design and characterization of a temperature-sensitive plasmid replicon for gram positive thermophiles. J. Biol. Eng. 6, 1-10. doi: 10.1186/1754-1611-6-5
-
(2012)
J. Biol. Eng
, vol.6
, pp. 1-10
-
-
Olson, D.G.1
Lynd, L.R.2
-
95
-
-
84861156874
-
"Transformation of Clostridium thermocellum by electroporation"
-
ed H. Gilbert (Waltham, MA: Academic Press)
-
Olson, D. G., and Lynd, L. R. (2012b). "Transformation of Clostridium thermocellum by electroporation, " in Methods in Enzymology, ed H. Gilbert (Waltham, MA: Academic Press), 317-330.
-
(2012)
Methods in Enzymology
, pp. 317-330
-
-
Olson, D.G.1
Lynd, L.R.2
-
96
-
-
84861982164
-
Recent progress in consolidated bioprocessing
-
Olson, D. G., McBride, J. E., Joe Shaw, A., and Lynd, L. R. (2012). Recent progress in consolidated bioprocessing. Curr. Opin. Biotechnol. 23, 396-405. doi: 10.1016/j.copbio.2011.11.026
-
(2012)
Curr. Opin. Biotechnol
, vol.23
, pp. 396-405
-
-
Olson, D.G.1
McBride, J.E.2
Joe Shaw, A.3
Lynd, L.R.4
-
97
-
-
78049278939
-
Deletion of the Cel48S cellulase from Clostridium thermocellum
-
Olson, D. G., Tripathi, S. A., Giannone, R. J., Lo, J., Caiazza, N. C., Hogsett, D. A., et al. (2010). Deletion of the Cel48S cellulase from Clostridium thermocellum. Proc. Natl. Acad. Sci. U.S.A. 107, 17727-17732. doi: 10.1073/pnas.1003584107
-
(2010)
Proc. Natl. Acad. Sci. U.S.A
, vol.107
, pp. 17727-17732
-
-
Olson, D.G.1
Tripathi, S.A.2
Giannone, R.J.3
Lo, J.4
Caiazza, N.C.5
Hogsett, D.A.6
-
98
-
-
34748818715
-
Dilute acid hydrolysis of cellulose and cellulosic bio-waste using a microwave reactor system
-
Orozco, A., Ahmad, M., Rooney, D., and Walker, G. (2007). Dilute acid hydrolysis of cellulose and cellulosic bio-waste using a microwave reactor system. Process Saf. Environ. Prot. 85, 446-449. doi: 10.1205/psep07003
-
(2007)
Process Saf. Environ. Prot
, vol.85
, pp. 446-449
-
-
Orozco, A.1
Ahmad, M.2
Rooney, D.3
Walker, G.4
-
99
-
-
0026621578
-
Identification of the cellulose-binding domain of the cellulosome subunit S1 from Clostridium thermocellum YS
-
Poole, D. M., Morag, E., Lamed, R., Bayer, E. A., Hazlewood, G. P., and Gilbert, H. J. (1992). Identification of the cellulose-binding domain of the cellulosome subunit S1 from Clostridium thermocellum YS. FEMS Microbiol. Lett. 99, 181-186.
