-
1
-
-
32944466887
-
Ecological and evolutionary forces shaping microbial diversity in the human intestine
-
Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 2006; 124:837–48.
-
(2006)
Cell
, vol.124
, pp. 837-848
-
-
Ley, R.E.1
Peterson, D.A.2
Gordon, J.I.3
-
2
-
-
84858439578
-
The human microbiome: at the interface of health and disease
-
Cho I, Blaser MJ. The human microbiome: at the interface of health and disease. Nat Rev Genet 2012; 13:260–70.
-
(2012)
Nat Rev Genet
, vol.13
, pp. 260-270
-
-
Cho, I.1
Blaser, M.J.2
-
3
-
-
33744804299
-
Metagenomic analysis of the human distal gut microbiome
-
Gill SR, et al. Metagenomic analysis of the human distal gut microbiome. Science 2006; 312:1355–9.
-
(2006)
Science
, vol.312
, pp. 1355-1359
-
-
Gill, S.R.1
-
4
-
-
79955569490
-
Development of the human gastrointestinal microbiota and insights from high-throughput sequencing
-
Dominguez-Bello MG, Blaser MJ, Ley RE, Knight R. Development of the human gastrointestinal microbiota and insights from high-throughput sequencing. Gastroenterology 2011; 140:1713–9.
-
(2011)
Gastroenterology
, vol.140
, pp. 1713-1719
-
-
Dominguez-Bello, M.G.1
Blaser, M.J.2
Ley, R.E.3
Knight, R.4
-
5
-
-
77955386857
-
Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns
-
Dominguez-Bello MG, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA 2010; 107:11971–5.
-
(2010)
Proc Natl Acad Sci USA
, vol.107
, pp. 11971-11975
-
-
Dominguez-Bello, M.G.1
-
6
-
-
72949091232
-
Bacterial community variation in human body habitats across space and time
-
Costello EK, et al. Bacterial community variation in human body habitats across space and time. Science 2009; 326:1694–7.
-
(2009)
Science
, vol.326
, pp. 1694-1697
-
-
Costello, E.K.1
-
7
-
-
84862141704
-
Human gut microbiome viewed across age and geography
-
Yatsunenko T, et al. Human gut microbiome viewed across age and geography. Nature 2012; 486:222–7.
-
(2012)
Nature
, vol.486
, pp. 222-227
-
-
Yatsunenko, T.1
-
9
-
-
41849127118
-
Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome
-
Turnbaugh PJ, Backhed F, Fulton L, Gordon JI. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 2008; 3:213–23.
-
(2008)
Cell Host Microbe
, vol.3
, pp. 213-223
-
-
Turnbaugh, P.J.1
Backhed, F.2
Fulton, L.3
Gordon, J.I.4
-
10
-
-
85018193359
-
Interactions between gut microbiota, host genetics and diet modulate the predisposition to obesity and metabolic syndrome
-
Ussar S, et al. Interactions between gut microbiota, host genetics and diet modulate the predisposition to obesity and metabolic syndrome. Cell Metab 2015; 22:516–30.
-
(2015)
Cell Metab
, vol.22
, pp. 516-530
-
-
Ussar, S.1
-
11
-
-
84945286826
-
MHC variation sculpts individualized microbial communities that control susceptibility to enteric infection
-
Kubinak JL, et al. MHC variation sculpts individualized microbial communities that control susceptibility to enteric infection. Nat Commun 2015; 6:8642.
-
(2015)
Nat Commun
, vol.6
, pp. 8642
-
-
Kubinak, J.L.1
-
12
-
-
84941647822
-
Host genetic variation impacts microbiome composition across human body sites
-
Blekhman R, et al. Host genetic variation impacts microbiome composition across human body sites. Genome Biol 2015; 16:191.
-
(2015)
Genome Biol
, vol.16
, pp. 191
-
-
Blekhman, R.1
-
13
-
-
70349427121
-
Community-wide response of the gut microbiota to enteropathogenic Citrobacter rodentium infection revealed by deep sequencing
-
Hoffmann C, et al. Community-wide response of the gut microbiota to enteropathogenic Citrobacter rodentium infection revealed by deep sequencing. Infect Immun 2009; 77:4668–78.
