메뉴 건너뛰기




Volumn , Issue , 2010, Pages 49-56

P-N learning: Bootstrapping binary classifiers by structural constraints

Author keywords

[No Author keywords available]

Indexed keywords

BINARY CLASSIFIERS; ITERATIVE PROCESS; LEARNING PROCESS; OBJECT DETECTORS; ONLINE LEARNING; STRUCTURAL CONSTRAINTS; SYNTHETIC AND REAL DATA; TRAINING SETS; UNLABELED DATA; VIDEO SEQUENCES;

EID: 77956005443     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2010.5540231     Document Type: Conference Paper
Times cited : (1122)

References (24)
  • 1
    • 0004393109 scopus 로고
    • Machines that learn from hints
    • 2
    • Y. Abu-Mostafa. Machines that learn from hints. Scientific American, 272(4):64-71, 1995. 2
    • (1995) Scientific American , vol.272 , Issue.4 , pp. 64-71
    • Abu-Mostafa, Y.1
  • 2
    • 33947229323 scopus 로고    scopus 로고
    • Ensemble tracking
    • 2, 7
    • S. Avidan. Ensemble tracking. PAMI, 29(2):261-271, 2007. 2, 7
    • (2007) PAMI , vol.29 , Issue.2 , pp. 261-271
    • Avidan, S.1
  • 3
    • 70450188146 scopus 로고    scopus 로고
    • Visual tracking with online multiple instance learning
    • 3, 7
    • B. Babenko, M.-H. Yang, and S. Belongie. Visual tracking with online multiple instance learning. CVPR, 2009. 3, 7
    • (2009) CVPR
    • Babenko, B.1    Yang, M.-H.2    Belongie, S.3
  • 4
    • 0031620208 scopus 로고    scopus 로고
    • Combining labeled and unlabeled data with co-training
    • 1, 2
    • A. Blum and T. Mitchell. Combining labeled and unlabeled data with co-training. COLT, 1998. 1, 2
    • (1998) COLT
    • Blum, A.1    Mitchell, T.2
  • 5
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • 5
    • L. Breiman. Random forests. ML, 45(1):5-32, 2001. 5
    • (2001) ML , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 7
    • 27644528380 scopus 로고    scopus 로고
    • Online selection of discriminative tracking features
    • 2, 7
    • R. Collins, Y. Liu, and M. Leordeanu. Online selection of discriminative tracking features. PAMI, 27(10):1631-1643, 2005. 2, 7
    • (2005) PAMI , vol.27 , Issue.10 , pp. 1631-1643
    • Collins, R.1    Liu, Y.2    Leordeanu, M.3
  • 8
    • 0041940256 scopus 로고    scopus 로고
    • Object class recognition by unsupervised scale-invariant learning
    • 2
    • R. Fergus, P. Perona, and A. Zisserman. Object class recognition by unsupervised scale-invariant learning. CVPR, 2, 2003. 2
    • (2003) CVPR , vol.2
    • Fergus, R.1    Perona, P.2    Zisserman, A.3
  • 9
    • 33845570001 scopus 로고    scopus 로고
    • On-line boosting and vision
    • 2
    • H. Grabner and H. Bischof. On-line boosting and vision. CVPR, 2006. 2
    • (2006) CVPR
    • Grabner, H.1    Bischof, H.2
  • 10
    • 33745173515 scopus 로고    scopus 로고
    • Online detection and classification of moving objects using progressively improving detectors
    • 2
    • O. Javed, S. Ali, and M. Shah. Online detection and classification of moving objects using progressively improving detectors. CVPR, 2005. 2
    • (2005) CVPR
    • Javed, O.1    Ali, S.2    Shah, M.3
  • 11
    • 84898409192 scopus 로고    scopus 로고
    • Weighted sampling for large-scale boosting
    • 5
    • Z. Kalal, J. Matas, and K. Mikolajczyk. Weighted sampling for large-scale boosting. BMVC, 2008. 5
    • (2008) BMVC
    • Kalal, Z.1    Matas, J.2    Mikolajczyk, K.3
  • 12
    • 77955990575 scopus 로고    scopus 로고
    • Online learning of robust object detectors during unstable tracking
    • 3, 5, 7