-
(1992)
FEMS Microbiol. Lett
, vol.99
, pp. 181-186
-
-
Poole, D.M.1
Morag, E.2
Lamed, R.3
Bayer, E.A.4
Hazlewood, G.P.5
Gilbert, H.J.6
-
100
-
-
0025907675
-
The degradation pattern of cellulose by extracellular cellulases of aerobic and anaerobic microorganisms
-
Puls, J., and Wood, T. M. (1991). The degradation pattern of cellulose by extracellular cellulases of aerobic and anaerobic microorganisms. Bioresour. Technol. 36, 15-19. doi: 10.1016/0960-8524(91)90096-3
-
(1991)
Bioresour. Technol
, vol.36
, pp. 15-19
-
-
Puls, J.1
Wood, T.M.2
-
101
-
-
79958270877
-
Transcriptomic analysis of Clostridium thermocellum ATCC 27405 cellulose fermentation
-
Raman, B., McKeown, C. K., Rodriguez, M., Brown, S. D., and Mielenz, J. R. (2011). Transcriptomic analysis of Clostridium thermocellum ATCC 27405 cellulose fermentation. BMC Microbiol. 11:134. doi: 10.1186/1471-2180-11-134
-
(2011)
BMC Microbiol
, vol.11
, pp. 134
-
-
Raman, B.1
McKeown, C.K.2
Rodriguez, M.3
Brown, S.D.4
Mielenz, J.R.5
-
102
-
-
67649214495
-
Impact of pretreated switchgrass and biomass carbohydrates on Clostridium thermocellum ATCC 27405 cellulosome composition: a quantitative proteomic analysis
-
Raman, B., Pan, C., Hurst, G. B., Rodriguez, M. Jr., McKeown, C. K., Lankford, P. K., et al. (2009). Impact of pretreated switchgrass and biomass carbohydrates on Clostridium thermocellum ATCC 27405 cellulosome composition: a quantitative proteomic analysis. PLoS ONE 4:e5271. doi: 10.1371/journal.pone.0005271
-
(2009)
PLoS ONE
, vol.4
-
-
Raman, B.1
Pan, C.2
Hurst, G.B.3
Rodriguez, M.4
McKeown, C.K.5
Lankford, P.K.6
-
103
-
-
0030056187
-
Improved ethanol tolerance and production in strains of Clostridium thermocellum
-
Rani, K. S., Swamy, M., Sunitha, D., Haritha, D., and Seenayya, G. (1996). Improved ethanol tolerance and production in strains of Clostridium thermocellum. World J. Microbiol. Biotechnol. 12, 57-60. doi: 10.1007/BF00327802
-
(1996)
World J. Microbiol. Biotechnol
, vol.12
, pp. 57-60
-
-
Rani, K.S.1
Swamy, M.2
Sunitha, D.3
Haritha, D.4
Seenayya, G.5
-
104
-
-
84878892982
-
Fungal cellulases and complexed cellulosomal enzymes exhibit synergistic mechanisms in cellulose deconstruction
-
Resch, M. G., Donohoe, B. S., Baker, J. O., Decker, S. R., Bayer, E. A., Beckham, G. T., et al. (2013). Fungal cellulases and complexed cellulosomal enzymes exhibit synergistic mechanisms in cellulose deconstruction. Energy Environ. Sci. 6, 1858-1867. doi: 10.1039/C3EE00019B
-
(2013)
Energy Environ. Sci
, vol.6
, pp. 1858-1867
-
-
Resch, M.G.1
Donohoe, B.S.2
Baker, J.O.3
Decker, S.R.4
Bayer, E.A.5
Beckham, G.T.6
-
105
-
-
79953177901
-
Global gene expression patterns in Clostridium thermocellum as determined by microarray analysis of chemostat cultures on cellulose or cellobiose
-
Riederer, A., Takasuka, T. E., Makino, S.-I., Stevenson, D. M., Bukhman, Y. V., Elsen, N. L., et al. (2011). Global gene expression patterns in Clostridium thermocellum as determined by microarray analysis of chemostat cultures on cellulose or cellobiose. Appl. Environ. Microbiol. 77, 1243-1253. doi: 10.1128/AEM.02008-10
-
(2011)
Appl. Environ. Microbiol
, vol.77
, pp. 1243-1253
-
-
Riederer, A.1
Takasuka, T.E.2
Makino, S.-I.3
Stevenson, D.M.4
Bukhman, Y.V.5
Elsen, N.L.6
-
106
-
-
77954736119
-
Genome-scale metabolic analysis of Clostridium thermocellum for bioethanol production
-
Roberts, S. B., Gowen, C. M., Brooks, J. P., and Fong, S. S. (2010). Genome-scale metabolic analysis of Clostridium thermocellum for bioethanol production. BMC Syst. Biol. 4:31. doi: 10.1186/1752-0509-4-31
-
(2010)
BMC Syst. Biol
, vol.4
, pp. 31
-
-
Roberts, S.B.1
Gowen, C.M.2
Brooks, J.P.3
Fong, S.S.4
-
107
-
-
82455199199
-
End-product induced metabolic shifts in Clostridium thermocellum ATCC 27405
-
Rydzak, T., Levin, D. B., Cicek, N., and Sparling, R. (2011). End-product induced metabolic shifts in Clostridium thermocellum ATCC 27405. Appl. Microbiol. Biotechnol. 92, 199-209. doi: 10.1007/s00253-011-3511-0
-
(2011)
Appl. Microbiol. Biotechnol
, vol.92
, pp. 199-209
-
-
Rydzak, T.1
Levin, D.B.2
Cicek, N.3
Sparling, R.4
-
108
-
-
84866481432
-
Proteomic analysis of Clostridium thermocellum core metabolism: relative protein expression profiles and growth phase-dependent changes in protein expression
-
Rydzak, T., McQueen, P. D., Krokhin, O. V., Spicer, V., Ezzati, P., Dwivedi, R. C., et al. (2012). Proteomic analysis of Clostridium thermocellum core metabolism: relative protein expression profiles and growth phase-dependent changes in protein expression. BMC Microbiol. 12:214. doi: 10.1186/1471-2180-12-214
-
(2012)
BMC Microbiol
, vol.12
, pp. 214
-
-
Rydzak, T.1
McQueen, P.D.2
Krokhin, O.V.3
Spicer, V.4
Ezzati, P.5
Dwivedi, R.C.6
-
109
-
-
0020412747
-
Optimization of Clostridium thermocellum growth on cellulose and pretreated wood substrates
-
Saddler, J., and Chan, M. H. (1982). Optimization of Clostridium thermocellum growth on cellulose and pretreated wood substrates. Eur. J. Appl. Microbiol. Biotechnol. 16, 99-104.
