메뉴 건너뛰기




Volumn 07-12-June-2015, Issue , 2015, Pages 1201-1210

Unsupervised object discovery and localization in the wild: Part-based matching with bottom-up region proposals

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; FEATURE EXTRACTION; HOUGH TRANSFORMS;

EID: 84959186112     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2015.7298724     Document Type: Conference Paper
Times cited : (292)

References (57)
  • 1
    • 84866688216 scopus 로고    scopus 로고
    • Measuring the objectness of image windows
    • B. Alexe, T. Deselaers, and V. Ferrari. Measuring the objectness of image windows. TPAMI, 2012
    • (2012) TPAMI
    • Alexe, B.1    Deselaers, T.2    Ferrari, V.3
  • 2
    • 0019397313 scopus 로고
    • Generalizing the Hough transform to detect arbitrary shapes
    • D. Ballard. Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognition, 1981
    • (1981) Pattern Recognition
    • Ballard, D.1
  • 3
    • 84887449260 scopus 로고    scopus 로고
    • On detection of multiple object instances using Hough transforms
    • O. Barinova, V. Lempitsky, and P. Kohli. On detection of multiple object instances using Hough transforms. In CVPR. IEEE, 2010
    • (2010) CVPR. IEEE
    • Barinova, O.1    Lempitsky, V.2    Kohli, P.3
  • 4
    • 77955985702 scopus 로고    scopus 로고
    • Icoseg: Interactive co-segmentation with intelligent scribble guidance
    • D. Batra, A. Kowdle, D. Parikh, J. Luo, and T. Chen. icoseg: Interactive co-segmentation with intelligent scribble guidance. In CVPR, 2010
    • (2010) CVPR
    • Batra, D.1    Kowdle, A.2    Parikh, D.3    Luo, J.4    Chen, T.5
  • 6
    • 77956004091 scopus 로고    scopus 로고
    • Co-recognition of image pairs by data-driven monte carlo image exploration
    • M. Cho, Y. M. Shin, and K. M. Lee. Co-recognition of image pairs by data-driven Monte Carlo image exploration. In ECCV, 2008
    • (2008) ECCV
    • Cho, M.1    Shin, Y.M.2    Lee, K.M.3
  • 7
    • 77955994423 scopus 로고    scopus 로고
    • Unsupervised detection and segmentation of identical objects
    • M. Cho, Y. M. Shin, and K. M. Lee. Unsupervised detection and segmentation of identical objects. In CVPR, 2010
    • (2010) CVPR
    • Cho, M.1    Shin, Y.M.2    Lee, K.M.3
  • 8
    • 34948855941 scopus 로고    scopus 로고
    • An exemplar model for learning object classes
    • O. Chum and A. Zisserman. An exemplar model for learning object classes. In CVPR, 2007
    • (2007) CVPR
    • Chum, O.1    Zisserman, A.2
  • 9
    • 84911376072 scopus 로고    scopus 로고
    • Multi-fold MIL training for weakly supervised object localization
    • R. G. Cinbis, J. Verbeek, and C. Schmid. Multi-fold MIL training for weakly supervised object localization. In CVPR, 2014
    • (2014) CVPR
    • Cinbis, R.G.1    Verbeek, J.2    Schmid, C.3
  • 10
    • 33645146449 scopus 로고    scopus 로고
    • Histograms of oriented gradients for human detection
    • N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In CVPR, 2005
    • (2005) CVPR
    • Dalal, N.1    Triggs, B.2
  • 12
    • 79959728283 scopus 로고    scopus 로고
    • Localizing objects while learning their appearance
    • T. Deselaers, B. Alexe, and V. Ferrari. Localizing objects while learning their appearance. In ECCV, 2010
    • (2010) ECCV
    • Deselaers, T.1    Alexe, B.2    Ferrari, V.3
  • 13
    • 84959227156 scopus 로고    scopus 로고
    • Context as supervisory signal: Discovering objects with predictable context
    • C. Doersch, A. Gupta, and A. A. Efros. Context as supervisory signal: Discovering objects with predictable context. In ECCV, 2014
    • (2014) ECCV
    • Doersch, C.1    Gupta, A.2    Efros, A.A.3
