-
1
-
-
79952171625
-
Probing the Links between in Vitro Potency, ADMET and Physicochemical Parameters
-
Gleeson, M. P.; Hersey, A.; Montanari, D.; Overington, J. Probing the Links Between in Vitro Potency, ADMET and Physicochemical Parameters Nat. Rev. Drug Discovery 2011, 10, 197-208 10.1038/nrd3367
-
(2011)
Nat. Rev. Drug Discovery
, vol.10
, pp. 197-208
-
-
Gleeson, M.P.1
Hersey, A.2
Montanari, D.3
Overington, J.4
-
2
-
-
77950560159
-
An Analysis of the Binding Efficiencies of Drugs and Their Leads in Successful Drug Discovery Programs
-
Perola, E. An Analysis of the Binding Efficiencies of Drugs and Their Leads in Successful Drug Discovery Programs J. Med. Chem. 2010, 53, 2986-2997 10.1021/jm100118x
-
(2010)
J. Med. Chem.
, vol.53
, pp. 2986-2997
-
-
Perola, E.1
-
3
-
-
84893307473
-
The Role of Ligand Efficiency Metrics in Drug Discovery
-
Hopkins, A. L.; Keseru, G. M.; Leeson, P. D.; Rees, D. C.; Reynolds, C. H. the Role of Ligand Efficiency Metrics in Drug Discovery Nat. Rev. Drug Discovery 2014, 13, 105-121 10.1038/nrd4163
-
(2014)
Nat. Rev. Drug Discovery
, vol.13
, pp. 105-121
-
-
Hopkins, A.L.1
Keseru, G.M.2
Leeson, P.D.3
Rees, D.C.4
Reynolds, C.H.5
-
4
-
-
43049088827
-
Ligand Binding Efficiency: Trends, Physical Basis, and Implications
-
Reynolds, C. H.; Tounge, B. A.; Bembenek, S. D. Ligand Binding Efficiency: Trends, Physical Basis, and Implications J. Med. Chem. 2008, 51, 2432-2438 10.1021/jm701255b
-
(2008)
J. Med. Chem.
, vol.51
, pp. 2432-2438
-
-
Reynolds, C.H.1
Tounge, B.A.2
Bembenek, S.D.3
-
5
-
-
1942453243
-
Ligand Efficiency: A Useful Metric for Lead Selection
-
Hopkins, A. L.; Groom, C. R.; Alex, A. Ligand Efficiency: A Useful Metric for Lead Selection Drug Discovery Today 2004, 9, 430-431 10.1016/S1359-6446(04)03069-7
-
(2004)
Drug Discovery Today
, vol.9
, pp. 430-431
-
-
Hopkins, A.L.1
Groom, C.R.2
Alex, A.3
-
6
-
-
77957682613
-
Ligand Efficiency Indices for an Effective Mapping of Chemico-Biological Space: The Concept of an Atlas-like Representation
-
Abad-Zapatero, C.; Perisic, O.; Wass, J.; Bento, A. P.; Overington, J.; Al-Lazikani, B.; Johnson, M. E. Ligand Efficiency Indices for an Effective Mapping of Chemico-Biological Space: The Concept of an Atlas-like Representation Drug Discovery Today 2010, 15, 804-811 10.1016/j.drudis.2010.08.004
-
(2010)
Drug Discovery Today
, vol.15
, pp. 804-811
-
-
Abad-Zapatero, C.1
Perisic, O.2
Wass, J.3
Bento, A.P.4
Overington, J.5
Al-Lazikani, B.6
Johnson, M.E.7
-
7
-
-
84885172160
-
Setting Expectations in Molecular Optimizations: Strengths and Limitations of Commonly Used Composite Parameters
-
Shultz, M. D. Setting Expectations in Molecular Optimizations: Strengths and Limitations of Commonly Used Composite Parameters Bioorg. Med. Chem. Lett. 2013, 23, 5980-5991 10.1016/j.bmcl.2013.08.029
-
(2013)
Bioorg. Med. Chem. Lett.
, vol.23
, pp. 5980-5991
-
-
Shultz, M.D.1
-
8
-
-
84938514887
-
Ligand Efficiency Metrics: Why All the Fuss?
-
Reynolds, C. H. Ligand Efficiency Metrics: Why All the Fuss? Future Med. Chem. 2015, 7, 1363-1365 10.4155/fmc.15.70
-
(2015)
Future Med. Chem.
