메뉴 건너뛰기




Volumn 31, Issue , 2017, Pages 301-308

Characterization of coronary artery disease using flexible analytic wavelet transform applied on ECG signals

Author keywords

Coronary artery disease; Cross information potential; ECG beats; Flexible analytic wavelet transform; Student's t test

Indexed keywords

COMPUTER AIDED DIAGNOSIS; DISEASES; ELECTROCARDIOGRAPHY; HEART; STATISTICAL TESTS; SUPPORT VECTOR MACHINES; WAVELET TRANSFORMS;

EID: 84984856818     PISSN: 17468094     EISSN: 17468108     Source Type: Journal    
DOI: 10.1016/j.bspc.2016.08.018     Document Type: Article
Times cited : (122)

References (39)
  • 1
    • 84953334901 scopus 로고    scopus 로고
    • What is Coronary Heart Disease?
    • (accessed 01.04.16)
    • [1] National Heart, Lung and Blood Institute, What is Coronary Heart Disease?. 2015 http://www.nhlbi.nih.gov/health/health-topics/topics/cad/ (accessed 01.04.16).
    • (2015)
    • National Heart, Lung and Blood Institute,1
  • 2
    • 84967045459 scopus 로고    scopus 로고
    • Cardiovascular Diseases
    • (accessed 01.04.16)
    • [2] World Health Organization, Cardiovascular Diseases. 2015 http://www.who.int/mediacentre/factsheets/fs317/en/ (accessed 01.04.16).
    • (2015)
    • World Health Organization1
  • 5
    • 0023872029 scopus 로고
    • Detection of coronary artery disease from the normal resting ECG using nonlinear mathematical transformation
    • [5] Schreck, D.M., Ng, L., Schreck, B.S., Bosco, S.F., Allegra, J.R., Zacharias, D., Wortzel, J.V., Detection of coronary artery disease from the normal resting ECG using nonlinear mathematical transformation. Ann. Emerg. Med. 17:2 (1988), 132–134.
    • (1988) Ann. Emerg. Med. , vol.17 , Issue.2 , pp. 132-134
    • Schreck, D.M.1    Ng, L.2    Schreck, B.S.3    Bosco, S.F.4    Allegra, J.R.5    Zacharias, D.6    Wortzel, J.V.7
  • 6
    • 0027194418 scopus 로고
    • Electrocardiogram signal variance analysis in the diagnosis of coronary artery disease – a comparison with exercise stress test in an angiographically documented high prevalence population
    • [6] Nowak, J., Hagerman, I., Ylén, M., Nyquist, O., Sylven, C., Electrocardiogram signal variance analysis in the diagnosis of coronary artery disease – a comparison with exercise stress test in an angiographically documented high prevalence population. Clin. Cardiol. 16:9 (1993), 671–682.
    • (1993) Clin. Cardiol. , vol.16 , Issue.9 , pp. 671-682
    • Nowak, J.1    Hagerman, I.2    Ylén, M.3    Nyquist, O.4    Sylven, C.5
  • 7
    • 84870060821 scopus 로고    scopus 로고
    • Automated diagnosis of coronary artery disease affected patients using LDA, PCA, ICA and discrete wavelet transform
    • [7] Giri, D., Acharya, U.R., Martis, R.J., Sree, S.V., Lim, T.-C., VI, T.A., Suri, J.S., Automated diagnosis of coronary artery disease affected patients using LDA, PCA, ICA and discrete wavelet transform. Knowl. Based Syst. 37 (2013), 274–282.
    • (2013) Knowl. Based Syst. , vol.37 , pp. 274-282
    • Giri, D.1    Acharya, U.R.2    Martis, R.J.3    Sree, S.V.4    Lim, T.-C.5    VI, T.A.6    Suri, J.S.7
  • 10
    • 0028951502 scopus 로고
    • RR variability in healthy, middle-aged persons compared with patients with chronic coronary heart disease or recent acute myocardial infarction
