메뉴 건너뛰기




Volumn 2016-December, Issue , 2016, Pages 1077-1085

What if we do not have multiple videos of the same action? - Video action localization using web images

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; OPTIMIZATION; PATTERN RECOGNITION;

EID: 84986265065     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2016.122     Document Type: Conference Paper
Times cited : (41)

References (37)
  • 2
    • 84887369458 scopus 로고    scopus 로고
    • Watching unlabeled video helps learn new human actions from very few labeled snapshots
    • 3
    • C.-Y. Chen and K. Grauman. Watching unlabeled video helps learn new human actions from very few labeled snapshots. In CVPR, 2013.
    • (2013) CVPR
    • Chen, C.-Y.1    Grauman, K.2
  • 3
    • 84959186112 scopus 로고    scopus 로고
    • Unsupervised object discovery and localization in the wild: Part-based matching with bottom-up region proposals
    • 1, 2, 3, 4
    • M. Cho, S. Kwak, C. Schmid, and J. Ponce. Unsupervised object discovery and localization in the wild: Part-based matching with bottom-up region proposals. In CVPR, 2015.
    • (2015) CVPR
    • Cho, M.1    Kwak, S.2    Schmid, C.3    Ponce, J.4
  • 5
    • 84867062047 scopus 로고    scopus 로고
    • Weakly supervised localization and learning with generic knowledge
    • 1
    • A. B. Deselaers, T. And V. Ferrari. Weakly supervised localization and learning with generic knowledge. In IJCV, 2012.
    • (2012) IJCV
    • Deselaers, T.A.B.1    Ferrari, V.2
  • 8
    • 84866657270 scopus 로고    scopus 로고
    • Geodesic flow kernel for unsupervised domain adaptation
    • 6
    • B. Gong, Y. Shi, F. Sha, and K. Grauman. Geodesic flow kernel for unsupervised domain adaptation. In CVPR, 2012.
    • (2012) CVPR
    • Gong, B.1    Shi, Y.2    Sha, F.3    Grauman, K.4
  • 9
    • 84866661767 scopus 로고    scopus 로고
    • Large-scale knowledge transfer for object localization in imagenet
    • 1
    • M. Guillaumin and V. Ferrari. Large-scale knowledge transfer for object localization in imagenet. In CVPR, 2012.
    • (2012) CVPR
    • Guillaumin, M.1    Ferrari, V.2
  • 10
    • 84860513476 scopus 로고    scopus 로고
    • Frustratingly easy domain adaptation
    • 6
    • H. D. III. Frustratingly easy domain adaptation. In ACL, 2007.
    • (2007) ACL
  • 15
    • 84943738421 scopus 로고    scopus 로고
    • Efficient image and video co-localization with frank-wolfe algorithm
    • 2
    • A. Joulin, K. Tang, and L. Fei-Fei. Efficient image and video co-localization with frank-wolfe algorithm. In ECCV, 2014.
    • (2014) ECCV
    • Joulin, A.1    Tang, K.2    Fei-Fei, L.3
  • 16
    • 84887392384 scopus 로고    scopus 로고
    • Largescale video summarization using web-image priors
    • 2, 3
    • A. Khosla, R. Hamid, C.-J. Lin, and N. Sundaresan. Largescale video summarization using web-image priors. In CVPR, 2013.
    • (2013) CVPR
    • Khosla, A.1    Hamid, R.2    Lin, C.-J.3    Sundaresan, N.4
  • 17
    • 84911405209 scopus 로고    scopus 로고
    • Joint summarization of largescale collections of web images and videos for storyline reconstruction
    • 2, 3
    • G. Kim, L. Sigal, and E. Xing. Joint summarization of largescale collections of web images and videos for storyline reconstruction. In CVPR, 2014.
    • (2014) CVPR
    • Kim, G.1    Sigal, L.2    Xing, E.3
  • 18
    • 84898781017 scopus 로고    scopus 로고
    • Prime object proposals with randomized prim's algorithm
    • 3, 4
    • S. Manen, M. Guillaumin, and L. Van Gool. Prime object proposals with randomized prim's algorithm. In ICCV, 2013.
    • (2013) ICCV
    • Manen, S.1    Guillaumin, M.2    Van Gool, L.3
  • 22
    • 84866674032 scopus 로고    scopus 로고
    • Learning object class detectors from weakly annotated video
    • 1, 3