-
(2009)
Infect Immun
, vol.77
, pp. 4668-4678
-
-
Hoffmann, C.1
-
14
-
-
84911468185
-
Members of the human gut microbiota involved in recovery from Vibrio cholerae infection
-
Hsiao A, et al. Members of the human gut microbiota involved in recovery from Vibrio cholerae infection. Nature 2014; 515:423–6.
-
(2014)
Nature
, vol.515
, pp. 423-426
-
-
Hsiao, A.1
-
15
-
-
84865286121
-
Antibiotics, microbiota, and immune defense
-
Ubeda C, Pamer EG. Antibiotics, microbiota, and immune defense. Trends Immunol 2012; 33:459–66.
-
(2012)
Trends Immunol
, vol.33
, pp. 459-466
-
-
Ubeda, C.1
Pamer, E.G.2
-
16
-
-
84865477413
-
Antibiotics in early life alter the murine colonic microbiome and adiposity
-
Cho I, et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature 2012; 488:621–6.
-
(2012)
Nature
, vol.488
, pp. 621-626
-
-
Cho, I.1
-
17
-
-
84907563983
-
Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences
-
Cox LM, et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell 2014; 158:705–21.
-
(2014)
Cell
, vol.158
, pp. 705-721
-
-
Cox, L.M.1
-
18
-
-
84934775028
-
Metabolic and metagenomic outcomes from early-life pulsed antibiotic treatment
-
Nobel YR, et al. Metabolic and metagenomic outcomes from early-life pulsed antibiotic treatment. Nat Commun 2015; 6:7486.
-
(2015)
Nat Commun
, vol.6
, pp. 7486
-
-
Nobel, Y.R.1
-
20
-
-
84859389254
-
The microbiome in infectious disease and inflammation
-
Honda K, Littman DR. The microbiome in infectious disease and inflammation. Annu Rev Immunol 2012; 30:759–95.
-
(2012)
Annu Rev Immunol
, vol.30
, pp. 759-795
-
-
Honda, K.1
Littman, D.R.2
-
21
-
-
75549083199
-
Maintaining diplomatic relations between mammals and beneficial microbial communities
-
Hill DA, Artis D. Maintaining diplomatic relations between mammals and beneficial microbial communities. Sci Signal 2009; 2: pe77.
-
(2009)
Sci Signal
, vol.2
, pp. pe77
-
-
Hill, D.A.1
Artis, D.2
-
22
-
-
77952318832
-
Intestinal bacteria and the regulation of immune cell homeostasis
-
Hill DA, Artis D. Intestinal bacteria and the regulation of immune cell homeostasis. Annu Rev Immunol 2010; 28:623–67.
-
(2010)
Annu Rev Immunol
, vol.28
, pp. 623-667
-
-
Hill, D.A.1
Artis, D.2
-
23
-
-
84902578840
-
Anatomical localization of commensal bacteria in immune cell homeostasis and disease
-
Fung TC, Artis D, Sonnenberg GF. Anatomical localization of commensal bacteria in immune cell homeostasis and disease. Immunol Rev 2014; 260:35–49.
-
(2014)
Immunol Rev
, vol.260
, pp. 35-49
-
-
Fung, T.C.1
Artis, D.2
Sonnenberg, G.F.3
-
24
-
-
79955030498
-
Border patrol: regulation of immunity, inflammation and tissue homeostasis at barrier surfaces by IL-22
-
Sonnenberg GF, Fouser LA, Artis D. Border patrol: regulation of immunity, inflammation and tissue homeostasis at barrier surfaces by IL-22. Nat Immunol 2011; 12:383–90.
-
(2011)
Nat Immunol
, vol.12
, pp. 383-390
-
-
Sonnenberg, G.F.1
Fouser, L.A.2
Artis, D.3
-
25
-
-
84857059944
-
Intestinal microbiota: shaping local and systemic immune responses
-
Molloy MJ, Bouladoux N, Belkaid Y. Intestinal microbiota: shaping local and systemic immune responses. Semin Immunol 2012; 24:58–66.
-
(2012)
Semin Immunol
, vol.24
, pp. 58-66
-
-
Molloy, M.J.1
Bouladoux, N.2
Belkaid, Y.3
-
26
-
-
84879338344
-
Compartmentalized and systemic control of tissue immunity by commensals
-
Belkaid Y, Naik S. Compartmentalized and systemic control of tissue immunity by commensals. Nat Immunol 2013; 14:646–53.