-
(1982)
Eur. J. Appl. Microbiol. Biotechnol
, vol.16
, pp. 99-104
-
-
Saddler, J.1
Chan, M.H.2
-
110
-
-
70350236753
-
Unusual binding properties of the dockerin module of Clostridium thermocellum endoglucanase CelJ (Cel9D-Cel44A)
-
Sakka, K., Kishino, Y., Sugihara, Y., Jindou, S., Sakka, M., Inagaki, M., et al. (2009). Unusual binding properties of the dockerin module of Clostridium thermocellum endoglucanase CelJ (Cel9D-Cel44A). FEMS Microbiol. Lett. 300, 249-255. doi: 10.1111/j.1574-6968.2009.01788.x
-
(2009)
FEMS Microbiol. Lett
, vol.300
, pp. 249-255
-
-
Sakka, K.1
Kishino, Y.2
Sugihara, Y.3
Jindou, S.4
Sakka, M.5
Inagaki, M.6
-
111
-
-
79960845605
-
Conversion for Avicel and AFEX pretreated corn stover by Clostridium thermocellum and simultaneous saccharification and fermentation: insights into microbial conversion of pretreated cellulosic biomass
-
Shao, X., Jin, M., Guseva, A., Liu, C., Balan, V., Hogsett, D., et al. (2011a). Conversion for Avicel and AFEX pretreated corn stover by Clostridium thermocellum and simultaneous saccharification and fermentation: insights into microbial conversion of pretreated cellulosic biomass. Bioresour. Technol. 102, 8040-8045. doi: 10.1016/j.biortech.2011.05.021
-
(2011)
Bioresour. Technol
, vol.102
, pp. 8040-8045
-
-
Shao, X.1
Jin, M.2
Guseva, A.3
Liu, C.4
Balan, V.5
Hogsett, D.6
-
112
-
-
82355185823
-
Mutant selection and phenotypic and genetic characterization of ethanol-tolerant strains of Clostridium thermocellum
-
Shao, X., Raman, B., Zhu, M., Mielenz, J. R., Brown, S. D., Guss, A. M., et al. (2011b). Mutant selection and phenotypic and genetic characterization of ethanol-tolerant strains of Clostridium thermocellum. Appl. Microbiol. Biotechnol. 92, 641-652. doi: 10.1007/s00253-011-3492-z
-
(2011)
Appl. Microbiol. Biotechnol
, vol.92
, pp. 641-652
-
-
Shao, X.1
Raman, B.2
Zhu, M.3
Mielenz, J.R.4
Brown, S.D.5
Guss, A.M.6
-
113
-
-
84877086652
-
Enhanced characteristics of genetically modified switchgrass (Panicum virgatum L.) for high biofuel production
-
Shen, H., Poovaiah, C. R., Ziebell, A., Tschaplinski, T. J., Pattathil, S., Gjersing, E., et al. (2013). Enhanced characteristics of genetically modified switchgrass (Panicum virgatum L.) for high biofuel production. Biotechnol. Biofuels 6, 71-86. doi: 10.1186/1754-6834-6-71
-
(2013)
Biotechnol. Biofuels
, vol.6
, pp. 71-86
-
-
Shen, H.1
Poovaiah, C.R.2
Ziebell, A.3
Tschaplinski, T.J.4
Pattathil, S.5
Gjersing, E.6
-
114
-
-
0031569395
-
A cohesin domain from Clostridium thermocellum: the crystal structure provides new insights into cellulosome assembly
-
Shimon, L. J. W., Bayer, E. A., Morag, E., Lamed, R., Yaron, S., Shoham, Y., et al. (1997). A cohesin domain from Clostridium thermocellum: the crystal structure provides new insights into cellulosome assembly. Structure 5, 381-390. doi: 10.1016/S0969-2126(97)00195-0
-
(1997)
Structure
, vol.5
, pp. 381-390
-
-
Shimon, L.J.W.1
Bayer, E.A.2
Morag, E.3
Lamed, R.4
Yaron, S.5
Shoham, Y.6
-
115
-
-
79953285101
-
