메뉴 건너뛰기




Volumn , Issue , 2012, Pages 3202-3209

Large-scale knowledge transfer for object localization in ImageNet

Author keywords

[No Author keywords available]

Indexed keywords

HIERARCHICAL STRUCTURES; KNOWLEDGE TRANSFER; LARGE-SCALE DATABASE; LOCATION ACCURACY; MANUAL ANNOTATION; OBJECT CLASS; OBJECT DETECTORS; OBJECT LOCALIZATION; TARGET CLASS; TARGET OBJECT;

EID: 84866661767     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2012.6248055     Document Type: Conference Paper
Times cited : (75)

References (34)
  • 2
    • 77955992058 scopus 로고    scopus 로고
    • Monocular 3d pose estimation and tracking by detection
    • M. Andriluka, S. Roth, and B. Schiele. Monocular 3d pose estimation and tracking by detection. In CVPR, 2010.
    • (2010) CVPR
    • Andriluka, M.1    Roth, S.2    Schiele, B.3
  • 3
    • 84856675275 scopus 로고    scopus 로고
    • Tabula rasa: Model transfer for object category detection
    • Y. Aytar and A. Zisserman. Tabula rasa: Model transfer for object category detection. In ICCV, 2011.
    • (2011) ICCV
    • Aytar, Y.1    Zisserman, A.2
  • 5
    • 33645146449 scopus 로고    scopus 로고
    • Histogram of Oriented Gradients for human detection
    • N. Dalal and B. Triggs. Histogram of Oriented Gradients for human detection. In CVPR, 2005.
    • (2005) CVPR
    • Dalal, N.1    Triggs, B.2
  • 6
    • 80052876786 scopus 로고    scopus 로고
    • What does classifying more than 10, 000 image categories tell us?
    • J. Deng, A. C. Berg, K. Li, and L. Fei-Fei. What does classifying more than 10,000 image categories tell us? In ECCV, 2010.
    • (2010) ECCV
    • Deng, J.1    Berg, A.C.2    Li, K.3    Fei-Fei, L.4
  • 7
    • 72249100259 scopus 로고    scopus 로고
    • ImageNet: A large-scale hierarchical image database
    • J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Feifei. ImageNet: A large-scale hierarchical image database. In CVPR, 2009. http://image-net.org/.
    • (2009) CVPR
    • Deng, J.1    Dong, W.2    Socher, R.3    Li, L.-J.4    Li, K.5    Feifei, L.6
  • 8
    • 79959728283 scopus 로고    scopus 로고
    • Localizing objects while learning their appearance
    • T. Deselaers, B. Alexe, and V. Ferrari. Localizing objects while learning their appearance. In ECCV, 2010.
    • (2010) ECCV
    • Deselaers, T.1    Alexe, B.2    Ferrari, V.3
  • 9
    • 80052872247 scopus 로고    scopus 로고
    • Visual and semantic similarity in imagenet
    • T. Deselaers and V. Ferrari. Visual and semantic similarity in imagenet. In CVPR, 2011.
    • (2011) CVPR
    • Deselaers, T.1    Ferrari, V.2
  • 12
    • 50949133669 scopus 로고    scopus 로고
    • LIBLINEAR: A library for large linear classification
    • R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. LIBLINEAR: a library for large linear classification. JMLR, 9:1871-1874, 2008.
    • (2008) JMLR , vol.9 , pp. 1871-1874
    • Fan, R.-E.1    Chang, K.-W.2    Hsieh, C.-J.3    Wang, X.-R.4    Lin, C.-J.5
  • 13
    • 84932617705 scopus 로고    scopus 로고
    • Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories
    • L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories. In CVPR Workshop of Generative Model Based Vision, 2004.
    • (2004) CVPR Workshop of Generative Model Based Vision
    • Fei-Fei, L.1    Fergus, R.2    Perona, P.3
  • 15
    • 84856653205 scopus 로고    scopus 로고
    • Discriminative mixture-of-templates for viewpoint classification
    • C. Gu and X. Ren. Discriminative mixture-of-templates for viewpoint classification. In ECCV, 2010.
    • (2010) ECCV
    • Gu, C.1    Ren, X.2
  • 16
    • 70450172710 scopus 로고    scopus 로고
    • Learning to detect unseen object classes by between-class attribute transfer
    • C. Lampert, H. Nickisch, and S. Harmeling. Learning to detect unseen object classes by between-class attribute transfer. In CVPR, 2009.
    • (2009) CVPR
    • Lampert, C.1    Nickisch, H.2    Harmeling, S.3
  • 17
    • 50249148608 scopus 로고    scopus 로고
    • Coupled detection and trajectory estimation for multi-object tracking
    • B. Leibe, K. Schindler, and L. Van Gool. Coupled detection and trajectory estimation for multi-object tracking. In ICCV, 2007.
    • (2007) ICCV
    • Leibe, B.1    Schindler, K.2    Van Gool, L.3
  • 19
    • 80052870284 scopus 로고    scopus 로고
    • Large-scale image classification: Fast feature extraction and SVM training
    • Y. Lin, F. Lv, S. Zhu, M. Yang, T. Cour, K. Yu, and C. Cao, L. Huang. Large-scale image classification: fast feature extraction and SVM training. In CVPR, 2011.
    • (2011) CVPR
    • Lin, Y.1    Lv, F.2    Zhu, S.3    Yang, M.4    Cour, T.5    Yu, K.6    Cao, C.7    Huang, L.8
  • 20
    • 80052912053 scopus 로고    scopus 로고
    • Shared parts for deformable partbased models
    • P. Ott and M. Everingham. Shared parts for deformable partbased models. In CVPR, 2011.