-
(2013)
Nat Immunol
, vol.14
, pp. 646-653
-
-
Belkaid, Y.1
Naik, S.2
-
27
-
-
84897138296
-
Role of the microbiota in immunity and inflammation
-
Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell 2014; 157:121–41.
-
(2014)
Cell
, vol.157
, pp. 121-141
-
-
Belkaid, Y.1
Hand, T.W.2
-
28
-
-
84983532855
-
Detection of peptidoglycan from the gut microbiota governs the lifespan of circulating phagocytes at homeostasis
-
Hergott CB, et al. Detection of peptidoglycan from the gut microbiota governs the lifespan of circulating phagocytes at homeostasis. Blood 2016; 127:2460–71.
-
(2016)
Blood
, vol.127
, pp. 2460-2471
-
-
Hergott, C.B.1
-
29
-
-
76249120134
-
Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity
-
Clarke TB, et al. Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nat Med 2010; 16:228–31.
-
(2010)
Nat Med
, vol.16
, pp. 228-231
-
-
Clarke, T.B.1
-
30
-
-
84919663446
-
Microbial programming of systemic innate immunity and resistance to infection
-
Clarke TB. Microbial programming of systemic innate immunity and resistance to infection. PLoS Pathog 2014; 10:e1004506.
-
(2014)
PLoS Pathog
, vol.10
-
-
Clarke, T.B.1
-
31
-
-
84928175356
-
Distinct commensals induce interleukin-1β via NLRP3 inflammasome in inflammatory monocytes to promote intestinal inflammation in response to injury
-
Seo SU, et al. Distinct commensals induce interleukin-1β via NLRP3 inflammasome in inflammatory monocytes to promote intestinal inflammation in response to injury. Immunity 2015; 42:744–55.
-
(2015)
Immunity
, vol.42
, pp. 744-755
-
-
Seo, S.U.1
-
32
-
-
80054944901
-
Role of the commensal microbiota in normal and pathogenic host immune responses
-
Littman DR, Pamer EG. Role of the commensal microbiota in normal and pathogenic host immune responses. Cell Host Microbe 2011; 10:311–23.
-
(2011)
Cell Host Microbe
, vol.10
, pp. 311-323
-
-
Littman, D.R.1
Pamer, E.G.2
-
33
-
-
83655165390
-
The influence of the microbiota on type-1 diabetes: on the threshold of a leap forward in our understanding
-
Mathis D, Benoist C. The influence of the microbiota on type-1 diabetes: on the threshold of a leap forward in our understanding. Immunol Rev 2012; 245:239–49.
-
(2012)
Immunol Rev
, vol.245
, pp. 239-249
-
-
Mathis, D.1
Benoist, C.2
-
34
-
-
79960983258
-
Naturally transmitted segmented filamentous bacteria segregate with diabetes protection in nonobese diabetic mice
-
Kriegel MA, et al. Naturally transmitted segmented filamentous bacteria segregate with diabetes protection in nonobese diabetic mice. Proc Natl Acad Sci USA 2011; 108:11548–53.
-
(2011)
Proc Natl Acad Sci USA
, vol.108
, pp. 11548-11553
-
-
Kriegel, M.A.1
-
35
-
-
84923116269
-
Commensal microbiota influence systemic autoimmune responses
-
Van Praet JT, et al. Commensal microbiota influence systemic autoimmune responses. EMBO J 2015; 34:466–74.
-
(2015)
EMBO J
, vol.34
, pp. 466-474
-
-
Van Praet, J.T.1
-
36
-
-
84879848972
-
The intestinal microbiota and susceptibility to infection in immunocompromised patients
-
Taur Y, Pamer EG. The intestinal microbiota and susceptibility to infection in immunocompromised patients. Curr Opin Infect Dis 2013; 26:332–7.
-
(2013)
Curr Opin Infect Dis
, vol.26
, pp. 332-337
-
-
Taur, Y.1
Pamer, E.G.2
-
37
-
-
84946854837
-
The gut microbiota plays a protective role in the host defence against pneumococcal pneumonia
-
Schuijt TJ, et al. The gut microbiota plays a protective role in the host defence against pneumococcal pneumonia. Gut 2016; 65:575–83.
