메뉴 건너뛰기




Volumn 07-12-June-2015, Issue , 2015, Pages 1492-1500

ConceptLearner: Discovering visual concepts from weakly labeled image collections

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION;

EID: 84959187860     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2015.7298756     Document Type: Conference Paper
Times cited : (35)

References (38)
  • 1
    • 80052896727 scopus 로고    scopus 로고
    • Automatic attribute discovery and characterization from noisy web data
    • T. L. Berg, A. C. Berg, and J. Shih. Automatic attribute discovery and characterization from noisy web data. In Proc. ECCV. 2010
    • (2010) Proc. ECCV.
    • Berg, T.L.1    Berg, A.C.2    Shih, J.3
  • 2
    • 84898803720 scopus 로고    scopus 로고
    • Neil: Extracting visual knowledge from web data
    • X. Chen, A. Shrivastava, and A. Gupta. Neil: Extracting visual knowledge from web data. In Proc. ICCV, 2013
    • (2013) Proc. ICCV
    • Chen, X.1    Shrivastava, A.2    Gupta, A.3
  • 4
    • 33645146449 scopus 로고    scopus 로고
    • Histograms of oriented gradients for human detection
    • N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In Proc. CVPR, 2005
    • (2005) Proc. CVPR
    • Dalal, N.1    Triggs, B.2
  • 8
    • 84911368326 scopus 로고    scopus 로고
    • Learning everything about anything: Webly-supervised visual concept learning
    • S. K. Divvala, A. Farhadi, and C. Guestrin. Learning everything about anything: Webly-supervised visual concept learning. In Proc. CVPR, 2014
    • (2014) Proc. CVPR
    • Divvala, S.K.1    Farhadi, A.2    Guestrin, C.3
  • 12
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proc. CVPR, 2014
    • (2014) Proc. CVPR
    • Girshick, R.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 13
    • 84959243872 scopus 로고    scopus 로고
    • Improving image-sentence embeddings using large weakly annotated photo collections
    • Y. Gong, L. Wang, M. Hodosh, J. Hockenmaier, and S. Lazebnik. Improving image-sentence embeddings using large weakly annotated photo collections. In Proc. ECCV. 2014
    • (2014) Proc. ECCV.
    • Gong, Y.1    Wang, L.2    Hodosh, M.3    Hockenmaier, J.4    Lazebnik, S.5
  • 18
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 20
    • 43249117136 scopus 로고    scopus 로고
    • Real-time computerized annotation of pictures
    • June
    • J. Li and J. Z. Wang. Real-time computerized annotation of pictures. IEEE Trans. Pattern Anal. Mach. Intell., 30(6):985-1002, June 2008
    • (2008) IEEE Trans. Pattern Anal. Mach. Intell. , vol.30 , Issue.6 , pp. 985-1002
    • Li, J.1    Wang, J.Z.2
  • 21
    • 84887327253 scopus 로고    scopus 로고
    • Harvesting mid-level visual concepts from large-scale internet images
    • Q. Li, J. Wu, and Z. Tu. Harvesting mid-level visual concepts from large-scale internet images. In Proc. CVPR, 2013
    • (2013) Proc. CVPR
    • Li, Q.1    Wu, J.2    Tu, Z.3
  • 23
    • 85162522202 scopus 로고    scopus 로고
    • Im2text: Describing images using 1 million captioned photographs
    • V. Ordonez, G. Kulkarni, and T. L. Berg. Im2text: Describing images using 1 million captioned photographs. In NIPS, 2011
    • (2011) NIPS
    • Ordonez, V.1    Kulkarni, G.2    Berg, T.L.3
  • 27
  • 29
    • 84884958786 scopus 로고    scopus 로고
    • Unsupervised discovery of mid-level discriminative patches
    • S. Singh, A. Gupta, and A. A. Efros. Unsupervised discovery of mid-level discriminative patches. In Proc. ECCV. 2012
    • (2012) Proc. ECCV.
    • Singh, S.1    Gupta, A.2    Efros, A.A.3
  • 30
    • 84856651319 scopus 로고    scopus 로고
    • Weakly supervised object detector learning with model drift detection
    • P. Siva and T. Xiang. Weakly supervised object detector learning with model drift detection. In Proc. ICCV, 2011
    • (2011) Proc. ICCV
    • Siva, P.1    Xiang, T.2
  • 33
    • 84877780666 scopus 로고    scopus 로고
    • Shifting weights: Adapting object detectors from image to video
    • K. Tang, V. Ramanathan, L. Fei-Fei, and D. Koller. Shifting weights: Adapting object detectors from image to video. In NIPS, 2012
    • (2012) NIPS
    • Tang, K.1    Ramanathan, V.2    Fei-Fei, L.3    Koller, D.4
  • 36
    • 84887393201 scopus 로고    scopus 로고
    • Weakly supervised learning for attribute localization in outdoor scenes
    • S. Wang, J. Joo, Y. Wang, and S.-C. Zhu. Weakly supervised learning for attribute localization in outdoor scenes. In Proc. CVPR, 2013
    • (2013) Proc. CVPR
    • Wang, S.1    Joo, J.2    Wang, Y.3    Zhu, S.-C.4
  • 38
    • 84937964578 scopus 로고    scopus 로고
    • Learning deep features for scene recognition using places database
    • B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva. Learning deep features for scene recognition using places database. In NIPS, 2014.
    • (2014) NIPS
    • Zhou, B.1    Lapedriza, A.2    Xiao, J.3    Torralba, A.4    Oliva, A.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.