, vol.7
, pp. 1363-1365
-
-
Reynolds, C.H.1
-
9
-
-
84892596742
-
Improving the Plausibility of Success with Inefficient Metrics
-
Shultz, M. D. Improving the Plausibility of Success with Inefficient Metrics ACS Med. Chem. Lett. 2014, 5, 2-5 10.1021/ml4004638
-
(2014)
ACS Med. Chem. Lett.
, vol.5
, pp. 2-5
-
-
Shultz, M.D.1
-
10
-
-
84904389204
-
Ligand Efficiency Metrics Considered Harmful
-
Kenny, P. W.; Leitao, A.; Montanari, C. A. Ligand Efficiency Metrics Considered Harmful J. Comput.-Aided Mol. Des. 2014, 28, 699-710 10.1007/s10822-014-9757-8
-
(2014)
J. Comput.-Aided Mol. Des.
, vol.28
, pp. 699-710
-
-
Kenny, P.W.1
Leitao, A.2
Montanari, C.A.3
-
11
-
-
0036589285
-
Current Trends in Lead Discovery: Are We Looking for the Appropriate Properties?
-
Oprea, T. I. Current Trends in Lead Discovery: Are We Looking for the Appropriate Properties? J. Comput.-Aided Mol. Des. 2002, 16, 325-334 10.1023/A:1020877402759
-
(2002)
J. Comput.-Aided Mol. Des.
, vol.16
, pp. 325-334
-
-
Oprea, T.I.1
-
12
-
-
17044403086
-
Ligand Efficiency Indices As Guideposts for Drug Discovery
-
Abad-Zapatero, C.; Metz, J. T. Ligand Efficiency Indices As Guideposts for Drug Discovery Drug Discovery Today 2005, 10, 464-469 10.1016/S1359-6446(05)03386-6
-
(2005)
Drug Discovery Today
, vol.10
, pp. 464-469
-
-
Abad-Zapatero, C.1
Metz, J.T.2
-
13
-
-
84904389204
-
Ligand efficiency metrics considered harmful
-
Kenny, P. W.; Leitao, A.; Montanari, C. A. Ligand efficiency metrics considered harmful J. Comput.-Aided Mol. Des. 2014, 28, 699-710 10.1007/s10822-014-9757-8
-
(2014)
J. Comput.-Aided Mol. Des.
, vol.28
, pp. 699-710
-
-
Kenny, P.W.1
Leitao, A.2
Montanari, C.A.3
-
15
-
-
84887036726
-
Training Based on Ligand Efficiency Improves Prediction of Bioactivities of Ligands and Drug Target Proteins in a Machine Learning Approach
-
Sugaya, N. Training Based on Ligand Efficiency Improves Prediction of Bioactivities of Ligands and Drug Target Proteins in a Machine Learning Approach J. Chem. Inf. Model. 2013, 53, 2525-2537 10.1021/ci400240u
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 2525-2537
-
-
Sugaya, N.1
-
16
-
-
84908247106
-
Ligand Efficiency-Based Support Vector Regression Models for Predicting Bioactivities of Ligands to Drug Target Proteins
-
Sugaya, N. Ligand Efficiency-Based Support Vector Regression Models for Predicting Bioactivities of Ligands to Drug Target Proteins J. Chem. Inf. Model. 2014, 54, 2751-2763 10.1021/ci5003262
-
(2014)
J. Chem. Inf. Model.
, vol.54
, pp. 2751-2763
-
-
Sugaya, N.1
-
17
-
-
84862192766
-
ChEMBL: A Large-Scale Bioactivity Database for Drug Discovery
-
Gaulton, A.; Bellis, L. J.; Bento, A. P.; Chambers, J.; Davies, M.; Hersey, A.; Light, Y.; McGlinchey, S.; Michalovich, D.; Al-Lazikani, B.; Overington, J. P. ChEMBL: a Large-Scale Bioactivity Database for Drug Discovery Nucleic Acids Res. 2012, 40, D1100-D1107 10.1093/nar/gkr777
-
(2012)
Nucleic Acids Res.
