-
1
-
-
84953334901
-
What is Coronary Heart Disease?
-
(accessed 01.04.16)
-
[1] National Heart, Lung and Blood Institute, What is Coronary Heart Disease?. 2015 http://www.nhlbi.nih.gov/health/health-topics/topics/cad/ (accessed 01.04.16).
-
(2015)
-
-
National Heart, Lung and Blood Institute,1
-
2
-
-
84967045459
-
Cardiovascular Diseases
-
(accessed 01.04.16)
-
[2] World Health Organization, Cardiovascular Diseases. 2015 http://www.who.int/mediacentre/factsheets/fs317/en/ (accessed 01.04.16).
-
(2015)
-
-
World Health Organization1
-
3
-
-
0031690603
-
Selection of the optimal stress test for the diagnosis of coronary artery disease
-
[3] Roman, J., Vilacosta, I., Castillo, J., Rollan, M., Hernandez, M., Peral, V., Garcimartin, I., de la Torre, M.d.M., Fernandez-Aviles, F., Selection of the optimal stress test for the diagnosis of coronary artery disease. Heart 80:4 (1998), 370–376.
-
(1998)
Heart
, vol.80
, Issue.4
, pp. 370-376
-
-
Roman, J.1
Vilacosta, I.2
Castillo, J.3
Rollan, M.4
Hernandez, M.5
Peral, V.6
Garcimartin, I.7
de la Torre, M.D.M.8
Fernandez-Aviles, F.9
-
4
-
-
84887824248
-
Linear and nonlinear analysis of normal and CAD-affected heart rate signals
-
[4] Acharya, U.R., Faust, O., Sree, V., Swapna, G., Martis, R.J., Kadri, N.A., Suri, J.S., Linear and nonlinear analysis of normal and CAD-affected heart rate signals. Comput. Methods Prog. Biomed. 113:1 (2014), 55–68.
-
(2014)
Comput. Methods Prog. Biomed.
, vol.113
, Issue.1
, pp. 55-68
-
-
Acharya, U.R.1
Faust, O.2
Sree, V.3
Swapna, G.4
Martis, R.J.5
Kadri, N.A.6
Suri, J.S.7
-
5
-
-
0023872029
-
Detection of coronary artery disease from the normal resting ECG using nonlinear mathematical transformation
-
[5] Schreck, D.M., Ng, L., Schreck, B.S., Bosco, S.F., Allegra, J.R., Zacharias, D., Wortzel, J.V., Detection of coronary artery disease from the normal resting ECG using nonlinear mathematical transformation. Ann. Emerg. Med. 17:2 (1988), 132–134.
-
(1988)
Ann. Emerg. Med.
, vol.17
, Issue.2
, pp. 132-134
-
-
Schreck, D.M.1
Ng, L.2
Schreck, B.S.3
Bosco, S.F.4
Allegra, J.R.5
Zacharias, D.6
Wortzel, J.V.7
-
6
-
-
0027194418
-
Electrocardiogram signal variance analysis in the diagnosis of coronary artery disease – a comparison with exercise stress test in an angiographically documented high prevalence population
-
[6] Nowak, J., Hagerman, I., Ylén, M., Nyquist, O., Sylven, C., Electrocardiogram signal variance analysis in the diagnosis of coronary artery disease – a comparison with exercise stress test in an angiographically documented high prevalence population. Clin. Cardiol. 16:9 (1993), 671–682.
-
(1993)
Clin. Cardiol.
, vol.16
, Issue.9
, pp. 671-682
-
-
Nowak, J.1
Hagerman, I.2
Ylén, M.3
Nyquist, O.4
Sylven, C.5
-
7
-
-
84870060821
-
Automated diagnosis of coronary artery disease affected patients using LDA, PCA, ICA and discrete wavelet transform
-
[7] Giri, D., Acharya, U.R., Martis, R.J., Sree, S.V., Lim, T.-C., VI, T.A., Suri, J.S., Automated diagnosis of coronary artery disease affected patients using LDA, PCA, ICA and discrete wavelet transform. Knowl. Based Syst. 37 (2013), 274–282.
-
(2013)
Knowl. Based Syst.