    • [10] Bigger, J.T., Fleiss, J.L., Steinman, R.C., Rolnitzky, L.M., Schneider, W.J., Stein, P.K., RR variability in healthy, middle-aged persons compared with patients with chronic coronary heart disease or recent acute myocardial infarction. Circulation 91:7 (1995), 1936–1943.
    • (1995) Circulation , vol.91 , Issue.7 , pp. 1936-1943
    • Bigger, J.T.1    Fleiss, J.L.2    Steinman, R.C.3    Rolnitzky, L.M.4    Schneider, W.J.5    Stein, P.K.6
  • 12
    • 84976237984 scopus 로고    scopus 로고
    • Application of empirical mode decomposition-based features for analysis of normal and CAD heart rate signals
    • [12] Sood, S., Kumar, M., Pachori, R.B., Acharya, U.R., Application of empirical mode decomposition-based features for analysis of normal and CAD heart rate signals. J. Mech. Med. Biol., 16(1), 2016, 1640002.
    • (2016) J. Mech. Med. Biol. , vol.16 , Issue.1 , pp. 1640002
    • Sood, S.1    Kumar, M.2    Pachori, R.B.3    Acharya, U.R.4
  • 14
    • 85028159926 scopus 로고    scopus 로고
    • ECG beat classification using PCA, LDA, ICA and discrete wavelet transform
    • [14] Martis, R.J., Acharya, U.R., Min, L.C., ECG beat classification using PCA, LDA, ICA and discrete wavelet transform. Biomed. Signal Process. Control 8:5 (2013), 437–448.
    • (2013) Biomed. Signal Process. Control , vol.8 , Issue.5 , pp. 437-448
    • Martis, R.J.1    Acharya, U.R.2    Min, L.C.3
  • 15
    • 0021892137 scopus 로고
    • A real-time QRS detection algorithm
    • [15] Pan, J., Tompkins, W.J., A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. 32:3 (1985), 230–236.
    • (1985) IEEE Trans. Biomed. Eng. , vol.32 , Issue.3 , pp. 230-236
    • Pan, J.1    Tompkins, W.J.2
  • 16
    • 84937977148 scopus 로고    scopus 로고
    • Weak fault signature extraction of rotating machinery using flexible analytic wavelet transform
    • [16] Zhang, C., Li, B., Chen, B., Cao, H., Zi, Y., He, Z., Weak fault signature extraction of rotating machinery using flexible analytic wavelet transform. Mech. Syst. Signal Process. 64–65 (2015), 162–187.
    • (2015) Mech. Syst. Signal Process. , vol.64-65 , pp. 162-187
    • Zhang, C.1    Li, B.2    Chen, B.3    Cao, H.4    Zi, Y.5    He, Z.6
  • 17
    • 84977641982 scopus 로고    scopus 로고
    • An efficient automated technique for CAD diagnosis using flexible analytic wavelet transform and entropy features extracted from HRV signals
    • [17] Kumar, M., Pachori, R.B., Acharya, U.R., An efficient automated technique for CAD diagnosis using flexible analytic wavelet transform and entropy features extracted from HRV signals. Expert Syst. Appl. 63 (2016), 165–172.
    • (2016) Expert Syst. Appl. , vol.63 , pp. 165-172
    • Kumar, M.1    Pachori, R.B.2    Acharya, U.R.3
  • 18
    • 84873910842 scopus 로고    scopus 로고
    • An analytic wavelet transform with a flexible time-frequency covering
    • [18] Bayram, I., An analytic wavelet transform with a flexible time-frequency covering. IEEE Trans. Signal Process. 61:5 (2013), 1131–1142.
    • (2013) IEEE Trans. Signal Process. , vol.61 , Issue.5 , pp. 1131-1142
    • Bayram, I.1
  • 19
    • 68249150714 scopus 로고    scopus 로고
    • Frequency-domain design of overcomplete rational delation wavelet transforms
    • [19] Bayram, İ., Selesnick, I.W., Frequency-domain design of overcomplete rational delation wavelet transforms. IEEE Trans. Signal Process. 57:8 (2009), 2957–2972.