, vol.40
, pp. D1100-D1107
-
-
Gaulton, A.1
Bellis, L.J.2
Bento, A.P.3
Chambers, J.4
Davies, M.5
Hersey, A.6
Light, Y.7
McGlinchey, S.8
Michalovich, D.9
Al-Lazikani, B.10
Overington, J.P.11
-
18
-
-
84920496470
-
Polypharmacology Modelling Using Proteochemometrics: Recent Developments and Future Prospects
-
Cortes-Ciriano, I.; Ain, Q. U.; Subramanian, V.; Lenselink, E. B.; Mendez-Lucio, O.; IJzerman, A. P.; Wohlfahrt, G.; Prusis, P.; Malliavin, T.; van Westen, G. J. P.; Bender, A. Polypharmacology Modelling Using Proteochemometrics: Recent Developments and Future Prospects MedChemComm 2015, 6, 24 10.1039/C4MD00216D
-
(2015)
MedChemComm
, vol.6
, pp. 24
-
-
Cortes-Ciriano, I.1
Ain, Q.U.2
Subramanian, V.3
Lenselink, E.B.4
Mendez-Lucio, O.5
Ijzerman, A.P.6
Wohlfahrt, G.7
Prusis, P.8
Malliavin, T.9
Van Westen, G.J.P.10
Bender, A.11
-
19
-
-
67650085841
-
Simple Size-Independent Measure of Ligand Efficiency
-
Nissink, J. W. M. Simple Size-Independent Measure of Ligand Efficiency J. Chem. Inf. Model. 2009, 49, 1617-1622 10.1021/ci900094m
-
(2009)
J. Chem. Inf. Model.
, vol.49
, pp. 1617-1622
-
-
Nissink, J.W.M.1
-
20
-
-
84879570665
-
Beyond the Scope of Free-Wilson Analysis: Building Interpretable QSAR Models with Machine Learning Algorithms
-
Chen, H.; Carlsson, L.; Eriksson, M.; Varkonyi, P.; Norinder, U.; Nilsson, I. Beyond the Scope of Free-Wilson Analysis: Building Interpretable QSAR Models with Machine Learning Algorithms J. Chem. Inf. Model. 2013, 53, 1324-1336 10.1021/ci4001376
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 1324-1336
-
-
Chen, H.1
Carlsson, L.2
Eriksson, M.3
Varkonyi, P.4
Norinder, U.5
Nilsson, I.6
-
21
-
-
84940547595
-
Chemically Aware Model Builder (camb): An R Package for Property and Bioactivity Modelling of Small Molecules
-
Murrell, D. S.; Cortes-Ciriano, I.; van Westen, G. J. P.; Stott, I. P.; Bender, A.; Malliavin, T. E.; Glen, R. C. Chemically Aware Model Builder (camb): An R Package for Property and Bioactivity Modelling of Small Molecules J. Cheminf. 2015, 7, 45 10.1186/s13321-015-0086-2
-
(2015)
J. Cheminf.
, vol.7
, pp. 45
-
-
Murrell, D.S.1
Cortes-Ciriano, I.2
Van Westen, G.J.P.3
Stott, I.P.4
Bender, A.5
Malliavin, T.E.6
Glen, R.C.7
-
22
-
-
77952772341
-
Extended-Connectivity Fingerprints
-
Rogers, D.; Hahn, M. Extended-Connectivity Fingerprints J. Chem. Inf. Model. 2010, 50, 742-754 10.1021/ci100050t
-
(2010)
J. Chem. Inf. Model.
, vol.50
, pp. 742-754
-
-
Rogers, D.1
Hahn, M.2
-
23
-
-
33644963750
-
Circular Fingerprints: Flexible Molecular Descriptors with Applications from Physical Chemistry to ADME
-
Glen, R. C.; Bender, A.; Arnby, C. H.; Carlsson, L.; Boyer, S.; Smith, J. Circular Fingerprints: Flexible Molecular Descriptors with Applications from Physical Chemistry to ADME IDrugs 2006, 9, 199-204
-
(2006)
IDrugs
, vol.9
, pp. 199-204
-
-
Glen, R.C.1
Bender, A.2
Arnby, C.H.3
Carlsson, L.4
Boyer, S.5
Smith, J.6
-
24
-
-
84983412261
-
-
RDKit: Open-Source Cheminformatics, Version 2014.09.2. (accessed December)
-
Landrum, G. RDKit: Open-Source Cheminformatics, Version 2014.09.2. http://rdkit.org/ (accessed December 2014).