    • A. Prest, C. Leistner, J. Civera, C. Schmid, and V. Ferrari. Learning object class detectors from weakly annotated video. In CVPR, 2012.
    • (2012) CVPR
    • Prest, A.1    Leistner, C.2    Civera, J.3    Schmid, C.4    Ferrari, V.5
  • 23
    • 51949084792 scopus 로고    scopus 로고
    • Action Mach: A spatio-temporal maximum average correlation height filter for action recognition
    • 2, 6
    • M. Rodriguez, J. Ahmed, and M. Shah. Action MACH: A spatio-temporal maximum average correlation height filter for action recognition. In CVPR, 2008.
    • (2008) CVPR
    • Rodriguez, M.1    Ahmed, J.2    Shah, M.3
  • 25
    • 84887325615 scopus 로고    scopus 로고
    • Similarity constrained latent support vector machine: An application to weakly supervised action classification
    • 2
    • N. Shapovalova, A. Vahdat, K. Cannons, T. Lan, and G. Mori. Similarity constrained latent support vector machine: An application to weakly supervised action classification. In ECCV, 2012.
    • (2012) ECCV
    • Shapovalova, N.1    Vahdat, A.2    Cannons, K.3    Lan, T.4    Mori, G.5
  • 26
    • 84888335371 scopus 로고    scopus 로고
    • In defence of negative mining for annotating weakly labelled data
    • 3, 6, 7, 8
    • P. Siva, C. Russell, and T. Xiang. In defence of negative mining for annotating weakly labelled data. In ECCV, 2012.
    • (2012) ECCV
    • Siva, P.1    Russell, C.2    Xiang, T.3
  • 28
    • 84884955228 scopus 로고    scopus 로고
    • Ucf101: A dataset of 101 human actions classes from videos in the wild
    • 2, 6
    • K. Soomro, R. Zamir, and M. Shah. Ucf101: A dataset of 101 human actions classes from videos in the wild. In ICCV, 2013.
    • (2013) ICCV
    • Soomro, K.1    Zamir, R.2    Shah, M.3
  • 29
    • 84911407409 scopus 로고    scopus 로고
    • Co-localization in real-world images
    • June.
    • K. Tang, A. Joulin, L.-J. Li, and L. Fei-Fei. Co-localization in real-world images. In CVPR, pages 1464-1471, June 2014.
    • (2014) CVPR , pp. 1464-1471
    • Tang, K.1    Joulin, A.2    Li, L.-J.3    Fei-Fei, L.4
  • 31
    • 84877780666 scopus 로고    scopus 로고
    • Shifting weights: Adapting object detectors from image to video
    • 3
    • K. Tang, V. Ramanathan, L. Fei-Fei, and D. Koller. Shifting weights: Adapting object detectors from image to video. In NIPS, 2012.
    • (2012) NIPS
    • Tang, K.1    Ramanathan, V.2    Fei-Fei, L.3    Koller, D.4
  • 32
    • 84887363653 scopus 로고    scopus 로고
    • Discriminative segment annotation in weakly labeled video
    • 3, 6, 7, 8
    • K. Tang, R. Sukthankar, J. Yagnik, and L. Fei-Fei. Discriminative segment annotation in weakly labeled video. In CVPR, 2013.
    • (2013) CVPR
    • Tang, K.1    Sukthankar, R.2    Yagnik, J.3    Fei-Fei, L.4
  • 33
    • 84887356306 scopus 로고    scopus 로고
    • Spatiotemporal deformable part models for action detection
    • 1, 2, 6
    • Y. Tian, R. Sukthankar, and M. Shah. Spatiotemporal deformable part models for action detection. In CVPR, 2013.
    • (2013) CVPR
    • Tian, Y.1    Sukthankar, R.2    Shah, M.3
  • 34
    • 84973913561 scopus 로고    scopus 로고
    • Apt: Action localization proposals from dense trajectories
    • June.
    • J. van Gemert, M. Jain, G. Ella, and C. Snoek. Apt: Action localization proposals from dense trajectories. In BMVC, pages 740-747, June 2015.
    • (2015) BMVC , pp. 740-747
    • Van Gemert, J.1    Jain, M.2    Ella, G.3    Snoek, C.4
  • 36
    • 78751648503 scopus 로고    scopus 로고
    • A survey of visionbased methods for action representation, segmentation and recognition
    • 1
    • D. Weinland, R. Ronfard, and E. Boyer. A survey of visionbased methods for action representation, segmentation and recognition. CVIU, 115 (2): 224-241, 2010.
    • (2010) CVIU , vol.115 , Issue.2 , pp. 224-241
    • Weinland, D.1    Ronfard, R.2    Boyer, E.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.