-
(2016)
Gut
, vol.65
, pp. 575-583
-
-
Schuijt, T.J.1
-
38
-
-
83655191570
-
Innate immune signaling in defense against intestinal microbes
-
Kinnebrew MA, Pamer EG. Innate immune signaling in defense against intestinal microbes. Immunol Rev 2012; 245:113–31.
-
(2012)
Immunol Rev
, vol.245
, pp. 113-131
-
-
Kinnebrew, M.A.1
Pamer, E.G.2
-
39
-
-
84896064402
-
Gut microbiota promote hematopoiesis to control bacterial infection
-
Khosravi A, et al. Gut microbiota promote hematopoiesis to control bacterial infection. Cell Host Microbe 2014; 15:374–81.
-
(2014)
Cell Host Microbe
, vol.15
, pp. 374-381
-
-
Khosravi, A.1
-
40
-
-
84879343905
-
Control of pathogens and pathobionts by the gut microbiota
-
Kamada N, Chen GY, Inohara N, Nunez G. Control of pathogens and pathobionts by the gut microbiota. Nat Immunol 2013; 14:685–90.
-
(2013)
Nat Immunol
, vol.14
, pp. 685-690
-
-
Kamada, N.1
Chen, G.Y.2
Inohara, N.3
Nunez, G.4
-
41
-
-
79955121049
-
Microbiota regulates immune defense against respiratory tract influenza A virus infection
-
Ichinohe T, et al. Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proc Natl Acad Sci USA 2011; 108:5354–9.
-
(2011)
Proc Natl Acad Sci USA
, vol.108
, pp. 5354-5359
-
-
Ichinohe, T.1
-
42
-
-
84907960584
-
Early innate immunity to bacterial infection in the lung is regulated systemically by the commensal microbiota via nod-like receptor ligands
-
Clarke TB. Early innate immunity to bacterial infection in the lung is regulated systemically by the commensal microbiota via nod-like receptor ligands. Infect Immun 2014; 82:4596–606.
-
(2014)
Infect Immun
, vol.82
, pp. 4596-4606
-
-
Clarke, T.B.1
-
43
-
-
84879330799
-
Innate immune recognition of the microbiota promotes host–microbial symbiosis
-
Chu H, Mazmanian SK. Innate immune recognition of the microbiota promotes host–microbial symbiosis. Nat Immunol 2013; 14:668–75.
-
(2013)
Nat Immunol
, vol.14
, pp. 668-675
-
-
Chu, H.1
Mazmanian, S.K.2
-
44
-
-
84862862332
-
Epithelial antimicrobial defence of the skin and intestine
-
Gallo RL, Hooper LV. Epithelial antimicrobial defence of the skin and intestine. Nat Rev Immunol 2012; 12:503–16.
-
(2012)
Nat Rev Immunol
, vol.12
, pp. 503-516
-
-
Gallo, R.L.1
Hooper, L.V.2
-
45
-
-
80054122238
-
The antibacterial lectin RegIIIγ promotes the spatial segregation of microbiota and host in the intestine
-
Vaishnava S, et al. The antibacterial lectin RegIIIγ promotes the spatial segregation of microbiota and host in the intestine. Science 2011; 334:255–8.
-
(2011)
Science
, vol.334
, pp. 255-258
-
-
Vaishnava, S.1
-
46
-
-
53649098280
-
Vancomycin-resistant enterococci exploit antibiotic-induced innate immune deficits
-
Brandl K, et al. Vancomycin-resistant enterococci exploit antibiotic-induced innate immune deficits. Nature 2008; 455:804–7.
-
(2008)
Nature
, vol.455
, pp. 804-807
-
-
Brandl, K.1
-
47
-
-
70350343544
-
Induction of intestinal Th17 cells by segmented filamentous bacteria
-
Ivanov II, et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 2009; 139:485–98.
-
(2009)
Cell
, vol.139
, pp. 485-498
-
-
Ivanov, I.I.1
-
48
-
-
84927662069
-
Microbiota-mediated inflammation and antimicrobial defense in the intestine
-
Caballero S, Pamer EG. Microbiota-mediated inflammation and antimicrobial defense in the intestine. Annu Rev Immunol 2015; 33:227–56.
-
(2015)
Annu Rev Immunol
, vol.33
, pp. 227-256
-
-
Caballero, S.1
Pamer, E.G.2
-
50
-
-
77951207196
-
The pneumococcus: why a commensal misbehaves
-
Weiser JN. The pneumococcus: why a commensal misbehaves. J Mol Med (Berl) 2010; 88:97–102.