, vol.37
, pp. 274-282
-
-
Giri, D.1
Acharya, U.R.2
Martis, R.J.3
Sree, S.V.4
Lim, T.-C.5
VI, T.A.6
Suri, J.S.7
-
8
-
-
52949138323
-
Nonlinear dynamics analysis of electrocardiograms for detection of coronary artery disease
-
[8] Antanavičius, K., Bastys, A., Blužas, J., Gargasas, L., Kaminskienė, S., Urbonavičienė, G., Vainoras, A., Nonlinear dynamics analysis of electrocardiograms for detection of coronary artery disease. Comput. Methods Prog. Biomed. 92:2 (2008), 198–204.
-
(2008)
Comput. Methods Prog. Biomed.
, vol.92
, Issue.2
, pp. 198-204
-
-
Antanavičius, K.1
Bastys, A.2
Blužas, J.3
Gargasas, L.4
Kaminskienė, S.5
Urbonavičienė, G.6
Vainoras, A.7
-
9
-
-
33947612494
-
Classification of coronary artery disease stress ECGs using uncertainty modeling
-
[9] Arafat, S., Dohrmann, M., Skubic, M., Classification of coronary artery disease stress ECGs using uncertainty modeling. ICSC Congress on Computational Intelligence Methods and Applications, 2005, 1–4.
-
(2005)
ICSC Congress on Computational Intelligence Methods and Applications
, pp. 1-4
-
-
Arafat, S.1
Dohrmann, M.2
Skubic, M.3
-
10
-
-
0028951502
-
RR variability in healthy, middle-aged persons compared with patients with chronic coronary heart disease or recent acute myocardial infarction
-
[10] Bigger, J.T., Fleiss, J.L., Steinman, R.C., Rolnitzky, L.M., Schneider, W.J., Stein, P.K., RR variability in healthy, middle-aged persons compared with patients with chronic coronary heart disease or recent acute myocardial infarction. Circulation 91:7 (1995), 1936–1943.
-
(1995)
Circulation
, vol.91
, Issue.7
, pp. 1936-1943
-
-
Bigger, J.T.1
Fleiss, J.L.2
Steinman, R.C.3
Rolnitzky, L.M.4
Schneider, W.J.5
Stein, P.K.6
-
11
-
-
33748543263
-
Block entropy analysis of heart rate variability signals
-
[11] Karamanos, K., Nikolopoulos, S., Hizanidis, K., Manis, G., Alexandridi, A., Nikolakeas, S., Block entropy analysis of heart rate variability signals. Int. J. Bifurc. Chaos 16:07 (2006), 2093–2101.
-
(2006)
Int. J. Bifurc. Chaos
, vol.16
, Issue.7
, pp. 2093-2101
-
-
Karamanos, K.1
Nikolopoulos, S.2
Hizanidis, K.3
Manis, G.4
Alexandridi, A.5
Nikolakeas, S.6
-
12
-
-
84976237984
-
Application of empirical mode decomposition-based features for analysis of normal and CAD heart rate signals
-
[12] Sood, S., Kumar, M., Pachori, R.B., Acharya, U.R., Application of empirical mode decomposition-based features for analysis of normal and CAD heart rate signals. J. Mech. Med. Biol., 16(1), 2016, 1640002.
-
(2016)
J. Mech. Med. Biol.
, vol.16
, Issue.1
, pp. 1640002
-
-
Sood, S.1
Kumar, M.2
Pachori, R.B.3
Acharya, U.R.4
-
13
-
-
14844283547
-
Physiobank, physiotoolkit, and physionet components of a new research resource for complex physiologic signals
-
[13] Goldberger, A.L., Amaral, L.A.N., Glass, L., Hausdorff, J.M., Ivanov, P.C., Mark, R.G., Mietus, J.E., Moody, G.B., Peng, C.-K., Stanley, H.E., Physiobank, physiotoolkit, and physionet components of a new research resource for complex physiologic signals. Circulation 101 (2000), e215–e220.
-
(2000)
Circulation
, vol.101
, pp. e215-e220
-
-
Goldberger, A.L.1
Amaral, L.A.N.2
Glass, L.3
Hausdorff, J.M.4
Ivanov, P.C.5
Mark, R.G.6
Mietus, J.E.7
Moody, G.B.8
Peng, C.-K.9
Stanley, H.E.10
-
14
-
-
85028159926
-
ECG beat classification using PCA, LDA, ICA and discrete wavelet transform
-
[14] Martis, R.J., Acharya, U.R., Min, L.C., ECG beat classification using PCA, LDA, ICA and discrete wavelet transform. Biomed. Signal Process. Control 8:5 (2013), 437–448.