-
(2014)
-
-
Landrum, G.1
-
25
-
-
61949166066
-
How Similar Are Similarity Searching Methods? a Principal Component Analysis of Molecular Descriptor Space
-
Bender, A.; Jenkins, J. L.; Scheiber, J.; Sukuru, S. C. K.; Glick, M.; Davies, J. W. How Similar Are Similarity Searching Methods? a Principal Component Analysis of Molecular Descriptor Space J. Chem. Inf. Model. 2009, 49, 108-119 10.1021/ci800249s
-
(2009)
J. Chem. Inf. Model.
, vol.49
, pp. 108-119
-
-
Bender, A.1
Jenkins, J.L.2
Scheiber, J.3
Sukuru, S.C.K.4
Glick, M.5
Davies, J.W.6
-
26
-
-
84893382950
-
How Diverse Are Diversity Assessment Methods? a Comparative Analysis and Benchmarking of Molecular Descriptor Space
-
Koutsoukas, A.; Paricharak, S.; Galloway, W. R. J. D.; Spring, D. R.; IJzerman, A. P.; Glen, R. C.; Marcus, D.; Bender, A. How Diverse Are Diversity Assessment Methods? a Comparative Analysis and Benchmarking of Molecular Descriptor Space J. Chem. Inf. Model. 2014, 54, 230-242 10.1021/ci400469u
-
(2014)
J. Chem. Inf. Model.
, vol.54
, pp. 230-242
-
-
Koutsoukas, A.1
Paricharak, S.2
Galloway, W.R.J.D.3
Spring, D.R.4
Ijzerman, A.P.5
Glen, R.C.6
Marcus, D.7
Bender, A.8
-
27
-
-
56249113343
-
Building Predictive Models in R Using the Caret Package
-
Kuhn, M. Building Predictive Models in R Using the Caret Package J. Stat. Soft. 2008, 28, 1-26 10.18637/jss.v028.i05
-
(2008)
J. Stat. Soft.
, vol.28
, pp. 1-26
-
-
Kuhn, M.1
-
29
-
-
0037361983
-
Assessing Model Fit by Cross-Validation
-
Hawkins, D. M.; Basak, S. C.; Mills, D. Assessing Model Fit by Cross-Validation J. Chem. Inf. Model. 2003, 43, 579-586 10.1021/ci025626i
-
(2003)
J. Chem. Inf. Model.
, vol.43
, pp. 579-586
-
-
Hawkins, D.M.1
Basak, S.C.2
Mills, D.3
-
30
-
-
57549095014
-
External Validation and Prediction Employing the Predictive Squared Correlation Coefficient - Test Set Activity Mean vs Training Set Activity Mean
-
Schuurmann, G.; Ebert, R.-U.; Chen, J.; Wang, B.; Kuhne, R. External Validation and Prediction Employing the Predictive Squared Correlation Coefficient-Test Set Activity Mean vs Training Set Activity Mean J. Chem. Inf. Model. 2008, 48, 2140-2145 10.1021/ci800253u
-
(2008)
J. Chem. Inf. Model.
, vol.48
, pp. 2140-2145
-
-
Schuurmann, G.1
Ebert, R.-U.2
Chen, J.3
Wang, B.4
Kuhne, R.5
-
31
-
-
84938066627
-
Beware of R2: Simple, Unambiguous Assessment of the Prediction Accuracy of QSAR and QSPR Models
-
Alexander, D. L. J.; Tropsha, A.; Winkler, D. A. Beware of R2: Simple, Unambiguous Assessment of the Prediction Accuracy of QSAR and QSPR Models J. Chem. Inf. Model. 2015, 55, 1316-1322 10.1021/acs.jcim.5b00206
-
(2015)
J. Chem. Inf. Model.
, vol.55
, pp. 1316-1322
-
-
Alexander, D.L.J.1
Tropsha, A.2
Winkler, D.A.3
-
32
-
-
84952542694
-
Cautionary Note about R2
-
Kvalseth, T. O. Cautionary Note About R2 Am. Stat. 1985, 39, 279-285 10.2307/2683704
-
(1985)
Am. Stat.
, vol.39
, pp. 279-285
-
-
Kvalseth, T.O.1
-
33
-
-
0035965476
-
PLS-Regression: A Basic Tool of Chemometrics
-
Wold, S.; Sjostrom, M.; Eriksson, L. PLS-Regression: a Basic Tool of Chemometrics Chemom. Intell. Lab. Syst. 2001, 58, 109-130 10.1016/S0169-7439(01)00155-1
-
(2001)
Chemom. Intell. Lab. Syst.