  • 14
    • 84856655843 scopus 로고    scopus 로고
    • A graph-matching kernel for object categorization
    • O. Duchenne, A. Joulin, and J. Ponce. A graph-matching kernel for object categorization. In ICCV, 2011
    • (2011) ICCV
    • Duchenne, O.1    Joulin, A.2    Ponce, J.3
  • 15
    • 84887348680 scopus 로고    scopus 로고
    • Learning collections of part models for object recognition
    • I. Endres, K. J. Shih, J. Jiaa, and D. Hoiem. Learning collections of part models for object recognition. In CVPR, 2013
    • (2013) CVPR
    • Endres, I.1    Shih, K.J.2    Jiaa, J.3    Hoiem, D.4
  • 17
    • 84887388528 scopus 로고    scopus 로고
    • Clustering by composition"-unsupervised discovery of image categories
    • A. Faktor and M. Irani. "Clustering by composition"-unsupervised discovery of image categories. In ECCV, 2012
    • (2012) ECCV
    • Faktor, A.1    Irani, M.2
  • 19
  • 20
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014
    • (2014) CVPR
    • Girshick, R.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 21
    • 33845575890 scopus 로고    scopus 로고
    • Unsupervised learning of categories from sets of partially matching image features
    • K. Grauman and T. Darrell. Unsupervised learning of categories from sets of partially matching image features. In CVPR, 2006
    • (2006) CVPR
    • Grauman, K.1    Darrell, T.2
  • 22
    • 84887395819 scopus 로고    scopus 로고
    • Discriminative decorrelation for clustering and classification
    • B. Hariharan, J. Malik, and D. Ramanan. Discriminative decorrelation for clustering and classification. In ECCV, 2012
    • (2012) ECCV
    • Hariharan, B.1    Malik, J.2    Ramanan, D.3
  • 23
    • 77953213168 scopus 로고    scopus 로고
    • An efficient algorithm for co-segmentation
    • D. S. Hochbaum and V. Singh. An efficient algorithm for co-segmentation. In ICCV, 2009
    • (2009) ICCV
    • Hochbaum, D.S.1    Singh, V.2
  • 24
    • 38549105072 scopus 로고    scopus 로고
    • Gestalt-a learning theory for graphic design education
    • I. Jackson. Gestalt-a learning theory for graphic design education. IJADE, 2008
    • (2008) IJADE
    • Jackson, I.1
  • 25
    • 77955990943 scopus 로고    scopus 로고
    • Discriminative clustering for image co-segmentation
    • A. Joulin, F. Bach, and J. Ponce. Discriminative clustering for image co-segmentation. In CVPR, 2010
    • (2010) CVPR
    • Joulin, A.1    Bach, F.2    Ponce, J.3
  • 26
  • 27
    • 84943738421 scopus 로고    scopus 로고
    • Efficient image and video co-localization with frank-wolfe algorithm
    • A. Joulin, K. Tang, and L. Fei-Fei. Efficient image and video co-localization with frank-wolfe algorithm. In ECCV, 2014
    • (2014) ECCV
    • Joulin, A.1    Tang, K.2    Fei-Fei, L.3
  • 28
    • 84856671399 scopus 로고    scopus 로고
    • Unsupervised detection of regions of interest using iterative link analysis
    • G. Kim and A. Torralba. Unsupervised detection of regions of interest using iterative link analysis. In NIPS, 2009
    • (2009) NIPS
    • Kim, G.1    Torralba, A.2
  • 29
    • 84856636112 scopus 로고    scopus 로고
    • Distributed cosegmentation via submodular optimization on anisotropic diffusion
    • G. Kim and E. Xing. Distributed cosegmentation via submodular optimization on anisotropic diffusion. In ICCV, 2011
    • (2011) ICCV
    • Kim, G.1    Xing, E.2
  • 30
    • 33646505098 scopus 로고    scopus 로고
    • Semi-local affine parts for object recognition
    • S. Lazebnik, C. Schmid, and J. Ponce. Semi-local affine parts for object recognition. In BMVC, 2004
    • (2004) BMVC
    • Lazebnik, S.1    Schmid, C.2    Ponce, J.3
  • 31