-
(2013)
Biomed. Signal Process. Control
, vol.8
, Issue.5
, pp. 437-448
-
-
Martis, R.J.1
Acharya, U.R.2
Min, L.C.3
-
15
-
-
0021892137
-
A real-time QRS detection algorithm
-
[15] Pan, J., Tompkins, W.J., A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. 32:3 (1985), 230–236.
-
(1985)
IEEE Trans. Biomed. Eng.
, vol.32
, Issue.3
, pp. 230-236
-
-
Pan, J.1
Tompkins, W.J.2
-
16
-
-
84937977148
-
Weak fault signature extraction of rotating machinery using flexible analytic wavelet transform
-
[16] Zhang, C., Li, B., Chen, B., Cao, H., Zi, Y., He, Z., Weak fault signature extraction of rotating machinery using flexible analytic wavelet transform. Mech. Syst. Signal Process. 64–65 (2015), 162–187.
-
(2015)
Mech. Syst. Signal Process.
, vol.64-65
, pp. 162-187
-
-
Zhang, C.1
Li, B.2
Chen, B.3
Cao, H.4
Zi, Y.5
He, Z.6
-
17
-
-
84977641982
-
An efficient automated technique for CAD diagnosis using flexible analytic wavelet transform and entropy features extracted from HRV signals
-
[17] Kumar, M., Pachori, R.B., Acharya, U.R., An efficient automated technique for CAD diagnosis using flexible analytic wavelet transform and entropy features extracted from HRV signals. Expert Syst. Appl. 63 (2016), 165–172.
-
(2016)
Expert Syst. Appl.
, vol.63
, pp. 165-172
-
-
Kumar, M.1
Pachori, R.B.2
Acharya, U.R.3
-
18
-
-
84873910842
-
An analytic wavelet transform with a flexible time-frequency covering
-
[18] Bayram, I., An analytic wavelet transform with a flexible time-frequency covering. IEEE Trans. Signal Process. 61:5 (2013), 1131–1142.
-
(2013)
IEEE Trans. Signal Process.
, vol.61
, Issue.5
, pp. 1131-1142
-
-
Bayram, I.1
-
19
-
-
68249150714
-
Frequency-domain design of overcomplete rational delation wavelet transforms
-
[19] Bayram, İ., Selesnick, I.W., Frequency-domain design of overcomplete rational delation wavelet transforms. IEEE Trans. Signal Process. 57:8 (2009), 2957–2972.
-
(2009)
IEEE Trans. Signal Process.
, vol.57
, Issue.8
, pp. 2957-2972
-
-
Bayram, İ.1
Selesnick, I.W.2
-
20
-
-
84861650752
-
Renyi's entropy, divergence and their nonparametric estimators
-
Springer New York
-
[20] Xu, D., Erdogmuns, D., Renyi's entropy, divergence and their nonparametric estimators. Information Theoretic Learning: Renyi's Entropy and Kernel Perspectives, 2010, Springer, New York, 47–102.
-
(2010)
Information Theoretic Learning: Renyi's Entropy and Kernel Perspectives
, pp. 47-102
-
-
Xu, D.1
Erdogmuns, D.2
-
21
-
-
70449354098
-
A reproducing kernel Hilbert space framework for information-theoretic learning
-
[21] Xu, J.-W., Paiva, A.R.C., Park, I., Principe, J.C., A reproducing kernel Hilbert space framework for information-theoretic learning. IEEE Trans. Signal Process. 56:12 (2008), 5891–5902.
-
(2008)
IEEE Trans. Signal Process.
, vol.56
, Issue.12
, pp. 5891-5902
-
-
Xu, J.-W.1
Paiva, A.R.C.2
Park, I.3
Principe, J.C.4
-
22
-
-
0032638628
-
Least squares support vector machine classifiers
-
[22] Suykens, J.A.K., Vandewalle, J., Least squares support vector machine classifiers. Neural Process. Lett. 9:3 (1999), 293–300.
-
(1999)
Neural Process. Lett.