    • (2011) CVPR
    • Ott, P.1    Everingham, M.2
  • 21
    • 0001473437 scopus 로고
    • On the estimation of a probability density function
    • E. Parzen. On the estimation of a probability density function. Annals of Mathematical Statistics, 33(3), 1962.
    • (1962) Annals of Mathematical Statistics , vol.33 , pp. 3
    • Parzen, E.1
  • 22
    • 84856638291 scopus 로고    scopus 로고
    • Learning specific-class segmentation from diverse data
    • M. Pawan Kumar, H. Turki, D. Preston, and D. Koller. Learning specific-class segmentation from diverse data. In ICCV, 2011.
    • (2011) ICCV
    • Pawan Kumar, M.1    Turki, H.2    Preston, D.3    Koller, D.4
  • 23
    • 84866641124 scopus 로고    scopus 로고
    • Computationally efficient histogram extraction for rectangular image regions
    • F. Porikli. Computationally efficient histogram extraction for rectangular image regions. In Proceedings of Real-Time Image Processing, 2005.
    • (2005) Proceedings of Real-Time Image Processing
    • Porikli, F.1
  • 24
    • 51949094374 scopus 로고    scopus 로고
    • Transfer learning for image classification with sparse prototype representations
    • A. Quattoni, M. Collins, and T. Darrell. Transfer learning for image classification with sparse prototype representations. In CVPR, 2008.
    • (2008) CVPR
    • Quattoni, A.1    Collins, M.2    Darrell, T.3
  • 25
    • 77955989949 scopus 로고    scopus 로고
    • What helps where and why? semantic relatedness for knowledge transfer
    • M. Rohrbach, M. Stark, G. Szarvas, I. Gurevych, and B. Schiele. What helps where and why? semantic relatedness for knowledge transfer. In CVPR, 2010.
    • (2010) CVPR
    • Rohrbach, M.1    Stark, M.2    Szarvas, G.3    Gurevych, I.4    Schiele, B.5
  • 26
    • 12844262766 scopus 로고    scopus 로고
    • Grabcut: Interactive foreground extraction using iterated graph cuts
    • C. Rother, V. Kolmogorov, and A. Blake. Grabcut: interactive foreground extraction using iterated graph cuts. SIGGRAPH, 23(3):309-314, 2004.
    • (2004) SIGGRAPH , vol.23 , Issue.3 , pp. 309-314
    • Rother, C.1    Kolmogorov, V.2    Blake, A.3
  • 27
    • 80052905403 scopus 로고    scopus 로고
    • Learning to share visual appearance for multiclass object detection
    • R. Salakhutdinov, A. Torralba, and J. Tenenbaum. Learning to share visual appearance for multiclass object detection. In CVPR, 2011.
    • (2011) CVPR
    • Salakhutdinov, R.1    Torralba, A.2    Tenenbaum, J.3
  • 28
    • 77953222843 scopus 로고    scopus 로고
    • A shape-based object class model for knowledge transfer
    • M. Stark, M. Goesele, and B. Schiele. A shape-based object class model for knowledge transfer. In ICCV, 2009.
    • (2009) ICCV
    • Stark, M.1    Goesele, M.2    Schiele, B.3
  • 29
    • 0041494227 scopus 로고    scopus 로고
    • Is learning the n-th thing any easier than learning the first?
    • S. Thrun. Is learning the n-th thing any easier than learning the first? In NIPS, 1996.
    • (1996) NIPS
    • Thrun, S.1
  • 30
    • 77956005674 scopus 로고    scopus 로고
    • Safety in numbers: Learning categories from few examples with multi model knowledge transfer
    • T. Tommasi, F. Orabona, and B. Caputo. Safety in numbers: Learning categories from few examples with multi model knowledge transfer. In CVPR, 2010.
    • (2010) CVPR
    • Tommasi, T.1    Orabona, F.2    Caputo, B.3
  • 31
    • 51949119257 scopus 로고    scopus 로고
    • Small codes and large image databases for recognition
    • A. Torralba, R. Fergus, and Y. Weiss. Small codes and large image databases for recognition. In CVPR, 2008.
    • (2008) CVPR
    • Torralba, A.1    Fergus, R.2    Weiss, Y.3
  • 32
    • 77955989063 scopus 로고    scopus 로고
    • Efficient additive kernels via explicit feature maps
    • A. Vedaldi and A. Zisserman. Efficient additive kernels via explicit feature maps. In CVPR, 2010.
    • (2010) CVPR
    • Vedaldi, A.1    Zisserman, A.2
  • 33
    • 77955988947 scopus 로고    scopus 로고
    • Sun database: Large-scale scene recognition from Abbey to Zoo
    • J. Xiao, J. Hays, K. Ehinger, A. Oliva, and A. Torralba. Sun database: Large-scale scene recognition from Abbey to Zoo. In CVPR, 2010.
    • (2010) CVPR
    • Xiao, J.1    Hays, J.2    Ehinger, K.3    Oliva, A.4    Torralba, A.5
  • 34
    • 33846580425 scopus 로고    scopus 로고
    • Local features and kernels for classification of texture and object categories: A comprehensive study
    • J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid. Local features and kernels for classification of texture and object categories: a comprehensive study. IJCV, 2007.
    • (2007) IJCV
    • Zhang, J.1    Marszalek, M.2    Lazebnik, S.3    Schmid, C.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.