메뉴 건너뛰기




Volumn , Issue , 2013, Pages 2480-2487

PixelTrack: A fast adaptive algorithm for tracking non-rigid objects

Author keywords

object tracking

Indexed keywords

ADAPTIVE ALGORITHMS; HOUGH TRANSFORMS;

EID: 84898822561     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2013.308     Document Type: Conference Paper
Times cited : (131)

References (43)
  • 1
    • 33845596140 scopus 로고    scopus 로고
    • Robust fragmentsbased tracking using the integral histogram
    • A. Adam, E. Rivlin, and I. Shimshoni. Robust fragmentsbased tracking using the integral histogram. In Proc. of CVPR, pages 798-805, 2006.
    • (2006) Proc. of CVPR , pp. 798-805
    • Adam, A.1    Rivlin, E.2    Shimshoni, I.3
  • 2
    • 77955996634 scopus 로고    scopus 로고
    • A probabilistic framework for joint segmentation and tracking
    • June
    • C. Aeschliman, J. Park, and A. C. Kak. A probabilistic framework for joint segmentation and tracking. In Proc. of CVPR, pages 1371-1378, June 2010.
    • (2010) Proc. of CVPR , pp. 1371-1378
    • Aeschliman, C.1    Park, J.2    Kak, A.C.3
  • 3
    • 33947229323 scopus 로고    scopus 로고
    • Ensemble tracking
    • Feb.
    • S. Avidan. Ensemble tracking. IEEE Transactions on PAMI, 29(2):261-271, Feb. 2007.
    • (2007) IEEE Transactions on PAMI , vol.29 , Issue.2 , pp. 261-271
    • Avidan, S.1
  • 4
    • 70450188146 scopus 로고    scopus 로고
    • Visual tracking with online multiple instance learning
    • Dec.
    • B. Babenko, M.-H. Yang, and S. Belongie. Visual tracking with online multiple instance learning. In Proc. of CVPR, Dec. 2009.
    • (2009) Proc. of CVPR
    • Babenko, B.1    Yang, M.-H.2    Belongie, S.3
  • 5
    • 0019397313 scopus 로고
    • Generalizing the hough transform to detect arbitrary shapes
    • D. Ballard. Generalizing the hough transform to detect arbitrary shapes. Pattern Recognition, 1981.
    • (1981) Pattern Recognition
    • Ballard, D.1
  • 6
    • 84866285609 scopus 로고    scopus 로고
    • Real time robust l1 tracker using accelerated proximal gradient approach
    • June
    • C. Bao, Y.Wu, H. Ling, and H. Ji. Real time robust l1 tracker using accelerated proximal gradient approach. In Proc. of CVPR, pages 1830-1837, June 2012.
    • (2012) Proc. of CVPR , pp. 1830-1837
    • Bao, C.1    Wu, Y.2    Ling, H.3    Ji, H.4
  • 7
    • 84898769593 scopus 로고    scopus 로고
    • Segmentation based particle filtering for real-time 2d object tracking
    • V. Belagiannis, F. Schubert, N. Navab, and S. Ilic. Segmentation based particle filtering for real-time 2d object tracking. In Proc. of ECCV, pages 1-14, 2012.
    • (2012) Proc. of ECCV , pp. 1-14
    • Belagiannis, V.1    Schubert, F.2    Navab, N.3    Ilic, S.4
  • 8
    • 70350606550 scopus 로고    scopus 로고
    • Robust real-time visual tracking using pixel-wise posteriors
    • C. Bibby and I. Reid. Robust real-time visual tracking using pixel-wise posteriors. In Proc. of ECCV, 2008.
    • (2008) Proc. of ECCV
    • Bibby, C.1    Reid, I.2
  • 9
    • 78149335612 scopus 로고    scopus 로고
    • Visual tracking using a pixelwise spatiotemporal oriented energy representation
    • K. Cannons, J. Gryn, and R. Wildes. Visual tracking using a pixelwise spatiotemporal oriented energy representation. In Proc. of ECCV, pages 511-524, 2010.
    • (2010) Proc. of ECCV , pp. 511-524
    • Cannons, K.1    Gryn, J.2    Wildes, R.3
  • 10
    • 77953216239 scopus 로고    scopus 로고
    • Adaptive fragments-based tracking of non-rigid objects using level sets
    • P. Chockalingam, N. Pradeep, and S. Birchfield. Adaptive fragments-based tracking of non-rigid objects using level sets. In Proc. of ICCV, 2009.
    • (2009) Proc. of ICCV
    • Chockalingam, P.1    Pradeep, N.2    Birchfield, S.3
  • 11
    • 0033682434 scopus 로고    scopus 로고
    • Real-time tracking of non-rigid objects using mean shift