, vol.9
, Issue.3
, pp. 293-300
-
-
Suykens, J.A.K.1
Vandewalle, J.2
-
23
-
-
84960474907
-
An improved online paradigm for screening of diabetic patients using RR-interval signals
-
[23] Pachori, R.B., Kumar, M., Avinash, P., Shashank, K., Acharya, U.R., An improved online paradigm for screening of diabetic patients using RR-interval signals. J. Mech. Med. Biol., 16(1), 2016, 1640003.
-
(2016)
J. Mech. Med. Biol.
, vol.16
, Issue.1
, pp. 1640003
-
-
Pachori, R.B.1
Kumar, M.2
Avinash, P.3
Shashank, K.4
Acharya, U.R.5
-
24
-
-
84940481172
-
An integrated index for the identification of focal electroencephalogram signals using discrete wavelet transform and entropy measures
-
[24] Sharma, R., Pachori, R.B., Acharya, U.R., An integrated index for the identification of focal electroencephalogram signals using discrete wavelet transform and entropy measures. Entropy 17:8 (2015), 5218–5240.
-
(2015)
Entropy
, vol.17
, Issue.8
, pp. 5218-5240
-
-
Sharma, R.1
Pachori, R.B.2
Acharya, U.R.3
-
25
-
-
84923365662
-
Application of entropy measures on intrinsic mode functions for the automated identification of focal electroencephalogram signals
-
[25] Sharma, R., Pachori, R.B., Acharya, U.R., Application of entropy measures on intrinsic mode functions for the automated identification of focal electroencephalogram signals. Entropy 17:2 (2015), 669–691.
-
(2015)
Entropy
, vol.17
, Issue.2
, pp. 669-691
-
-
Sharma, R.1
Pachori, R.B.2
Acharya, U.R.3
-
26
-
-
84908042448
-
Classification of epileptic seizures in EEG signals based on phase space representation of intrinsic mode functions
-
[26] Sharma, R., Pachori, R.B., Classification of epileptic seizures in EEG signals based on phase space representation of intrinsic mode functions. Expert Syst. Appl. 42:3 (2015), 1106–1117.
-
(2015)
Expert Syst. Appl.
, vol.42
, Issue.3
, pp. 1106-1117
-
-
Sharma, R.1
Pachori, R.B.2
-
27
-
-
85019228808
-
Automated diagnosis of glaucoma using empirical wavelet transform and correntropy features extracted from fundus images
-
(in press)
-
[27] Maheshwari, S., Pachori, R.B., Acharya, U.R., Automated diagnosis of glaucoma using empirical wavelet transform and correntropy features extracted from fundus images. IEEE J. Biomed. Health Inf., 2016, 10.1109/JBHI.2016.2544961 (in press).
-
(2016)
IEEE J. Biomed. Health Inf.
-
-
Maheshwari, S.1
Pachori, R.B.2
Acharya, U.R.3
-
28
-
-
84904367466
-
Classification of cardiac sound signals using constrained tunable-Q wavelet transform
-
[28] Patidar, S., Pachori, R.B., Classification of cardiac sound signals using constrained tunable-Q wavelet transform. Expert Syst. Appl. 41:16 (2014), 7161–7170.
-
(2014)
Expert Syst. Appl.
, vol.41
, Issue.16
, pp. 7161-7170
-
-
Patidar, S.1
Pachori, R.B.2
-
29
-
-
37249031426
-
Wavelet-based feature extraction for support vector machines for screening balance impairments in the elderly
-
[29] Khandoker, A.H., Lai, D.T.H., Begg, R.K., Palaniswami, M., Wavelet-based feature extraction for support vector machines for screening balance impairments in the elderly. IEEE Trans. Neural Syst. Rehabil. Eng. 15:4 (2007), 587–597.
-
(2007)
IEEE Trans. Neural Syst. Rehabil. Eng.
, vol.15
, Issue.4
, pp. 587-597
-
-
Khandoker, A.H.1
Lai, D.T.H.2
Begg, R.K.3
Palaniswami, M.4
-
30
-
-
84865980798
-
Classification of seizure and nonseizure EEG signals using empirical mode decomposition
-
[30] Bajaj, V., Pachori, R.B., Classification of seizure and nonseizure EEG signals using empirical mode decomposition. IEEE Trans. Inf. Technol. Biomed. 16:6 (2012), 1135–1142.
-
(2012)
IEEE Trans. Inf. Technol. Biomed.
