-
1
-
-
0037480748
-
Putting the predictive toxicology challenge into perspective: reflections on the results
-
Benigni R., Giuliani A. Putting the predictive toxicology challenge into perspective: reflections on the results. Bioinformatics 2003, 19:1194-1200.
-
(2003)
Bioinformatics
, vol.19
, pp. 1194-1200
-
-
Benigni, R.1
Giuliani, A.2
-
2
-
-
78751629325
-
Predictive toxicology using QSAR: a perspective
-
Kar S., Roy K. Predictive toxicology using QSAR: a perspective. J. Indian Chem. Soc. 2010, 87:1455-1515.
-
(2010)
J. Indian Chem. Soc.
, vol.87
, pp. 1455-1515
-
-
Kar, S.1
Roy, K.2
-
3
-
-
35148898451
-
Guidance Document on the Validation of (Quantitative) Structure Activity Relationship [(Q)SAR] Models
-
Available via, (last accessed on November 18, 2015)
-
OECD environment health and safety publications series on testing and assessment No.69 Guidance Document on the Validation of (Quantitative) Structure Activity Relationship [(Q)SAR] Models 2007, Available via, (last accessed on November 18, 2015). 10.1787/9789264085442-en.
-
(2007)
-
-
-
4
-
-
79957985250
-
On various metrics used for validation of predictive QSAR models with applications in virtual screening and focused library design
-
Roy K., Mitra I. On various metrics used for validation of predictive QSAR models with applications in virtual screening and focused library design. Comb. Chem. High Throughput Screen. 2011, 14:450-474.
-
(2011)
Comb. Chem. High Throughput Screen.
, vol.14
, pp. 450-474
-
-
Roy, K.1
Mitra, I.2
-
6
-
-
77956964002
-
Best practices for QSAR model development, validation, and exploitation
-
Tropsha A. Best practices for QSAR model development, validation, and exploitation. Mol. Inf. 2010, 29:476-488.
-
(2010)
Mol. Inf.
, vol.29
, pp. 476-488
-
-
Tropsha, A.1
-
7
-
-
84875893961
-
2 metrics for judging quality of quantitative structure-activity relationship predictions: emphasis on scaling of response data
-
2 metrics for judging quality of quantitative structure-activity relationship predictions: emphasis on scaling of response data. J. Comput. Chem. 2013, 34:1071-1082.
-
(2013)
J. Comput. Chem.
, vol.34
, pp. 1071-1082
-
-
Roy, K.1
Chakraborty, P.2
Mitra, I.3
Ojha, P.K.4
Kar, S.5
Das, R.N.6
-
8
-
-
80053295024
-
Real external predictivity of QSAR models: how to evaluate it? Comparison of different validation criteria and proposal of using the concordance correlation coefficient
-
Chirico N., Gramatica P. Real external predictivity of QSAR models: how to evaluate it? Comparison of different validation criteria and proposal of using the concordance correlation coefficient. J. Chem. Inf. Model. 2011, 51:2320-2335.
-
(2011)
J. Chem. Inf. Model.
, vol.51
, pp. 2320-2335
-
-
Chirico, N.1
Gramatica, P.2
-
9
-
-
84938066627
-
Beware of R 2: Simple, Unambiguous Assessment of the Prediction Accuracy of QSAR and QSPR Models
-
Alexander D.L.J., Tropsha A., Winkler D.A. Beware of R 2: Simple, Unambiguous Assessment of the Prediction Accuracy of QSAR and QSPR Models. J. Chem. Inf. Model. 2015, 55:1316-1322.
-
(2015)
J. Chem. Inf. Model.
, vol.55
, pp. 1316-1322
-
-
Alexander, D.L.J.1
Tropsha, A.2
Winkler, D.A.3
-
10
-
-
0001161068
-
Measures of goodness of fit in linear free energy relationships
-
Davis W.H., Pryor W.A. Measures of goodness of fit in linear free energy relationships. J. Chem. Educ. 1976, 53:285.
-
(1976)
J. Chem. Educ.
, vol.53
, pp. 285
-
-
Davis, W.H.1
Pryor, W.A.2
-
12
-
-
84857514268
-
Comparative studies on some metrics for external validation of QSPR models
-
Roy K., Mitra I., Kar S., Ojha P.K., Das R.N., Kabir H. Comparative studies on some metrics for external validation of QSPR models. J. Chem. Inf. Model. 2012, 52:396-408.
-
(2012)
J. Chem. Inf. Model.
, vol.52
, pp. 396-408
-
-
Roy, K.1
Mitra, I.2
Kar, S.3
Ojha, P.K.4
Das, R.N.5
Kabir, H.6
-
15
-
-
67949118928
-
How not to develop a quantitative structure-activity or structure-property relationship (QSAR/QSPR)
-
Dearden J.C., Cronin M.T.D., Kaiser K.L.E. How not to develop a quantitative structure-activity or structure-property relationship (QSAR/QSPR). SAR QSAR Environ. Res. 2009, 20:241-266.