Cellulose-and xylan-degrading thermophilic anaerobic bacteria from biocompost
-
Sizova, M., Izquierdo, J., Panikov, N., and Lynd, L. (2011). Cellulose-and xylan-degrading thermophilic anaerobic bacteria from biocompost. Appl. Environ. Microbiol. 77, 2282-2291. doi: 10.1128/AEM.01219-10
-
(2011)
Appl. Environ. Microbiol
, vol.77
, pp. 2282-2291
-
-
Sizova, M.1
Izquierdo, J.2
Panikov, N.3
Lynd, L.4
-
116
-
-
33749535715
-
Formate synthesis by Clostridium thermocellum during anaerobic fermentation
-
Sparling, R., Islam, R., Cicek, N., Carere, C., Chow, H., and Levin, D. B. (2006). Formate synthesis by Clostridium thermocellum during anaerobic fermentation. Can. J. Microbiol. 52, 681-688. doi: 10.1139/w06-021
-
(2006)
Can. J. Microbiol
, vol.52
, pp. 681-688
-
-
Sparling, R.1
Islam, R.2
Cicek, N.3
Carere, C.4
Chow, H.5
Levin, D.B.6
-
117
-
-
0022691510
-
Pectinolytic activity of Clostridium thermocellum: its use for anaerobic fermentation of sugar beet pulp
-
Spinnler, H. E., Lavigne, B., and Blachere, H. (1986). Pectinolytic activity of Clostridium thermocellum: its use for anaerobic fermentation of sugar beet pulp. Appl. Microbiol. Biotechnol. 23, 434-437. doi: 10.1007/BF02346055
-
(1986)
Appl. Microbiol. Biotechnol
, vol.23
, pp. 434-437
-
-
Spinnler, H.E.1
Lavigne, B.2
Blachere, H.3
-
118
-
-
23744485701
-
Expression of 17 genes in Clostridium thermocellum ATCC 27405 during fermentation of cellulose or cellobiose in continuous culture
-
Stevenson, D. M., and Weimer, P. J. (2005). Expression of 17 genes in Clostridium thermocellum ATCC 27405 during fermentation of cellulose or cellobiose in continuous culture. Appl. Environ. Microbiol. 71, 4672-4678. doi: 10.1128/AEM.71.8.4672-4678.2005
-
(2005)
Appl. Environ. Microbiol
, vol.71
, pp. 4672-4678
-
-
Stevenson, D.M.1
Weimer, P.J.2
-
119
-
-
84856647975
-
Isolation and characterization of a new cellulosome-producing Clostridium thermocellum strain
-
Tachaapaikoon, C., Kosugi, A., Pason, P., Waeonukul, R., Ratanakhanokchai, K., Kyu, K. L., et al. (2012). Isolation and characterization of a new cellulosome-producing Clostridium thermocellum strain. Biodegradation 23, 57-68. doi: 10.1007/s10532-011-9486-9
-
(2012)
Biodegradation
, vol.23
, pp. 57-68
-
-
Tachaapaikoon, C.1
Kosugi, A.2
Pason, P.3
Waeonukul, R.4
Ratanakhanokchai, K.5
Kyu, K.L.6
-
120
-
-
44449146433
-
Enzyme-based hydrolysis processes for ethanol from lignocellulosic materials: a review
-
Taherzadeh, M. J., and Karimi, K. (2007). Enzyme-based hydrolysis processes for ethanol from lignocellulosic materials: a review. Bioresources 2, 707-738. Available online at: http://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_2_4_707_738_Taherzadeh_Karimi_EnzymeBased_Hydrol_Ethanol_Review
-
(2007)
Bioresources
, vol.2
, pp. 707-738
-
-
Taherzadeh, M.J.1
Karimi, K.2
-
121
-
-
67649111013
-
Thermophilic ethanologenesis: future prospects for second-generation bioethanol production
-