    • (2009) IEEE Trans. Signal Process. , vol.57 , Issue.8 , pp. 2957-2972
    • Bayram, İ.1    Selesnick, I.W.2
  • 21
    • 70449354098 scopus 로고    scopus 로고
    • A reproducing kernel Hilbert space framework for information-theoretic learning
    • [21] Xu, J.-W., Paiva, A.R.C., Park, I., Principe, J.C., A reproducing kernel Hilbert space framework for information-theoretic learning. IEEE Trans. Signal Process. 56:12 (2008), 5891–5902.
    • (2008) IEEE Trans. Signal Process. , vol.56 , Issue.12 , pp. 5891-5902
    • Xu, J.-W.1    Paiva, A.R.C.2    Park, I.3    Principe, J.C.4
  • 22
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • [22] Suykens, J.A.K., Vandewalle, J., Least squares support vector machine classifiers. Neural Process. Lett. 9:3 (1999), 293–300.
    • (1999) Neural Process. Lett. , vol.9 , Issue.3 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 23
    • 84960474907 scopus 로고    scopus 로고
    • An improved online paradigm for screening of diabetic patients using RR-interval signals
    • [23] Pachori, R.B., Kumar, M., Avinash, P., Shashank, K., Acharya, U.R., An improved online paradigm for screening of diabetic patients using RR-interval signals. J. Mech. Med. Biol., 16(1), 2016, 1640003.
    • (2016) J. Mech. Med. Biol. , vol.16 , Issue.1 , pp. 1640003
    • Pachori, R.B.1    Kumar, M.2    Avinash, P.3    Shashank, K.4    Acharya, U.R.5
  • 24
    • 84940481172 scopus 로고    scopus 로고
    • An integrated index for the identification of focal electroencephalogram signals using discrete wavelet transform and entropy measures
    • [24] Sharma, R., Pachori, R.B., Acharya, U.R., An integrated index for the identification of focal electroencephalogram signals using discrete wavelet transform and entropy measures. Entropy 17:8 (2015), 5218–5240.
    • (2015) Entropy , vol.17 , Issue.8 , pp. 5218-5240
    • Sharma, R.1    Pachori, R.B.2    Acharya, U.R.3
  • 25
    • 84923365662 scopus 로고    scopus 로고
    • Application of entropy measures on intrinsic mode functions for the automated identification of focal electroencephalogram signals
    • [25] Sharma, R., Pachori, R.B., Acharya, U.R., Application of entropy measures on intrinsic mode functions for the automated identification of focal electroencephalogram signals. Entropy 17:2 (2015), 669–691.
    • (2015) Entropy , vol.17 , Issue.2 , pp. 669-691
    • Sharma, R.1    Pachori, R.B.2    Acharya, U.R.3
  • 26
    • 84908042448 scopus 로고    scopus 로고
    • Classification of epileptic seizures in EEG signals based on phase space representation of intrinsic mode functions
    • [26] Sharma, R., Pachori, R.B., Classification of epileptic seizures in EEG signals based on phase space representation of intrinsic mode functions. Expert Syst. Appl. 42:3 (2015), 1106–1117.
    • (2015) Expert Syst. Appl. , vol.42 , Issue.3 , pp. 1106-1117
    • Sharma, R.1    Pachori, R.B.2
  • 27
    • 85019228808 scopus 로고    scopus 로고
    • Automated diagnosis of glaucoma using empirical wavelet transform and correntropy features extracted from fundus images
    • (in press)
    • [27] Maheshwari, S., Pachori, R.B., Acharya, U.R., Automated diagnosis of glaucoma using empirical wavelet transform and correntropy features extracted from fundus images. IEEE J. Biomed. Health Inf., 2016, 10.1109/JBHI.2016.2544961 (in press).