-
(2009)
SAR QSAR Environ. Res.
, vol.20
, pp. 241-266
-
-
Dearden, J.C.1
Cronin, M.T.D.2
Kaiser, K.L.E.3
-
17
-
-
34548370709
-
A quantitative structure-activity analysis on the relative sensitivity of the olfactory and the nasal trigeminal chemosensory systems
-
Abraham M.H., Sanchez-Moreno R., Cometto-Muniz J.E., Cain W.S. A quantitative structure-activity analysis on the relative sensitivity of the olfactory and the nasal trigeminal chemosensory systems. Chem. Senses 2007, 32:711-719.
-
(2007)
Chem. Senses
, vol.32
, pp. 711-719
-
-
Abraham, M.H.1
Sanchez-Moreno, R.2
Cometto-Muniz, J.E.3
Cain, W.S.4
-
19
-
-
77951050223
-
Evaluation of model predictive ability by external validation techniques
-
Consonni V., Ballabio D., Todeschini R. Evaluation of model predictive ability by external validation techniques. J. Chemom. 2010, 24:194-201.
-
(2010)
J. Chemom.
, vol.24
, pp. 194-201
-
-
Consonni, V.1
Ballabio, D.2
Todeschini, R.3
-
20
-
-
84903642315
-
Root mean square error (RMSE) or mean absolute error (MAE)? - arguments against avoiding RMSE in the literature
-
Chai T., Draxler R.R. Root mean square error (RMSE) or mean absolute error (MAE)? - arguments against avoiding RMSE in the literature. Geosci. Model Dev. 2014, 7:1247-1250.
-
(2014)
Geosci. Model Dev.
, vol.7
, pp. 1247-1250
-
-
Chai, T.1
Draxler, R.R.2
-
21
-
-
30444437204
-
Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance
-
Willmott C.J., Matsuura K. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 2005, 30:79.
-
(2005)
Clim. Res.
, vol.30
, pp. 79
-
-
Willmott, C.J.1
Matsuura, K.2
-
22
-
-
0017256863
-
Expression of random analytical error as a percentage of the range of clinical interest
-
Glick J.H. Expression of random analytical error as a percentage of the range of clinical interest. Clin. Chem. 1976, 22:475-483.
-
(1976)
Clin. Chem.
, vol.22
, pp. 475-483
-
-
Glick, J.H.1
-
23
-
-
0003632935
-
-
The IOWA StateUniversitypress, AMES, IOWA, VSA
-
Snedecor G.W., Cochran W.G. Statistical Methods 1967, The IOWA StateUniversitypress, AMES, IOWA, VSA.
-
(1967)
Statistical Methods
-
-
Snedecor, G.W.1
Cochran, W.G.2
-
24
-
-
84873079919
-
QSPR with extended topochemical atom (ETA) indices. 4. Modeling aqueous solubility of drug like molecules and agrochemicals following OECD guidelines
-
Das R.N., Roy K. QSPR with extended topochemical atom (ETA) indices. 4. Modeling aqueous solubility of drug like molecules and agrochemicals following OECD guidelines. Struct. Chem. 2013, 24:303-331.
-
(2013)
Struct. Chem.
, vol.24
, pp. 303-331
-
-
Das, R.N.1
Roy, K.2
-
25
-
-
84937811625
-
In vitro evaluation and in silico screening of synthetic acetylcholinesterase inhibitors bearing functionalized piperidine pharmacophores
-
Brahmachari G., Choo C., Ambure P., Roy K. In vitro evaluation and in silico screening of synthetic acetylcholinesterase inhibitors bearing functionalized piperidine pharmacophores. Bioorg. Med. Chem. 2015, 23:4567-4575.
-
(2015)
Bioorg. Med. Chem.
, vol.23
, pp. 4567-4575
-
-
Brahmachari, G.1
Choo, C.2
Ambure, P.3
Roy, K.4
-
26
-
-
84928634888
-
Exploring simple, transparent, interpretable and predictive QSAR models for classification and quantitative prediction of rat toxicity of ionic liquids using OECD recommended guidelines
-
Das R.N., Roy K., Popelier P.L.A. Exploring simple, transparent, interpretable and predictive QSAR models for classification and quantitative prediction of rat toxicity of ionic liquids using OECD recommended guidelines. Chemosphere 2015, 139:163-173.
-
(2015)
Chemosphere
, vol.139
, pp. 163-173
-
-
Das, R.N.1
Roy, K.2
Popelier, P.L.A.3
|