메뉴 건너뛰기




Volumn 2016-December, Issue , 2016, Pages 5753-5761

End-to-end saliency mapping via probability distribution prediction

Author keywords

[No Author keywords available]

Indexed keywords

BENCHMARKING; COMPUTER VISION; PATTERN RECOGNITION;

EID: 84986320384     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2016.620     Document Type: Conference Paper
Times cited : (159)

References (48)
  • 1
    • 77951965044 scopus 로고    scopus 로고
    • Saliency detection for contentaware image resizing
    • 1
    • R. Achanta and S. Süsstrunk. Saliency detection for contentaware image resizing. In ICIP, 2009.
    • (2009) ICIP
    • Achanta, R.1    Süsstrunk, S.2
  • 2
    • 84870220894 scopus 로고    scopus 로고
    • State-of-the-art in visual attention modeling
    • 2
    • A. Borji and L. Itti. State-of-the-art in visual attention modeling. TPAMI, 2013.
    • (2013) TPAMI
    • Borji, A.1    Itti, L.2
  • 3
    • 85009913941 scopus 로고    scopus 로고
    • Reconciling saliency and object center-bias hypotheses in explaining free-viewing fixations
    • 4
    • A. Borji and J. Tanner. Reconciling saliency and object center-bias hypotheses in explaining free-viewing fixations. IEEE TNNLS, 2015.
    • (2015) IEEE TNNLS
    • Borji, A.1    Tanner, J.2
  • 4
    • 33750690376 scopus 로고    scopus 로고
    • Saliency based on information maximization
    • 2
    • N. Bruce and J. Tsotsos. Saliency based on information maximization. In NIPS, 2006.
    • (2006) NIPS
    • Bruce, N.1    Tsotsos, J.2
  • 6
    • 85161958871 scopus 로고    scopus 로고
    • Predicting human gaze using low-level saliency combined with face detection
    • 2
    • M. Cerf, J. Harel, W. Einhäuser, and C. Koch. Predicting human gaze using low-level saliency combined with face detection. In NIPS, 2008.
    • (2008) NIPS
    • Cerf, M.1    Harel, J.2    Einhäuser, W.3    Koch, C.4
  • 8
    • 85156217966 scopus 로고    scopus 로고
    • Graph-based visual saliency
    • 2, 6, 7
    • J. Harel, C. Koch, and P. Perona. Graph-based visual saliency. In NIPS, 2006. 2, 6, 7
    • (2006) NIPS
    • Harel, J.1    Koch, C.2    Perona, P.3
  • 9
    • 81855172211 scopus 로고    scopus 로고
    • Image signature: Highlighting sparse salient regions
    • 7
    • X. Hou, J. Harel, and C. Koch. Image signature: Highlighting sparse salient regions. TPAMI, 2012.
    • (2012) TPAMI
    • Hou, X.1    Harel, J.2    Koch, C.3
  • 10
    • 35148814949 scopus 로고    scopus 로고
    • Saliency detection: A spectral residual approach
    • 2
    • X. Hou and L. Zhang. Saliency detection: A spectral residual approach. In CVPR, 2007.
    • (2007) CVPR
    • Hou, X.1    Zhang, L.2
  • 12
    • 33750734547 scopus 로고    scopus 로고
    • Bayesian surprise attracts human attention
    • 2
    • L. Itti and P. F. Baldi. Bayesian surprise attracts human attention. In NIPS, 2006.
    • (2006) NIPS
    • Itti, L.1    Baldi, P.F.2
  • 13
    • 0034003645 scopus 로고    scopus 로고
    • A saliency-based search mechanism for overt and covert shifts of visual attention
    • 2, 7
    • L. Itti and C. Koch. A saliency-based search mechanism for overt and covert shifts of visual attention. Vision research, 40 (10): 1489-1506, 2000.
    • (2000) Vision Research , vol.40 , Issue.10 , pp. 1489-1506
    • Itti, L.1    Koch, C.2
  • 14
    • 0032204063 scopus 로고    scopus 로고