    • (2016) IEEE J. Biomed. Health Inf.
    • Maheshwari, S.1    Pachori, R.B.2    Acharya, U.R.3
  • 28
    • 84904367466 scopus 로고    scopus 로고
    • Classification of cardiac sound signals using constrained tunable-Q wavelet transform
    • [28] Patidar, S., Pachori, R.B., Classification of cardiac sound signals using constrained tunable-Q wavelet transform. Expert Syst. Appl. 41:16 (2014), 7161–7170.
    • (2014) Expert Syst. Appl. , vol.41 , Issue.16 , pp. 7161-7170
    • Patidar, S.1    Pachori, R.B.2
  • 29
    • 37249031426 scopus 로고    scopus 로고
    • Wavelet-based feature extraction for support vector machines for screening balance impairments in the elderly
    • [29] Khandoker, A.H., Lai, D.T.H., Begg, R.K., Palaniswami, M., Wavelet-based feature extraction for support vector machines for screening balance impairments in the elderly. IEEE Trans. Neural Syst. Rehabil. Eng. 15:4 (2007), 587–597.
    • (2007) IEEE Trans. Neural Syst. Rehabil. Eng. , vol.15 , Issue.4 , pp. 587-597
    • Khandoker, A.H.1    Lai, D.T.H.2    Begg, R.K.3    Palaniswami, M.4
  • 30
    • 84865980798 scopus 로고    scopus 로고
    • Classification of seizure and nonseizure EEG signals using empirical mode decomposition
    • [30] Bajaj, V., Pachori, R.B., Classification of seizure and nonseizure EEG signals using empirical mode decomposition. IEEE Trans. Inf. Technol. Biomed. 16:6 (2012), 1135–1142.
    • (2012) IEEE Trans. Inf. Technol. Biomed. , vol.16 , Issue.6 , pp. 1135-1142
    • Bajaj, V.1    Pachori, R.B.2
  • 31
    • 79955594660 scopus 로고    scopus 로고
    • Evolutionary model selection in a wavelet-based support vector machine for automated seizure detection
    • [31] Zavar, M., Rahati, S., Akbarzadeh-T, M.-R., Ghasemifard, H., Evolutionary model selection in a wavelet-based support vector machine for automated seizure detection. Expert Syst. Appl. 38:9 (2011), 10751–10758.
    • (2011) Expert Syst. Appl. , vol.38 , Issue.9 , pp. 10751-10758
    • Zavar, M.1    Rahati, S.2    Akbarzadeh-T, M.-R.3    Ghasemifard, H.4
  • 32
    • 84971232387 scopus 로고
    • Guinness, gosset, fisher, and small samples
    • [32] Box, J.F., Guinness, gosset, fisher, and small samples. Stat. Sci. 2:1 (1987), 45–52.
    • (1987) Stat. Sci. , vol.2 , Issue.1 , pp. 45-52
    • Box, J.F.1
  • 37
    • 84867967063 scopus 로고    scopus 로고
    • Novel classification of coronary artery disease using heart rate variability analysis
    • [37] Dua, S., Du, X., Sree, S.V., TAVI, Novel classification of coronary artery disease using heart rate variability analysis. J. Mech. Med. Biol., 12(4), 2012, 1240017.
    • (2012) J. Mech. Med. Biol. , vol.12 , Issue.4 , pp. 1240017
    • Dua, S.1    Du, X.2    Sree, S.V.3    TAVI4
  • 38
    • 84928086715 scopus 로고    scopus 로고
    • Automated diagnosis of coronary artery disease using tunable-Q wavelet transform applied on heart rate signals
    • [38] Patidar, S., Pachori, R.B., Acharya, U.R., Automated diagnosis of coronary artery disease using tunable-Q wavelet transform applied on heart rate signals. Knowl. Based Syst. 82 (2015), 1–10.
    • (2015) Knowl. Based Syst. , vol.82 , pp. 1-10
    • Patidar, S.1    Pachori, R.B.2    Acharya, U.R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.