Taylor, M. P., Eley, K. L., Martin, S., Tuffin, M. I., Burton, S. G., and Cowan, D. A. (2009). Thermophilic ethanologenesis: future prospects for second-generation bioethanol production. Trends Biotechnol. 27, 398-405. doi: 10.1016/j.tibtech.2009.03.006
-
(2009)
Trends Biotechnol
, vol.27
, pp. 398-405
-
-
Taylor, M.P.1
Eley, K.L.2
Martin, S.3
Tuffin, M.I.4
Burton, S.G.5
Cowan, D.A.6
-
122
-
-
62949206259
-
Analysis of composition and structure of Clostridium thermocellum membranes from wild-type and ethanol-adapted strains
-
Timmons, M. D., Knutson, B. L., Nokes, S. E., Strobel, H. J., and Lynn, B. C. (2009). Analysis of composition and structure of Clostridium thermocellum membranes from wild-type and ethanol-adapted strains. Appl. Microbiol. Biotechnol. 82, 929-939. doi: 10.1007/s00253-009-1891-1
-
(2009)
Appl. Microbiol. Biotechnol
, vol.82
, pp. 929-939
-
-
Timmons, M.D.1
Knutson, B.L.2
Nokes, S.E.3
Strobel, H.J.4
Lynn, B.C.5
-
123
-
-
84862010951
-
Clostridia: the importance of their exceptional substrate and metabolite diversity for biofuel and biorefinery applications
-
Tracy, B. P., Jones, S. W., Fast, A. G., Indurthi, D. C., and Papoutsakis, E. T. (2012). Clostridia: the importance of their exceptional substrate and metabolite diversity for biofuel and biorefinery applications. Curr. Opin. Biotechnol. 23, 364-381. doi: 10.1016/j.copbio.2011.10.008
-
(2012)
Curr. Opin. Biotechnol
, vol.23
, pp. 364-381
-
-
Tracy, B.P.1
Jones, S.W.2
Fast, A.G.3
Indurthi, D.C.4
Papoutsakis, E.T.5
-
124
-
-
78049278436
-
Development of pyrF-based genetic system for targeted gene deletion in Clostridium thermocellum and creation of a pta mutant
-
Tripathi, S. A., Olson, D. G., Argyros, D. A., Miller, B. B., Barrett, T. F., Murphy, D. M., et al. (2010). Development of pyrF-based genetic system for targeted gene deletion in Clostridium thermocellum and creation of a pta mutant. Appl. Environ. Microbiol. 76, 6591-6599. doi: 10.1128/AEM.01484-10
-
(2010)
Appl. Environ. Microbiol
, vol.76
, pp. 6591-6599
-
-
Tripathi, S.A.1
Olson, D.G.2
Argyros, D.A.3
Miller, B.B.4
Barrett, T.F.5
Murphy, D.M.6
-
125
-
-
2342533732
-
Electrotransformation of Clostridium thermocellum
-
Tyurin, M. V., Desai, S. G., and Lynd, L. R. (2004). Electrotransformation of Clostridium thermocellum. Appl. Environ. Microbiol. 70, 883-890. doi: 10.1128/AEM.70.2.883-890.2004
-
(2004)
Appl. Environ. Microbiol
, vol.70
, pp. 883-890
-
-
Tyurin, M.V.1
Desai, S.G.2
Lynd, L.R.3
-
126
-
-
29144524921
-
Role of spontaneous current oscillations during high-efficiency electrotransformation of thermophilic anaerobes
-
Tyurin, M. V., Sullivan, C. R., and Lynd, L. R. (2005). Role of spontaneous current oscillations during high-efficiency electrotransformation of thermophilic anaerobes. Appl. Environ. Microbiol. 71, 8069-8076. doi: 10.1128/AEM.71.12.8069-8076.2005
-
(2005)
Appl. Environ. Microbiol
, vol.71
, pp. 8069-8076
-
-
Tyurin, M.V.1
Sullivan, C.R.2
Lynd, L.R.3
-
127
-
-
33750821803
-
-
Hauppauge, NY: Nova Science Publishers
-
Uversky, V. N., and Kataeva, I. A. (2006). Cellulosome. Hauppauge, NY: Nova Science Publishers.