    • A model of saliency-based visual attention for rapid scene analysis
    • 1, 2, 6, 7
    • L. Itti, C. Koch, and E. Niebur. A model of saliency-based visual attention for rapid scene analysis. TPAMI, (11): 1254-1259, 1998.
    • (1998) TPAMI , Issue.11 , pp. 1254-1259
    • Itti, L.1    Koch, C.2    Niebur, E.3
  • 17
    • 84878629490 scopus 로고    scopus 로고
    • A benchmark of computational models of saliency to predict human fixations
    • 3, 5, 6
    • T. Judd, F. Durand, and A. Torralba. A benchmark of computational models of saliency to predict human fixations. In MIT Technical Report, 2012.
    • (2012) MIT Technical Report
    • Judd, T.1    Durand, F.2    Torralba, A.3
  • 20
    • 0003153058 scopus 로고
    • Shifts in selective visual attention: Towards the underlying neural circuitry
    • 2
    • C. Koch and S. Ullman. Shifts in selective visual attention: Towards the underlying neural circuitry. In Matters of intelligence, pages 115-141. 1987.
    • (1987) Matters of Intelligence , pp. 115-141
    • Koch, C.1    Ullman, S.2
  • 21
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • 2
    • A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.3
  • 23
    • 85083953536 scopus 로고    scopus 로고
    • Deep gaze i: Boosting saliency prediction with feature maps trained on imagenet
    • 1, 2
    • M. Kümmerer, L. Theis, and M. Bethge. Deep Gaze I: Boosting Saliency Prediction with Feature Maps Trained on ImageNet. In ICLR Workshop, 2015.
    • (2015) ICLR Workshop
    • Kümmerer, M.1    Theis, L.2    Bethge, M.3
  • 26
    • 84874539078 scopus 로고    scopus 로고
    • Saliency detection using regional histograms
    • 2
    • Z. Liu, O. Le Meur, S. Luo, and L. Shen. Saliency detection using regional histograms. Optics letters, 38 (5): 700-702, 2013.
    • (2013) Optics Letters , vol.38 , Issue.5 , pp. 700-702
    • Liu, Z.1    Le Meur, O.2    Luo, S.3    Shen, L.4
  • 27
    • 84959205572 scopus 로고    scopus 로고
    • Fully convolutional networks for semantic segmentation
    • June.
    • J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In CVPR, June 2015.
    • (2015) CVPR
    • Long, J.1    Shelhamer, E.2    Darrell, T.3
  • 28
    • 84959245879 scopus 로고    scopus 로고
    • Label consistent quadratic surrogate model for visual saliency prediction
    • 5, 7
    • Y. Luo, Y. Wong, and Q. Zhao. Label consistent quadratic surrogate model for visual saliency prediction. In CVPR, 2015.
    • (2015) CVPR
    • Luo, Y.1    Wong, Y.2    Zhao, Q.3
  • 29
    • 77953210642 scopus 로고    scopus 로고
    • A framework for visual saliency detection with applications to image thumbnailing
    • 1
    • L. Marchesotti, C. Cifarelli, and G. Csurka. A framework for visual saliency detection with applications to image thumbnailing. In ICCV, 2009.
    • (2009) ICCV
    • Marchesotti, L.1    Cifarelli, C.2    Csurka, G.3
  • 30
    • 84899020371 scopus 로고    scopus 로고
    • Action from still image dataset and inverse optimal control to learn task specific visual scanpaths
    • 5, 7
    • S. Mathe and C. Sminchisescu. Action from still image dataset and inverse optimal control to learn task specific visual scanpaths. In NIPS, 2013.
    • (2013) NIPS
    • Mathe, S.1    Sminchisescu, C.2
  • 31
    • 80052890815 scopus 로고    scopus 로고
    • Saliency estimation using a non-parametric low-level vision model
    • 2