, vol.58
, pp. 109-130
-
-
Wold, S.1
Sjostrom, M.2
Eriksson, L.3
-
34
-
-
76349111180
-
Partial Least Squares Regression and Projection on Latent Structure Regression (PLS Regression)
-
Abdi, H. Partial Least Squares Regression and Projection on Latent Structure Regression (PLS Regression) Wiley Interdisciplinary Reviews: Computational Statistics 2010, 2, 97-106 10.1002/wics.51
-
(2010)
Wiley Interdisciplinary Reviews: Computational Statistics
, vol.2
, pp. 97-106
-
-
Abdi, H.1
-
35
-
-
77957553895
-
Wiley Interdisciplinary Reviews: Computational Statistics
-
Abdi, H.; Williams, L. J. Wiley Interdisciplinary Reviews: Computational Statistics Volume 2010, 2, 433-459 10.1002/wics.101
-
(2010)
Volume
, vol.2
, pp. 433-459
-
-
Abdi, H.1
Williams, L.J.2
-
36
-
-
0038259114
-
Classes of Kernels for Machine Learning: A Statistics Perspective
-
Genton, M. G. Classes of Kernels for Machine Learning: A Statistics Perspective J. Mach. Learn. Res. 2002, 2, 299-312
-
(2002)
J. Mach. Learn. Res.
, vol.2
, pp. 299-312
-
-
Genton, M.G.1
-
38
-
-
34249753618
-
Support-Vector Networks
-
Cortes, C.; Vapnik, V. Support-Vector Networks Mach. Learn. 1995, 20, 273-297 10.1007/BF00994018
-
(1995)
Mach. Learn.
, vol.20
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
39
-
-
55449125185
-
Support Vector Machines and Kernels for Computational Biology
-
Ben-Hur, A.; Ong, C. S.; Sonnenburg, S.; Scholkopf, B.; Ratsch, G. Support Vector Machines and Kernels for Computational Biology PLoS Comput. Biol. 2008, 4, e1000173 10.1371/journal.pcbi.1000173
-
(2008)
PLoS Comput. Biol.
, vol.4
, pp. e1000173
-
-
Ben-Hur, A.1
Ong, C.S.2
Sonnenburg, S.3
Scholkopf, B.4
Ratsch, G.5
-
41
-
-
84924256017
-
Prediction of the Potency of Mammalian Cyclooxygenase Inhibitors with Ensemble Proteochemometric Modeling
-
Cortes-Ciriano, I.; Murrell, D. S.; van Westen, G.; Bender, A.; Malliavin, T. Prediction of the Potency of Mammalian Cyclooxygenase Inhibitors with Ensemble Proteochemometric Modeling J. Cheminf. 2015, 7, 1 10.1186/s13321-014-0049-z
-
(2015)
J. Cheminf.
, vol.7
, pp. 1
-
-
Cortes-Ciriano, I.1
Murrell, D.S.2
Van Westen, G.3
Bender, A.4
Malliavin, T.5
-
42
-
-
0346786584
-
Arcing Classifier (with Discussion and a Rejoinder by the Author)
-
Breiman, L. Arcing Classifier (with Discussion and a Rejoinder by the Author) Ann. Statist. 1998, 26, 801-849 10.1214/aos/1024691079
-
(1998)
Ann. Statist.
, vol.26
, pp. 801-849
-
-
Breiman, L.1
-
43
-
-
84892667860
-
Gradient Boosting Machines, a Tutorial
-
Natekin, A.; Knoll, A. Gradient Boosting Machines, a Tutorial Front. Neurorobot. 2013, 7, 21 10.3389/fnbot.2013.00021
-
(2013)
Front. Neurorobot.
, vol.7
, pp. 21
-
-
Natekin, A.1
Knoll, A.2
-
44
-
-
84938086444
-
Comparing the Influence of Simulated Experimental Errors on 12 Machine Learning Algorithms in Bioactivity Modeling Using 12 Diverse Data Sets
-
Cortes-Ciriano, I.; Bender, A.; Malliavin, T. E. Comparing the Influence of Simulated Experimental Errors on 12 Machine Learning Algorithms in Bioactivity Modeling Using 12 Diverse Data Sets J. Chem. Inf. Model. 2015, 55, 1413-1425 10.1021/acs.jcim.5b00101
-
(2015)
J. Chem. Inf. Model.
, vol.55
, pp. 1413-1425
-
-
Cortes-Ciriano, I.1
Bender, A.2
Malliavin, T.E.3
-
45
-
-
0035478854
-
Random Forests
-
Breiman, L. Random Forests Mach. Learn. 2001, 45, 5-32 10.1023/A:1010933404324
-
(2001)
Mach. Learn.