    • Z. Kalal, J. Matas, and K. Mikolajczyk. Online learning of robust object detectors during unstable tracking. OLCV, 2009. 3, 5, 7
    • (2009) OLCV
    • Kalal, Z.1    Matas, J.2    Mikolajczyk, K.3
  • 13
    • 24644494804 scopus 로고    scopus 로고
    • Randomized trees for real-time keypoint recognition
    • 5
    • V. Lepetit, P. Lagger, and P. Fua. Randomized trees for real-time keypoint recognition. CVPR, 2005. 5
    • (2005) CVPR
    • Lepetit, V.1    Lagger, P.2    Fua, P.3
  • 14
    • 0344982834 scopus 로고    scopus 로고
    • Unsupervised improvement of visual detectors using co-training
    • 2
    • A. Levin, P. Viola, and Y. Freund. Unsupervised improvement of visual detectors using co-training. ICCV, 2003. 2
    • (2003) ICCV
    • Levin, A.1    Viola, P.2    Freund, Y.3
  • 15
    • 85081805923 scopus 로고    scopus 로고
    • Incremental learning for visual tracking
    • 2, 7
    • J. Lim, D. Ross, R. Lin, and M. Yang. Incremental learning for visual tracking. NIPS, 2005. 2, 7
    • (2005) NIPS
    • Lim, J.1    Ross, D.2    Lin, R.3    Yang, M.4
  • 16
    • 0019647180 scopus 로고
    • An iterative image registration technique with an application to stereo vision
    • 5
    • B. Lucas and T. Kanade. An iterative image registration technique with an application to stereo vision. IJCAI, 81:674-679, 1981. 5
    • (1981) IJCAI , vol.81 , pp. 674-679
    • Lucas, B.1    Kanade, T.2
  • 17
    • 0033886806 scopus 로고    scopus 로고
    • Text classification from labeled and unlabeled documents using EM
    • 1, 2
    • K. Nigam, A. McCallum, S. Thrun, and T. Mitchell. Text classification from labeled and unlabeled documents using EM. Machine learning, 39(2):103-134, 2000. 1, 2
    • (2000) Machine Learning , vol.39 , Issue.2 , pp. 103-134
    • Nigam, K.1    McCallum, A.2    Thrun, S.3    Mitchell, T.4
  • 18
    • 34948862825 scopus 로고    scopus 로고
    • Fast keypoint recognition in ten lines of code
    • 5
    • M. Ozuysal, P. Fua, and V. Lepetit. Fast keypoint recognition in ten lines of code. CVPR, 2007. 5
    • (2007) CVPR
    • Ozuysal, M.1    Fua, P.2    Lepetit, V.3
  • 19
    • 79955720395 scopus 로고    scopus 로고
    • Challenges and research directions for adaptive biometric recognition systems
    • 2
    • N. Poh, R. Wong, J. Kittler, and F. Roli. Challenges and research directions for adaptive biometric recognition systems. ICAB, 2009. 2
    • (2009) ICAB
    • Poh, N.1    Wong, R.2    Kittler, J.3    Roli, F.4
  • 20
    • 35348895580 scopus 로고    scopus 로고
    • Semi-supervised self-training of object detection models
    • 2
    • C. Rosenberg, M. Hebert, and H. Schneiderman. Semi-supervised self-training of object detection models. WACV, 2005. 2
    • (2005) WACV
    • Rosenberg, C.1    Hebert, M.2    Schneiderman, H.3
  • 21
    • 0035680116 scopus 로고    scopus 로고
    • Rapid object detection using a boosted cascade of simple features
    • 4
    • P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple features. CVPR, 2001. 4
    • (2001) CVPR
    • Viola, P.1    Jones, M.2
  • 22
    • 77951204037 scopus 로고    scopus 로고
    • Online tracking and reacquisition using co-trained generative and discriminative trackers
    • 3, 6, 7
    • Q. Yu, T. Dinh, and G. Medioni. Online tracking and reacquisition using co-trained generative and discriminative trackers. ECCV, 2008. 3, 6, 7
    • (2008) ECCV
    • Yu, Q.1    Dinh, T.2    Medioni, G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.