    • D. Comaniciu, V. Ramesh, and P. Meer. Real-time tracking of non-rigid objects using mean shift. In Proc. of CVPR, volume 2, pages 142-149, 2000.
    • (2000) Proc. of CVPR , vol.2 , pp. 142-149
    • Comaniciu, D.1    Ramesh, V.2    Meer, P.3
  • 12
    • 33748140792 scopus 로고    scopus 로고
    • Dynamical statistical shape priors for level set based sequence segmentation
    • D. Cremers and G. Funka-Lea. Dynamical statistical shape priors for level set based sequence segmentation. IEEE Transactions on PAMI, 28(8):1262-1273, 2006.
    • (2006) IEEE Transactions on PAMI , vol.28 , Issue.8 , pp. 1262-1273
    • Cremers, D.1    Funka-Lea, G.2
  • 14
    • 80053120334 scopus 로고    scopus 로고
    • Hough forests for object detection, tracking, and action recognition
    • Nov.
    • J. Gall, A. Yao, N. Razavi, L. Van Gool, and V. Lempitsky. Hough forests for object detection, tracking, and action recognition. IEEE Transactions on PAMI, 33(11):2188-202, Nov. 2011.
    • (2011) IEEE Transactions on PAMI , vol.33 , Issue.11 , pp. 2188-2202
    • Gall, J.1    Yao, A.2    Razavi, N.3    Van Gool, L.4    Lempitsky, V.5
  • 15
    • 84856645114 scopus 로고    scopus 로고
    • Hough-based tracking of nonrigid objects
    • M. Godec and P. M. Roth. Hough-based tracking of nonrigid objects. In Proc. of ICCV, 2011.
    • (2011) Proc. of ICCV
    • Godec, M.1    Roth, P.M.2
  • 17
  • 18
    • 84856659290 scopus 로고    scopus 로고
    • Struck: Structured output tracking with kernels
    • S. Hare, A. Saffari, and P. H. S. Torr. Struck: Structured output tracking with kernels. In Proc. of ICCV, 2011.
    • (2011) Proc. of ICCV
    • Hare, S.1    Saffari, A.2    Torr, P.H.S.3
  • 19
    • 84866704892 scopus 로고    scopus 로고
    • Efficient online structured output learning for keypoint-based object tracking
    • S. Hare, A. Saffari, and P. H. S. Torr. Efficient online structured output learning for keypoint-based object tracking. In Proc. of CVPR, 2012.
    • (2012) Proc. of CVPR
    • Hare, S.1    Saffari, A.2    Torr, P.H.S.3
  • 20
    • 84867860674 scopus 로고    scopus 로고
    • Dual-force metric learning for robust distracter-resistant tracker
    • Z. Hong, X. Mei, and D. Tao. Dual-force metric learning for robust distracter-resistant tracker. In Proc. of ECCV, pages 513-527, 2012.
    • (2012) Proc. of ECCV , pp. 513-527
    • Hong, Z.1    Mei, X.2    Tao, D.3
  • 21
    • 0032136153 scopus 로고    scopus 로고
    • CONDENSATION-conditional density propagation for visual tracking
    • M. Isard and A. Blake. CONDENSATION-conditional density propagation for visual tracking. Proc. of ICCV, 29(1):5-28, 1998.
    • (1998) Proc. of ICCV , vol.29 , Issue.1 , pp. 5-28
    • Isard, M.1    Blake, A.2
  • 22
    • 77956005443 scopus 로고    scopus 로고
    • P-N learning: Bootstrapping binary classifiers by structural constraints
    • Z. Kalal, J. Matas, and K. Mikolajczyk. P-N learning: Bootstrapping binary classifiers by structural constraints. In Proc. of CVPR, 2010.
    • (2010) Proc. of CVPR
    • Kalal, Z.1    Matas, J.2    Mikolajczyk, K.3
  • 23
    • 77955995205 scopus 로고    scopus 로고
    • Visual tracking decomposition
    • J. Kwon and K. Lee. Visual tracking decomposition. In Proc. of CVPR, pages 1269-1276, 2010.
    • (2010) Proc. of CVPR , pp. 1269-1276
    • Kwon, J.1    Lee, K.2
  • 24
    • 70450172803 scopus 로고    scopus 로고
    • Tracking of a non-rigid object via patch-based dynamic appearance modeling and adaptive Basin Hopping Monte Carlo sampling
    • J. Kwon and K. M. Lee. Tracking of a non-rigid object via patch-based dynamic appearance modeling and adaptive Basin Hopping Monte Carlo sampling. In Proc. of CVPR, 2009.
    • (2009) Proc. of CVPR
    • Kwon, J.1    Lee, K.M.2
  • 26
    • 33745821131 scopus 로고    scopus 로고
    • Keypoint recognition using randomized trees
    • V. Lepetit and P. Fua. Keypoint recognition using randomized trees. IEEE Transactions on PAMI, 28(9):1465-79, 2006.
    • (2006) IEEE Transactions on PAMI , vol.28 , Issue.9 , pp. 1465-1479