-
(2006)
Cellulosome
-
-
Uversky, V.N.1
Kataeva, I.A.2
-
128
-
-
84879230274
-
Characterization of Clostridium thermocellum strains with disrupted fermentation end-product pathways
-
Van Der Veen, D., Lo, J., Brown, S. D., Johnson, C. M., Tschaplinski, T. J., Martin, M., et al. (2013). Characterization of Clostridium thermocellum strains with disrupted fermentation end-product pathways. J. Ind. Microbiol. Biotechnol. 40, 725-734. doi: 10.1007/s10295-013-1275-5
-
(2013)
J. Ind. Microbiol. Biotechnol
, vol.40
, pp. 725-734
-
-
Van Der Veen, D.1
Lo, J.2
Brown, S.D.3
Johnson, C.M.4
Tschaplinski, T.J.5
Martin, M.6
-
130
-
-
84868516451
-
Lignocellulosic ethanol: from science to industry
-
Viikari, L., Vehmaanperä, J., and Koivula, A. (2012). Lignocellulosic ethanol: from science to industry. Biomass Bioenergy 46, 13-24. doi: 10.1016/j.biombioe.2012.05.008
-
(2012)
Biomass Bioenergy
, vol.46
, pp. 13-24
-
-
Viikari, L.1
Vehmaanperä, J.2
Koivula, A.3
-
131
-
-
0343241443
-
The fermentation of cellulose by thermophilic bacteria
-
Viljoen, J., Fred, E., and Peterson, W. (1926). The fermentation of cellulose by thermophilic bacteria. J. Agric. Sci. 16, 1-17. doi: 10.1017/S0021859600088249
-
(1926)
J. Agric. Sci
, vol.16
, pp. 1-17
-
-
Viljoen, J.1
Fred, E.2
Peterson, W.3
-
132
-
-
84899694531
-
Comparison of transcriptional profiles of Clostridium thermocellum grown on cellobiose and pretreated yellow poplar using RNA-Seq
-
Wei, H., Fu, Y., Magnusson, L., Baker, J. O., Maness, P. C., Xu, Q., et al. (2014). Comparison of transcriptional profiles of Clostridium thermocellum grown on cellobiose and pretreated yellow poplar using RNA-Seq. Front. Microbiol. 5:142. doi: 10.3389/fmicb.2014.00142
-
(2014)
Front. Microbiol
, vol.5
, pp. 142
-
-
Wei, H.1
Fu, Y.2
Magnusson, L.3
Baker, J.O.4
Maness, P.C.5
Xu, Q.6
-
133
-
-
0017389068
-
Fermentation of cellulose and cellobiose by Clostridium thermocellum in the absence of Methanobacterium thermoautotrophicum
-
Weimer, P., and Zeikus, J. (1977). Fermentation of cellulose and cellobiose by Clostridium thermocellum in the absence of Methanobacterium thermoautotrophicum. Appl. Environ. Microbiol. 33, 289-297.
-
(1977)
Appl. Environ. Microbiol
, vol.33
, pp. 289-297
-
-
Weimer, P.1
Zeikus, J.2
-
135
-
-
0021167693
-
Clostridium thermocellum: adhesion and sporulation while adhered to cellulose and hemicellulose
-
Wiegel, J., and Dykstra, M. (1984). Clostridium thermocellum: adhesion and sporulation while adhered to cellulose and hemicellulose. Appl. Microbiol. Biotechnol. 20, 59-65.
-
(1984)
Appl. Microbiol. Biotechnol
, vol.20
, pp. 59-65
-
-
Wiegel, J.1
Dykstra, M.2
-
136
-
-
0021910587
-
Differences in xylan degradation by various noncellulolytic thermophilic anaerobes and Clostridium thermocellum
-
Wiegel, J., Mothershed, C. P., and Puls, J. (1985). Differences in xylan degradation by various noncellulolytic thermophilic anaerobes and Clostridium thermocellum. Appl. Environ. Microbiol. 49, 656-659.