, vol.16
, Issue.6
, pp. 1135-1142
-
-
Bajaj, V.1
Pachori, R.B.2
-
31
-
-
79955594660
-
Evolutionary model selection in a wavelet-based support vector machine for automated seizure detection
-
[31] Zavar, M., Rahati, S., Akbarzadeh-T, M.-R., Ghasemifard, H., Evolutionary model selection in a wavelet-based support vector machine for automated seizure detection. Expert Syst. Appl. 38:9 (2011), 10751–10758.
-
(2011)
Expert Syst. Appl.
, vol.38
, Issue.9
, pp. 10751-10758
-
-
Zavar, M.1
Rahati, S.2
Akbarzadeh-T, M.-R.3
Ghasemifard, H.4
-
32
-
-
84971232387
-
Guinness, gosset, fisher, and small samples
-
[32] Box, J.F., Guinness, gosset, fisher, and small samples. Stat. Sci. 2:1 (1987), 45–52.
-
(1987)
Stat. Sci.
, vol.2
, Issue.1
, pp. 45-52
-
-
Box, J.F.1
-
34
-
-
85164392958
-
A study of cross-validation and bootstrap for accuracy estimation and model selection
-
[34] Kohavi, R., A study of cross-validation and bootstrap for accuracy estimation and model selection. Proceedings of the 14th International Joint Conference on Artificial Intelligence, San Francisco, CA, USA, 1995, 1137–1143.
-
(1995)
Proceedings of the 14th International Joint Conference on Artificial Intelligence, San Francisco, CA, USA
, pp. 1137-1143
-
-
Kohavi, R.1
-
35
-
-
45449086181
-
Noninvasive detection and classification of coronary artery occlusions using wavelet analysis of heart sounds with neural networks
-
[35] Karimi, M., Amirfattahi, R., Sadri, S., Marvasti, S.A., Noninvasive detection and classification of coronary artery occlusions using wavelet analysis of heart sounds with neural networks. The 3rd IEEE International Seminar on Medical Applications of Signal Processing, 2005, 117–120.
-
(2005)
The 3rd IEEE International Seminar on Medical Applications of Signal Processing
, pp. 117-120
-
-
Karimi, M.1
Amirfattahi, R.2
Sadri, S.3
Marvasti, S.A.4
-
37
-
-
84867967063
-
Novel classification of coronary artery disease using heart rate variability analysis
-
[37] Dua, S., Du, X., Sree, S.V., TAVI, Novel classification of coronary artery disease using heart rate variability analysis. J. Mech. Med. Biol., 12(4), 2012, 1240017.
-
(2012)
J. Mech. Med. Biol.
, vol.12
, Issue.4
, pp. 1240017
-
-
Dua, S.1
Du, X.2
Sree, S.V.3
TAVI4
-
38
-
-
84928086715
-
Automated diagnosis of coronary artery disease using tunable-Q wavelet transform applied on heart rate signals
-
[38] Patidar, S., Pachori, R.B., Acharya, U.R., Automated diagnosis of coronary artery disease using tunable-Q wavelet transform applied on heart rate signals. Knowl. Based Syst. 82 (2015), 1–10.
-
(2015)
Knowl. Based Syst.
, vol.82
, pp. 1-10
-
-
Patidar, S.1
Pachori, R.B.2
Acharya, U.R.3
-
39
-
-
84978375325
-
Application of higher-order spectra for the characterization of coronary artery disease using electrocardiogram signals
-
[39] Acharya, U.R., Sudarshan, V.K., Koh, J.E.W., Martis, R.J., Tan, J.H., Oh, S.L., Muhammad, A., Hagiwara, Y., Mukiah, M.R.K., Chua, K.P., Chua, C.K., Tan, R.S., Application of higher-order spectra for the characterization of coronary artery disease using electrocardiogram signals. Biomed. Signal Process Control 31 (2017), 31–43.
-
(2017)
Biomed. Signal Process Control
, vol.31
, pp. 31-43
-
-
Acharya, U.R.1
Sudarshan, V.K.2
Koh, J.E.W.3
Martis, R.J.4
Tan, J.H.5
Oh, S.L.6
Muhammad, A.7
Hagiwara, Y.8
Mukiah, M.R.K.9
Chua, K.P.10
Chua, C.K.11
Tan, R.S.12
|