    • Lepetit, V.1    Fua, P.2
  • 27
    • 80052879604 scopus 로고    scopus 로고
    • Robust tracking using local sparse appearance model and k-selection
    • B. Liu, J. Huang, L. Yang, and C. Kulikowsk. Robust tracking using local sparse appearance model and k-selection. In Proc. of CVPR, pages 1313-1320, 2011.
    • (2011) Proc. of CVPR , pp. 1313-1320
    • Liu, B.1    Huang, J.2    Yang, L.3    Kulikowsk, C.4
  • 28
    • 80053126093 scopus 로고    scopus 로고
    • Robust visual tracking and vehicle classification via sparse representation
    • Nov.
    • X. Mei and H. Ling. Robust visual tracking and vehicle classification via sparse representation. IEEE Transactions on PAMI, 33(11):2259-72, Nov. 2011.
    • (2011) IEEE Transactions on PAMI , vol.33 , Issue.11 , pp. 2259-2272
    • Mei, X.1    Ling, H.2
  • 29
    • 51949099485 scopus 로고    scopus 로고
    • Visual tracking with histograms and articulating blocks
    • S. S. Nejhum, J. Ho, and M.-H. Yang. Visual tracking with histograms and articulating blocks. Proc. of CVPR, 2008.
    • (2008) Proc. of CVPR
    • Nejhum, S.S.1    Ho, J.2    Yang, M.-H.3
  • 31
    • 0033709161 scopus 로고    scopus 로고
    • Geodesic active contours and level sets for the detection and tracking of moving objects
    • N. Paragios and R. Deriche. Geodesic active contours and level sets for the detection and tracking of moving objects. IEEE Transactions on PAMI, 22(3):266-280, 2000.
    • (2000) IEEE Transactions on PAMI , vol.22 , Issue.3 , pp. 266-280
    • Paragios, N.1    Deriche, R.2
  • 33
    • 34948907894 scopus 로고    scopus 로고
    • Tracking as repeated figure/ground segmentation
    • X. Ren and J. Malik. Tracking as repeated figure/ground segmentation. In Proc. of CVPR, 2007.
    • (2007) Proc. of CVPR
    • Ren, X.1    Malik, J.2
  • 34
    • 39749173057 scopus 로고    scopus 로고
    • Incremental learning for robust visual tracking
    • D. Ross, J. Lim, R. Lin, and M. Yang. Incremental learning for robust visual tracking. IJCV, 2008.
    • (2008) IJCV
    • Ross, D.1    Lim, J.2    Lin, R.3    Yang, M.4
  • 35
    • 12844262766 scopus 로고    scopus 로고
    • Grabcut: Interactive foreground extraction using iterated graph cuts
    • A. B. C. Rother and V. Kolmogorov. Grabcut: Interactive foreground extraction using iterated graph cuts. ACM Transactions on Graphics, 2004.
    • (2004) ACM Transactions on Graphics
    • Rother, A.B.C.1    Kolmogorov, V.2
  • 39
    • 77953201128 scopus 로고    scopus 로고
    • Beyond semisupervised tracking: Tracking should be as simple as detection, but not simpler than recognition
    • S. Stalder, H. Grabner, and L. V. Gool. Beyond semisupervised tracking: Tracking should be as simple as detection, but not simpler than recognition. In Proc. of ICCV (Worksh. on Online Comp. Vis.), 2009.
    • (2009) Proc. of ICCV (Worksh. on Online Comp. Vis.
    • Stalder, S.1    Grabner, H.2    Gool, L.V.3
  • 41
    • 79958756016 scopus 로고    scopus 로고
    • Multi-camera multi-person 3D space tracking with MCMC in surveillance scenarios
    • J. Yao and J.-M. Odobez. Multi-camera multi-person 3D space tracking with MCMC in surveillance scenarios. In ECCV M2SFA2 Workshop, 2008.
    • (2008) ECCV M2SFA2 Workshop
    • Yao, J.1    Odobez, J.-M.2
  • 42
    • 32544457885 scopus 로고    scopus 로고
    • Object contour tracking using level sets
    • A. Yilmaz, X. Li, and M. Shah. Object contour tracking using level sets. In Proc. of ACCV, 2004.
    • (2004) Proc. of ACCV
    • Yilmaz, A.1    Li, X.2    Shah, M.3
  • 43
    • 84873128287 scopus 로고    scopus 로고
    • Robust visual tracking via structured multi-task sparse learning
    • Nov.
    • T. Zhang, B. Ghanem, S. Liu, and N. Ahuja. Robust visual tracking via structured multi-task sparse learning. IJCV, Nov. 2012.
    • (2012) IJCV
    • Zhang, T.1    Ghanem, B.2    Liu, S.3    Ahuja, N.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.