-
(1985)
Appl. Environ. Microbiol
, vol.49
, pp. 656-659
-
-
Wiegel, J.1
Mothershed, C.P.2
Puls, J.3
-
137
-
-
33846817517
-
Proteomic profile changes in membranes of ethanol-tolerant Clostridium thermocellum
-
Williams, T. I., Combs, J. C., Lynn, B. C., and Strobel, H. J. (2007). Proteomic profile changes in membranes of ethanol-tolerant Clostridium thermocellum. Appl. Microbiol. Biotechnol. 74, 422-432. doi: 10.1007/s00253-006-0689-7
-
(2007)
Appl. Microbiol. Biotechnol
, vol.74
, pp. 422-432
-
-
Williams, T.I.1
Combs, J.C.2
Lynn, B.C.3
Strobel, H.J.4
-
138
-
-
84888616602
-
Global transcriptome analysis of Clostridium thermocellum ATCC 27405 during growth on dilute acid pretreated Populus and switchgrass
-
Wilson, C. M., Rodriguez, M. Jr., Johnson, C. M., Martin, S. L., Chu, T. M., Wolfinger, R. D., et al. (2013a). Global transcriptome analysis of Clostridium thermocellum ATCC 27405 during growth on dilute acid pretreated Populus and switchgrass. Biotechnol. Biofuels 6, 179-197. doi: 10.1186/1754-6834-6-179
-
(2013)
Biotechnol. Biofuels
, vol.6
, pp. 179-197
-
-
Wilson, C.M.1
Rodriguez, M.2
Johnson, C.M.3
Martin, S.L.4
Chu, T.M.5
Wolfinger, R.D.6
-
139
-
-
84883709020
-
Clostridium thermocellum transcriptomic profiles after exposure to furfural or heat stress
-
Wilson, C. M., Yang, S., Rodriguez, M. Jr., Ma, Q., Johnson, C. M., Dice, L., et al. (2013b). Clostridium thermocellum transcriptomic profiles after exposure to furfural or heat stress. Biotechnol. Biofuels 6, 131-144. doi: 10.1186/1754-6834-6-131
-
(2013)
Biotechnol. Biofuels
, vol.6
, pp. 131-144
-
-
Wilson, C.M.1
Yang, S.2
Rodriguez, M.3
Ma, Q.4
Johnson, C.M.5
Dice, L.6
-
140
-
-
65649099114
-
Building a foundation for structure-based cellulosome design for cellulosic ethanol: insight into cohesin-dockerin complexation from computer simulation
-
Xu, J., Crowley, M. F., and Smith, J. C. (2009a). Building a foundation for structure-based cellulosome design for cellulosic ethanol: insight into cohesin-dockerin complexation from computer simulation. Protein Sci. 18, 949-959. doi: 10.1002/pro.105
-
(2009)
Protein Sci
, vol.18
, pp. 949-959
-
-
Xu, J.1
Crowley, M.F.2
Smith, J.C.3
-
141
-
-
67649784905
-
Perspectives and new directions for the production of bioethanol using consolidated bioprocessing of lignocellulose
-
Xu, Q., Singh, A., and Himmel, M. E. (2009b). Perspectives and new directions for the production of bioethanol using consolidated bioprocessing of lignocellulose. Curr. Opin. Biotechnol. 20, 364-371. doi: 10.1016/j.copbio.2009.05.006
-
(2009)
Curr. Opin. Biotechnol
, vol.20
, pp. 364-371
-
-
Xu, Q.1
Singh, A.2
Himmel, M.E.3
-
142
-
-
84868663886
-
Evaluation of the bioconversion of genetically modified switchgrass using simultaneous saccharification and fermentation and a consolidated bioprocessing approach
-
Yee, K. L., Rodriguez, M. Jr., Tschaplinski, T. J., Engle, N. L., Martin, M. Z., Fu, C., et al. (2012). Evaluation of the bioconversion of genetically modified switchgrass using simultaneous saccharification and fermentation and a consolidated bioprocessing approach. Biotechnol. Biofuels 5, 81-93. doi: 10.1186/1754-6834-5-81
-
(2012)
Biotechnol. Biofuels
, vol.5
, pp. 81-93
-
-
Yee, K.L.1
Rodriguez, M.2
Tschaplinski, T.J.3
Engle, N.L.4
Martin, M.Z.5
Fu, C.6
-
144
-
-
34548646089
-
Pretreatment of bamboo residues with Coriolus versicolor for enzymatic hydrolysis
-
Zhang, X., Xu, C., and Wang, H. (2007a). Pretreatment of bamboo residues with Coriolus versicolor for enzymatic hydrolysis. J. Biosci. Bioeng. 104, 149-151. doi: 10.1263/jbb.104.149
-
(2007)
J. Biosci. Bioeng
, vol.104
, pp. 149-151
-
-
Zhang, X.1
Xu, C.2
Wang, H.3
-
145
-
-
34548830171
-
Evaluation of biological pretreatment with white rot fungi for the enzymatic hydrolysis of bamboo culms
-
Zhang, X., Yu, H., Huang, H., and Liu, Y. (2007b). Evaluation of biological pretreatment with white rot fungi for the enzymatic hydrolysis of bamboo culms. Int. Biodeterior. Biodegradation 60, 159-164. doi: 10.1016/j.ibiod.2007.02.003
-
(2007)
Int. Biodeterior. Biodegradation
, vol.60
, pp. 159-164
-
-
Zhang, X.1
Yu, H.2
Huang, H.3
Liu, Y.4
-
146
-
-
80054004325
-
What is vital (and not vital) to advance economically-competitive biofuels production
-
Zhang, Y. H. P. (2011). What is vital (and not vital) to advance economically-competitive biofuels production. Process Biochem. 46, 2091-2110.