    • N. Murray, M. Vanrell, X. Otazu, and C. A. Parraga. Saliency estimation using a non-parametric low-level vision model. In CVPR, 2011.
    • (2011) CVPR
    • Murray, N.1    Vanrell, M.2    Otazu, X.3    Parraga, C.A.4
  • 32
    • 84884582292 scopus 로고    scopus 로고
    • Low-level spatiochromatic grouping for saliency estimation
    • 2
    • N. Murray, M. Vanrell, X. Otazu, and C. A. Parraga. Low-level spatiochromatic grouping for saliency estimation. TPAMI, 2013.
    • (2013) TPAMI
    • Murray, N.1    Vanrell, M.2    Otazu, X.3    Parraga, C.A.4
  • 35
    • 84867891493 scopus 로고    scopus 로고
    • Quaternion-based spectral saliency detection for eye fixation prediction
    • 2
    • B. Schauerte and R. Stiefelhagen. Quaternion-based spectral saliency detection for eye fixation prediction. In ECCV, pages 116-129, 2012.
    • (2012) ECCV , pp. 116-129
    • Schauerte, B.1    Stiefelhagen, R.2
  • 36
    • 84866677469 scopus 로고    scopus 로고
    • Discriminative spatial saliency for image classification
    • 1
    • G. Sharma, F. Jurie, and C. Schmid. Discriminative spatial saliency for image classification. In CVPR, 2012.
    • (2012) CVPR
    • Sharma, G.1    Jurie, F.2    Schmid, C.3
  • 38
    • 85083953063 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • 2, 4
    • K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2015.
    • (2015) ICLR
    • Simonyan, K.1    Zisserman, A.2
  • 40
    • 0018878142 scopus 로고
    • A feature-integration theory of attention
    • 2
    • A. M. Treisman and G. Gelade. A feature-integration theory of attention. Cognitive psychology, 12 (1): 97-136, 1980.
    • (1980) Cognitive Psychology , vol.12 , Issue.1 , pp. 97-136
    • Treisman, A.M.1    Gelade, G.2
  • 41
    • 85020604545 scopus 로고    scopus 로고
    • Image saliency by isocentric curvedness and color
    • 2
    • R. Valenti, N. Sebe, and T. Gevers. Image saliency by isocentric curvedness and color. In ICCV, 2009.
    • (2009) ICCV
    • Valenti, R.1    Sebe, N.2    Gevers, T.3
  • 42
    • 84911369162 scopus 로고    scopus 로고
    • Large-scale optimization of hierarchical features for saliency prediction in natural images
    • 2, 7
    • E. Vig, M. Dorr, and D. Cox. Large-scale optimization of hierarchical features for saliency prediction in natural images. In CVPR, 2014.
    • (2014) CVPR
    • Vig, E.1    Dorr, M.2    Cox, D.3
  • 45
    • 84898819857 scopus 로고    scopus 로고
    • Saliency detection: A boolean map approach
    • 2, 6, 7
    • J. Zhang and S. Sclaroff. Saliency detection: A boolean map approach. In ICCV, 2013.
    • (2013) ICCV
    • Zhang, J.1    Sclaroff, S.2
  • 46
    • 58149506125 scopus 로고    scopus 로고
    • SUN: A Bayesian framework for saliency using natural statistics
    • 12.
    • L. Zhang, M. H. Tong, T. K. Marks, H. Shan, and G. W. Cottrell. SUN: A Bayesian framework for saliency using natural statistics. JoV, 8 (7): 1-20, 12 2008.
    • (2008) JoV , vol.8 , Issue.7 , pp. 1-20
    • Zhang, L.1    Tong, M.H.2    Marks, T.K.3    Shan, H.4    Cottrell, G.W.5
  • 48
    • 79957836414 scopus 로고    scopus 로고
    • Learning a saliency map using fixated locations in natural scenes
    • 2
    • Q. Zhao and C. Koch. Learning a saliency map using fixated locations in natural scenes. JoV, 11 (3), 2011.
    • (2011) JoV , vol.11 , Issue.3
    • Zhao, Q.1    Koch, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.