-
1
-
-
80052896727
-
Automatic attribute discovery and characterization from noisy web data
-
T. L. Berg, A. C. Berg, and J. Shih. Automatic attribute discovery and characterization from noisy web data. In Proc. ECCV. 2010
-
(2010)
Proc. ECCV.
-
-
Berg, T.L.1
Berg, A.C.2
Shih, J.3
-
3
-
-
74049158146
-
Nus-wide: A real-world web image database from national university of Singapore
-
T.-S. Chua, J. Tang, R. Hong, H. Li, Z. Luo, and Y. Zheng. Nus-wide: a real-world web image database from national university of Singapore. In Proceedings of the ACM international conference on image and video retrieval, 2009
-
(2009)
Proceedings of the ACM International Conference on Image and Video Retrieval
-
-
Chua, T.-S.1
Tang, J.2
Hong, R.3
Li, H.4
Luo, Z.5
Zheng, Y.6
-
4
-
-
33645146449
-
Histograms of oriented gradients for human detection
-
N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In Proc. CVPR, 2005
-
(2005)
Proc. CVPR
-
-
Dalal, N.1
Triggs, B.2
-
7
-
-
85198028989
-
Imagenet: A large-scale hierarchical image database
-
J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical image database. In Proc. CVPR, 2009
-
(2009)
Proc. CVPR
-
-
Deng, J.1
Dong, W.2
Socher, R.3
Li, L.-J.4
Li, K.5
Fei-Fei, L.6
-
8
-
-
84911368326
-
Learning everything about anything: Webly-supervised visual concept learning
-
S. K. Divvala, A. Farhadi, and C. Guestrin. Learning everything about anything: Webly-supervised visual concept learning. In Proc. CVPR, 2014
-
(2014)
Proc. CVPR
-
-
Divvala, S.K.1
Farhadi, A.2
Guestrin, C.3
-
9
-
-
84952007662
-
The pascal visual object classes challenge-a retrospective
-
M. Everingham, S. A. Eslami, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman. The pascal visual object classes challenge-a retrospective. Int'l Journal of Computer Vision, 2014
-
(2014)
Int'l Journal of Computer Vision
-
-
Everingham, M.1
Eslami, S.A.2
Van Gool, L.3
Williams, C.K.4
Winn, J.5
Zisserman, A.6
-
10
-
-
50949133669
-
Liblinear: A library for large linear classification
-
R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. Liblinear: A library for large linear classification. The Journal of Machine Learning Research, 2008
-
(2008)
The Journal of Machine Learning Research
-
-
Fan, R.-E.1
Chang, K.-W.2
Hsieh, C.-J.3
Wang, X.-R.4
Lin, C.-J.5
-
12
-
-
84911400494
-
Rich feature hierarchies for accurate object detection and semantic segmentation
-
R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proc. CVPR, 2014
-
(2014)
Proc. CVPR
-
-
Girshick, R.1
Donahue, J.2
Darrell, T.3
Malik, J.4
-
18
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012
-
(2012)
NIPS
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
19
-
-
80052901011
-
Baby talk: Understanding and generating simple image descriptions
-
G. Kulkarni, V. Premraj, S. Dhar, S. Li, Y. Choi, A. C. Berg, and T. L. Berg. Baby talk: Understanding and generating simple image descriptions. In Proc. CVPR, 2011
-
(2011)
Proc. CVPR
-
-
Kulkarni, G.1
Premraj, V.2
Dhar, S.3
Li, S.4
Choi, Y.5
Berg, A.C.6
Berg, T.L.7
-
20
-
-
43249117136
-
Real-time computerized annotation of pictures
-
June
-
J. Li and J. Z. Wang. Real-time computerized annotation of pictures. IEEE Trans. Pattern Anal. Mach. Intell., 30(6):985-1002, June 2008
-
(2008)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.30
, Issue.6
, pp. 985-1002
-
-
Li, J.1
Wang, J.Z.2
-
21
-
-
84887327253
-
Harvesting mid-level visual concepts from large-scale internet images
-
Q. Li, J. Wu, and Z. Tu. Harvesting mid-level visual concepts from large-scale internet images. In Proc. CVPR, 2013
-
(2013)
Proc. CVPR
-
-
Li, Q.1
Wu, J.2
Tu, Z.3
-
23
-
-
85162522202
-
Im2text: Describing images using 1 million captioned photographs
-
V. Ordonez, G. Kulkarni, and T. L. Berg. Im2text: Describing images using 1 million captioned photographs. In NIPS, 2011
-
(2011)
NIPS
-
-
Ordonez, V.1
Kulkarni, G.2
Berg, T.L.3
-
24
-
-
84866674032
-
Learning object class detectors from weakly annotated video
-
A. Prest, C. Leistner, J. Civera, C. Schmid, and V. Ferrari. Learning object class detectors from weakly annotated video. In Proc. CVPR, 2012
-
(2012)
Proc. CVPR
-
-
Prest, A.1
Leistner, C.2
Civera, J.3
Schmid, C.4
Ferrari, V.5
-
29
-
-
84884958786
-
Unsupervised discovery of mid-level discriminative patches
-
S. Singh, A. Gupta, and A. A. Efros. Unsupervised discovery of mid-level discriminative patches. In Proc. ECCV. 2012
-
(2012)
Proc. ECCV.
-
-
Singh, S.1
Gupta, A.2
Efros, A.A.3
-
30
-
-
84856651319
-
Weakly supervised object detector learning with model drift detection
-
P. Siva and T. Xiang. Weakly supervised object detector learning with model drift detection. In Proc. ICCV, 2011
-
(2011)
Proc. ICCV
-
-
Siva, P.1
Xiang, T.2
-
31
-
-
84919792468
-
On learning to localize objects with minimal supervision
-
H. O. Song, R. Girshick, S. Jegelka, J. Mairal, Z. Harchaoui, T. Darrell, et al. On learning to localize objects with minimal supervision. In International Conference on Machine Learning, 2014
-
(2014)
International Conference on Machine Learning
-
-
Song, H.O.1
Girshick, R.2
Jegelka, S.3
Mairal, J.4
Harchaoui, Z.5
Darrell, T.6
-
33
-
-
84877780666
-
Shifting weights: Adapting object detectors from image to video
-
K. Tang, V. Ramanathan, L. Fei-Fei, and D. Koller. Shifting weights: Adapting object detectors from image to video. In NIPS, 2012
-
(2012)
NIPS
-
-
Tang, K.1
Ramanathan, V.2
Fei-Fei, L.3
Koller, D.4
-
36
-
-
84887393201
-
Weakly supervised learning for attribute localization in outdoor scenes
-
S. Wang, J. Joo, Y. Wang, and S.-C. Zhu. Weakly supervised learning for attribute localization in outdoor scenes. In Proc. CVPR, 2013
-
(2013)
Proc. CVPR
-
-
Wang, S.1
Joo, J.2
Wang, Y.3
Zhu, S.-C.4
-
38
-
-
84937964578
-
Learning deep features for scene recognition using places database
-
B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva. Learning deep features for scene recognition using places database. In NIPS, 2014.
-
(2014)
NIPS
-
-
Zhou, B.1
Lapedriza, A.2
Xiao, J.3
Torralba, A.4
Oliva, A.5
|