-
(2011)
Process Biochem
, vol.46
, pp. 2091-2110
-
-
Zhang, Y.H.P.1
-
147
-
-
18844371475
-
Cellulose utilization by Clostridium thermocellum: bioenergetics and hydrolysis product assimilation
-
Zhang, Y. H. P., and Lynd, L. R. (2005). Cellulose utilization by Clostridium thermocellum: bioenergetics and hydrolysis product assimilation. Proc. Natl. Acad. Sci. U.S.A. 102, 7321-7325. doi: 10.1073/pnas.0408734102
-
(2005)
Proc. Natl. Acad. Sci. U.S.A
, vol.102
, pp. 7321-7325
-
-
Zhang, Y.H.P.1
Lynd, L.R.2
-
148
-
-
84863782747
-
Biomass recalcitrance. Part I: the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose
-
Zhao, X., Zhang, L., and Liu, D. (2012). Biomass recalcitrance. Part I: the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuels Bioproducts Biorefining 6, 465-482. doi: 10.1002/bbb.1331
-
(2012)
Biofuels Bioproducts Biorefining
, vol.6
, pp. 465-482
-
-
Zhao, X.1
Zhang, L.2
Liu, D.3
-
149
-
-
84876299239
-
Atypical Glycolysis in Clostridium thermocellum
-
Zhou, J., Olson, D. G., Argyros, D. A., Deng, Y., Van Gulik, W. M., Van Dijken, J. P., et al. (2013). Atypical Glycolysis in Clostridium thermocellum. Appl. Environ. Microbiol. 79, 3000-3008. doi: 10.1128/aem.04037-12
-
(2013)
Appl. Environ. Microbiol
, vol.79
, pp. 3000-3008
-
-
Zhou, J.1
Olson, D.G.2
Argyros, D.A.3
Deng, Y.4
Van Gulik, W.M.5
Van Dijken, J.P.6
-
150
-
-
84857917617
-
Developing symbiotic consortia for lignocellulosic biofuel production
-
Zuroff, T. R., and Curtis, W. R. (2012). Developing symbiotic consortia for lignocellulosic biofuel production. Appl. Microbiol. Biotechnol. 93, 1423-1435. doi: 10.1007/s00253-011-3762-9
-
(2012)
Appl. Microbiol. Biotechnol
, vol.93
, pp. 1423-1435
-
-
Zuroff, T.R.1
Curtis, W.R.2
-
151
-
-
23644460722
-
Functional subgenomics of Clostridium thermocellum cellulosomal genes: identification of the major catalytic components in the extracellular complex and detection of three new enzymes
-
Zverlov, V. V., Kellermann, J., and Schwarz, W. H. (2005a). Functional subgenomics of Clostridium thermocellum cellulosomal genes: identification of the major catalytic components in the extracellular complex and detection of three new enzymes. Proteomics 5, 3646-3653. doi: 10.1002/pmic.200401199
-
(2005)
Proteomics
, vol.5
, pp. 3646-3653
-
-
Zverlov, V.V.1
Kellermann, J.2
Schwarz, W.H.3
|