-
(2010)
J Mol Med (Berl)
, vol.88
, pp. 97-102
-
-
Weiser, J.N.1
-
51
-
-
84947715756
-
Innate immune signaling activated by MDR bacteria in the airway
-
Parker D, Ahn D, Cohen T, Prince A. Innate immune signaling activated by MDR bacteria in the airway. Physiol Rev 2016; 96:19–53.
-
(2016)
Physiol Rev
, vol.96
, pp. 19-53
-
-
Parker, D.1
Ahn, D.2
Cohen, T.3
Prince, A.4
-
52
-
-
80051626877
-
Innate immunity in the respiratory epithelium
-
Parker D, Prince A. Innate immunity in the respiratory epithelium. Am J Respir Cell Mol Biol 2011; 45:189–201.
-
(2011)
Am J Respir Cell Mol Biol
, vol.45
, pp. 189-201
-
-
Parker, D.1
Prince, A.2
-
54
-
-
84893652705
-
Alveolar macrophages: plasticity in a tissue-specific context
-
Hussell T, Bell TJ. Alveolar macrophages: plasticity in a tissue-specific context. Nat Rev Immunol 2014; 14:81–93.
-
(2014)
Nat Rev Immunol
, vol.14
, pp. 81-93
-
-
Hussell, T.1
Bell, T.J.2
-
55
-
-
35349016235
-
Recognition of microorganisms and activation of the immune response
-
Medzhitov R. Recognition of microorganisms and activation of the immune response. Nature 2007; 449:819–26.
-
(2007)
Nature
, vol.449
, pp. 819-826
-
-
Medzhitov, R.1
-
56
-
-
33748455338
-
Type I interferons in host defense
-
Stetson DB, Medzhitov R. Type I interferons in host defense. Immunity 2006; 25:373–81.
-
(2006)
Immunity
, vol.25
, pp. 373-381
-
-
Stetson, D.B.1
Medzhitov, R.2
-
57
-
-
84925441813
-
Control of adaptive immunity by the innate immune system
-
Iwasaki A, Medzhitov R. Control of adaptive immunity by the innate immune system. Nat Immunol 2015; 16:343–53.
-
(2015)
Nat Immunol
, vol.16
, pp. 343-353
-
-
Iwasaki, A.1
Medzhitov, R.2
-
60
-
-
0037180812
-
Points of control in inflammation
-
Nathan C. Points of control in inflammation. Nature 2002; 420:846–52.
-
(2002)
Nature
, vol.420
, pp. 846-852
-
-
Nathan, C.1
-
61
-
-
84944472849
-
Intestinal microbiota of mice influences resistance to Staphylococcus aureus pneumonia
-
Gauguet S, et al. Intestinal microbiota of mice influences resistance to Staphylococcus aureus pneumonia. Infect Immun 2015; 83:4003–14.
-
(2015)
Infect Immun
, vol.83
, pp. 4003-4014
-
-
Gauguet, S.1
-
62
-
-
84856567115
-
Transient TLR activation restores inflammatory response and ability to control pulmonary bacterial infection in germfree mice
-
Fagundes CT, et al. Transient TLR activation restores inflammatory response and ability to control pulmonary bacterial infection in germfree mice. J Immunol 2012; 188:1411–20.
-
(2012)
J Immunol
, vol.188
, pp. 1411-1420
-
-
Fagundes, C.T.1
-
63
-
-
79959753075
-
Commensal microflora contribute to host defense against Escherichia coli pneumonia through Toll-like receptors
-
Chen LW, Chen PH, Hsu CM. Commensal microflora contribute to host defense against Escherichia coli pneumonia through Toll-like receptors. Shock 2011; 36:67–75.
-
(2011)
Shock
, vol.36
, pp. 67-75
-
-
Chen, L.W.1
Chen, P.H.2
Hsu, C.M.3
-
65
-
-
84880125235
-
Bacterial colonization dampens influenza-mediated acute lung injury via induction of M2 alveolar macrophages
-
Wang J, et al. Bacterial colonization dampens influenza-mediated acute lung injury via induction of M2 alveolar macrophages. Nat Commun 2013; 4:2106.