    • 39749124915 scopus 로고    scopus 로고
    • Robust object detection with interleaved categorization and segmentation
    • B. Leibe, A. Leonardis, and B. Schiele. Robust object detection with interleaved categorization and segmentation. IJCV, 2008
    • (2008) IJCV
    • Leibe, B.1    Leonardis, A.2    Schiele, B.3
  • 32
    • 79953049203 scopus 로고    scopus 로고
    • SIFT Flow: Dense correspondence across scenes and its applications
    • C. Liu, J. Yuen, and A. Torralba. SIFT Flow: dense correspondence across scenes and its applications. TPAMI, 2011
    • (2011) TPAMI
    • Liu, C.1    Yuen, J.2    Torralba, A.3
  • 33
    • 70450186102 scopus 로고    scopus 로고
    • Object detection using a max-margin Hough transform
    • S. Maji and J. Malik. Object detection using a max-margin Hough transform. In CVPR, 2009
    • (2009) CVPR
    • Maji, S.1    Malik, J.2
  • 34
    • 84898781017 scopus 로고    scopus 로고
    • Prime object proposals with randomized Prim's algorithm
    • S. Manen, M. Guillaumin, and L. V. Gool. Prime object proposals with randomized Prim's algorithm. In ICCV, 2013
    • (2013) ICCV
    • Manen, S.1    Guillaumin, M.2    Gool, L.V.3
  • 35
    • 77953182042 scopus 로고    scopus 로고
    • Weakly supervised discriminative localization and classification: A joint learning process
    • M. H. Nguyen, L. Torresani, F. de la Torre, and C. Rother. Weakly supervised discriminative localization and classification: a joint learning process. In ICCV, 2009
    • (2009) ICCV
    • Nguyen, M.H.1    Torresani, L.2    De La Torre, F.3    Rother, C.4
  • 36
    • 84856650974 scopus 로고    scopus 로고
    • Scene recognition and weakly supervised object localization with deformable part-based models
    • M. Pandey and S. Lazebnik. Scene recognition and weakly supervised object localization with deformable part-based models. In ICCV, 2011
    • (2011) ICCV
    • Pandey, M.1    Lazebnik, S.2
  • 37
    • 0028541383 scopus 로고
    • Object recognition contributions to figure-ground organization: Operations on outlines and subjective contours
    • M. A. Peterson and B. S. Gibson. Object recognition contributions to figure-ground organization: Operations on outlines and subjective contours. Perception & Psychophysics, 1994
    • (1994) Perception & Psychophysics
    • Peterson, M.A.1    Gibson, B.S.2
  • 38
    • 33845587625 scopus 로고    scopus 로고
    • Cosegmentation of image pairs by histogram matching-incorporating a global constraint into MRFs
    • C. Rother, T. P. Minka, A. Blake, and V. Kolmogorov. Cosegmentation of image pairs by histogram matching-incorporating a global constraint into MRFs. In CVPR, 2006
    • (2006) CVPR
    • Rother, C.1    Minka, T.P.2    Blake, A.3    Kolmogorov, V.4
  • 40
    • 84887379226 scopus 로고    scopus 로고
    • Unsupervised joint object discovery and segmentation in internet images
    • M. Rubinstein and A. Joulin. Unsupervised joint object discovery and segmentation in internet images. In CVPR, 2013
    • (2013) CVPR
    • Rubinstein, M.1    Joulin, A.2
  • 41
    • 84866645316 scopus 로고    scopus 로고
    • Unsupervised co-segmentation through region matching
    • J. C. Rubio, J. Serrat, A. López, and N. Paragios. Unsupervised co-segmentation through region matching. In CVPR, 2012
    • (2012) CVPR
    • Rubio, J.C.1    Serrat, J.2    López, A.3    Paragios, N.4
  • 42
    • 33845596932 scopus 로고    scopus 로고
    • Using multiple segmentations to discover objects and their extent in image collections
    • B. Russell,W. Freeman, A. Efros, J. Sivic, and A. Zisserman. Using multiple segmentations to discover objects and their extent in image collections. In CVPR, 2006