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
46
-
-
84888603687
-
Using Random Forest to Model the Domain Applicability of Another Random Forest Model
-
Sheridan, R. P. Using Random Forest to Model the Domain Applicability of Another Random Forest Model J. Chem. Inf. Model. 2013, 53, 2837-2850 10.1021/ci400482e
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 2837-2850
-
-
Sheridan, R.P.1
-
47
-
-
84859204703
-
Three Useful Dimensions for Domain Applicability in QSAR Models Using Random Forest
-
Sheridan, R. P. Three Useful Dimensions for Domain Applicability in QSAR Models Using Random Forest J. Chem. Inf. Model. 2012, 52, 814-823 10.1021/ci300004n
-
(2012)
J. Chem. Inf. Model.
, vol.52
, pp. 814-823
-
-
Sheridan, R.P.1
-
48
-
-
84959865391
-
Improved Large-Scale Prediction of Growth Inhibition Patterns on the NCI60 Cancer Cell-Line Panel
-
Cortés-Ciriano, I.; van Westen, G. J. P.; Bouvier, G.; Nilges, M.; Overington, J. P.; Bender, A.; Malliavin, T. Improved Large-Scale Prediction of Growth Inhibition Patterns on the NCI60 Cancer Cell-Line Panel Bioinformatics 2016, 32, 85-95 10.1093/bioinformatics/btv529
-
(2016)
Bioinformatics
, vol.32
, pp. 85-95
-
-
Cortés-Ciriano, I.1
Van Westen, G.J.P.2
Bouvier, G.3
Nilges, M.4
Overington, J.P.5
Bender, A.6
Malliavin, T.7
-
49
-
-
84983393472
-
-
PLS: Partial Least Squares and Principal Component Regression; R package version 2.4-3
-
Mevik, B.-H.; Wehrens, R.; Liland, K. H. PLS: Partial Least Squares and Principal Component Regression; R package version 2.4-3, 2013.
-
(2013)
-
-
Mevik, B.-H.1
Wehrens, R.2
Liland, K.H.3
-
50
-
-
11244352554
-
Kernlab - An S4 Package for Kernel Methods in R
-
Karatzoglou, A.; Smola, A.; Hornik, K.; Zeileis, A. kernlab-an S4 Package for Kernel Methods in R J. Stat. Soft. 2004, 11, 1-20 10.18637/jss.v011.i09
-
(2004)
J. Stat. Soft.
, vol.11
, pp. 1-20
-
-
Karatzoglou, A.1
Smola, A.2
Hornik, K.3
Zeileis, A.4
-
51
-
-
84983430695
-
-
GMB: Generalized Boosted Regression Models; R package version 2.1
-
Ridgeway, G. GMB: Generalized Boosted Regression Models; R package version 2.1, 2013.
-
(2013)
-
-
Ridgeway, G.1
-
52
-
-
0035470889
-
Greedy Function Approximation: A Gradient Boosting Machine
-
Friedman, J. H. Greedy Function Approximation: A Gradient Boosting Machine Ann. Stat. 2001, 29, 1189-1232 10.1214/aos/1013203451
-
(2001)
Ann. Stat.
, vol.29
, pp. 1189-1232
-
-
Friedman, J.H.1
-
53
-
-
0345040873
-
Classification and Regression by RandomForest
-
Liaw, A.; Wiener, M. Classification and Regression by RandomForest R News 2002, 2, 18-22
-
(2002)
R News
, vol.2
, pp. 18-22
-
-
Liaw, A.1
Wiener, M.2
-
56
-
-
84958826961
-
Be aware of error measures. Further studies on validation of predictive QSAR models
-
Roy, K.; Das, R. N.; Ambure, P.; Aher, R. B. Be aware of error measures. Further studies on validation of predictive QSAR models Chemom. Intell. Lab. Syst. 2016, 152, 18-33 10.1016/j.chemolab.2016.01.008
-
(2016)
Chemom. Intell. Lab. Syst.
, vol.152
, pp. 18-33
-
-
Roy, K.1
Das, R.N.2
Ambure, P.3
Aher, R.B.4
|