-
(2013)
Nat Commun
, vol.4
, pp. 2106
-
-
Wang, J.1
-
66
-
-
84864311450
-
Commensal bacteria calibrate the activation threshold of innate antiviral immunity
-
Abt MC, et al. Commensal bacteria calibrate the activation threshold of innate antiviral immunity. Immunity 2012; 37:158–70.
-
(2012)
Immunity
, vol.37
, pp. 158-170
-
-
Abt, M.C.1
-
67
-
-
84902996531
-
The microbiota regulates neutrophil homeostasis and host resistance to Escherichia coli K1 sepsis in neonatal mice
-
Deshmukh HS, et al. The microbiota regulates neutrophil homeostasis and host resistance to Escherichia coli K1 sepsis in neonatal mice. Nat Med 2014; 20:524–30.
-
(2014)
Nat Med
, vol.20
, pp. 524-530
-
-
Deshmukh, H.S.1
-
68
-
-
84864322646
-
Priming of natural killer cells by nonmucosal mononuclear phagocytes requires instructive signals from commensal microbiota
-
Ganal SC, et al. Priming of natural killer cells by nonmucosal mononuclear phagocytes requires instructive signals from commensal microbiota. Immunity 2012; 37:171–86.
-
(2012)
Immunity
, vol.37
, pp. 171-186
-
-
Ganal, S.C.1
-
69
-
-
84910136470
-
Microbiota-derived compounds drive steady-state granulopoiesis via MyD88/TICAM signaling
-
Balmer ML, et al. Microbiota-derived compounds drive steady-state granulopoiesis via MyD88/TICAM signaling. J Immunol 2014; 193:5273–83.
-
(2014)
J Immunol
, vol.193
, pp. 5273-5283
-
-
Balmer, M.L.1
-
70
-
-
84902149029
-
Neutrophil homeostasis and its regulation by danger signaling
-
Wirths S, Bugl S, Kopp HG. Neutrophil homeostasis and its regulation by danger signaling. Blood 2014; 123:3563–6.
-
(2014)
Blood
, vol.123
, pp. 3563-3566
-
-
Wirths, S.1
Bugl, S.2
Kopp, H.G.3
-
71
-
-
84886633901
-
Microbiota signalling through MyD88 is necessary for a systemic neutrophilic inflammatory response
-
Karmarkar D, Rock KL. Microbiota signalling through MyD88 is necessary for a systemic neutrophilic inflammatory response. Immunology 2013; 140:483–92.
-
(2013)
Immunology
, vol.140
, pp. 483-492
-
-
Karmarkar, D.1
Rock, K.L.2
-
72
-
-
84983722767
-
Age-related immune clearance of hepatitis B virus infection requires the establishment of gut microbiota
-
Chou HH, et al. Age-related immune clearance of hepatitis B virus infection requires the establishment of gut microbiota. Proc Natl Acad Sci USA 2015; 112:2175–80.
-
(2015)
Proc Natl Acad Sci USA
, vol.112
, pp. 2175-2180
-
-
Chou, H.H.1
-
74
-
-
84933043202
-
Host microbiota constantly control maturation and function of microglia in the CNS
-
Erny D, et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci 2015; 18:965–77.
-
(2015)
Nat Neurosci
, vol.18
, pp. 965-977
-
-
Erny, D.1
-
75
-
-
84927131694
-
Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis
-
Yano JM, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 2015; 161:264–76.
-
(2015)
Cell
, vol.161
, pp. 264-276
-
-
Yano, J.M.1
-
76
-
-
84894118144
-
Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders
-
Hsiao EY, et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 2013; 155:1451–63.
-
(2013)
Cell
, vol.155
, pp. 1451-1463
-
-
Hsiao, E.Y.1
-
78
-
-
84920982264
-
Variation in the human immune system is largely driven by non-heritable influences
-
Brodin P, et al. Variation in the human immune system is largely driven by non-heritable influences. Cell 2015; 160:37–47.
-
(2015)
Cell
, vol.160
, pp. 37-47
-
-
Brodin, P.1
-
79
-
-
84942874856
-
Early infancy microbial and metabolic alterations affect risk of childhood asthma
-
Arrieta MC, et al. Early infancy microbial and metabolic alterations affect risk of childhood asthma. Sci Transl Med 2015; 7: 307ra152.
-
(2015)
Sci Transl Med
, vol.7
, pp. 307ra152
-
-
Arrieta, M.C.1
|