    • (2006) CVPR
    • Russell, B.1    Freeman, W.2    Efros, A.3    Sivic, J.4    Zisserman, A.5
  • 43
    • 84898784069 scopus 로고    scopus 로고
    • Bayesian joint topic modelling for weakly supervised object localisation
    • Z. Shi, T. M. Hospedales, and T. Xiang. Bayesian joint topic modelling for weakly supervised object localisation. In ICCV, 2013
    • (2013) ICCV
    • Shi, Z.1    Hospedales, T.M.2    Xiang, T.3
  • 44
    • 84884958786 scopus 로고    scopus 로고
    • Unsupervised discovery of mid-level discriminative patches
    • S. Singh, A. Gupta, and A. Efros. Unsupervised discovery of mid-level discriminative patches. In ECCV, 2012
    • (2012) ECCV
    • Singh, S.1    Gupta, A.2    Efros, A.3
  • 45
    • 84888335371 scopus 로고    scopus 로고
    • Defence of negative mining for annotating weakly labelled data
    • P. Siva, C. Russell, and T. Xiang. In defence of negative mining for annotating weakly labelled data. In ECCV, 2012
    • (2012) ECCV
    • Siva, P.1    Russell, C.2    Xiang, T.3
  • 46
    • 84887368488 scopus 로고    scopus 로고
    • Looking beyond the image: Unsupervised learning for object saliency and detection
    • P. Siva, C. Russell, T. Xiang, and L. Agapito. Looking beyond the image: Unsupervised learning for object saliency and detection. In CVPR, 2013
    • (2013) CVPR
    • Siva, P.1    Russell, C.2    Xiang, T.3    Agapito, L.4
  • 47
    • 84856651319 scopus 로고    scopus 로고
    • Weakly supervised object detector learning with model drift detection
    • P. Siva and T. Xiang. Weakly supervised object detector learning with model drift detection. In ICCV, 2011
    • (2011) ICCV
    • Siva, P.1    Xiang, T.2
  • 50
    • 84898806407 scopus 로고    scopus 로고
    • Learning discriminative part detectors for image classification and cosegmentation
    • J. Sun and J. Ponce. Learning discriminative part detectors for image classification and cosegmentation. In ICCV, 2013
    • (2013) ICCV
    • Sun, J.1    Ponce, J.2
  • 51
    • 84911407409 scopus 로고    scopus 로고
    • Co-localization in real-world images
    • K. Tang, A. Joulin, and L.-j. Li. Co-localization in real-world images. In CVPR, 2014
    • (2014) CVPR
    • Tang, K.1    Joulin, A.2    Li, L.-J.3
  • 52
    • 51949119257 scopus 로고    scopus 로고
    • Small codes and large image databases for recognition
    • A. Torralba, R. Fergus, and Y. Weiss. Small codes and large image databases for recognition. In CVPR, 2008
    • (2008) CVPR
    • Torralba, A.1    Fergus, R.2    Weiss, Y.3
  • 54
    • 80052893493 scopus 로고    scopus 로고
    • Object cosegmentation
    • S. Vicente. Object cosegmentation. In CVPR, 2011
    • (2011) CVPR
    • Vicente, S.1
  • 55
    • 79958711802 scopus 로고    scopus 로고
    • Cosegmentation revisited: Models and optimization
    • S. Vicente, V. Kolmogorov, and C. Rother. Cosegmentation revisited: Models and optimization. In ECCV. 2010
    • (2010) ECCV
    • Vicente, S.1    Kolmogorov, V.2    Rother, C.3
  • 56
    • 84956604127 scopus 로고    scopus 로고
    • Weakly supervised object localization with latent category learning
    • C. Wang, W. Ren, K. Huang, and T. Tan. Weakly supervised object localization with latent category learning. In ECCV, 2014
    • (2014) ECCV
    • Wang, C.1    Ren, W.2    Huang, K.3    Tan, T.4
  • 57
    • 70450188050 scopus 로고    scopus 로고
    • Efficient kernels for identifying unbounded-order spatial features
    • Y. Zhang and T. Chen. Efficient kernels for identifying unbounded-order spatial features. In CVPR, 2009.
    • (2009) CVPR
    • Zhang, Y.1    Chen, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.