메뉴 건너뛰기




Volumn 182, Issue , 2016, Pages 308-321

Groundwater level prediction using a SOM-aided stepwise cluster inference model

Author keywords

Autoregressive error model; Groundwater level modeling; Hexi Corridor; SOM; Stepwise cluster inference; Uncertainty

Indexed keywords

ARID REGIONS; CLIMATE MODELS; CONFORMAL MAPPING; DECISION MAKING; GROUNDWATER; GROUNDWATER RESOURCES; SELF ORGANIZING MAPS; UNCERTAINTY ANALYSIS; UNDERGROUND RESERVOIRS; WATER SUPPLY;

EID: 84982732192     PISSN: 03014797     EISSN: 10958630     Source Type: Journal    
DOI: 10.1016/j.jenvman.2016.07.069     Document Type: Article
Times cited : (43)

References (41)
  • 1
    • 80052027629 scopus 로고    scopus 로고
    • A wavelet neural network conjunction model for groundwater level forecasting
    • Adamowski, J., Chan, H.F., A wavelet neural network conjunction model for groundwater level forecasting. J. Hydrol. 407 (2011), 28–40.
    • (2011) J. Hydrol. , vol.407 , pp. 28-40
    • Adamowski, J.1    Chan, H.F.2
  • 2
    • 35348971404 scopus 로고    scopus 로고
    • Comparison of self-organizing maps classification approach with cluster and principal components analysis for large environmental data sets
    • Astel, A., Tsakovski, S., Barbieri, P., Simeonov, V., Comparison of self-organizing maps classification approach with cluster and principal components analysis for large environmental data sets. Water Res. 41 (2007), 4566–4578.
    • (2007) Water Res. , vol.41 , pp. 4566-4578
    • Astel, A.1    Tsakovski, S.2    Barbieri, P.3    Simeonov, V.4
  • 3
    • 0003485656 scopus 로고    scopus 로고
    • Introduction to Time Series and Forecasting
    • Springer New York
    • Brockwell, P.J., Davis, R.A., Introduction to Time Series and Forecasting. 1996, Springer, New York.
    • (1996)
    • Brockwell, P.J.1    Davis, R.A.2
  • 4
    • 77955601282 scopus 로고    scopus 로고
    • Groundwater level prediction using SOM-RBFN multisite model
    • Chen, L., Chen, C., Pan, Y., Groundwater level prediction using SOM-RBFN multisite model. J. Hydrol. Eng. 15 (2010), 624–631.
    • (2010) J. Hydrol. Eng. , vol.15 , pp. 624-631
    • Chen, L.1    Chen, C.2    Pan, Y.3
  • 5
    • 79960142768 scopus 로고    scopus 로고
    • Application of integrated back-propagation network and self-organizing map for groundwater level forecasting
    • Chen, L.H., Chen, C.T., Lin, D.W., Application of integrated back-propagation network and self-organizing map for groundwater level forecasting. J. Water Resour. Plan. Manag. 137 (2011), 352–365.
    • (2011) J. Water Resour. Plan. Manag. , vol.137 , pp. 352-365
    • Chen, L.H.1    Chen, C.T.2    Lin, D.W.3
  • 6
    • 15944365544 scopus 로고    scopus 로고
    • A neural network model for predicting aquifer water level elevations
    • Coppola, E.A., Rana, A.J., Poulton, M.M., Szidarovszky, F., Uhl, V.W., A neural network model for predicting aquifer water level elevations. Ground Water 43 (2005), 231–241.
    • (2005) Ground Water , vol.43 , pp. 231-241
    • Coppola, E.A.1    Rana, A.J.2    Poulton, M.M.3    Szidarovszky, F.4    Uhl, V.W.5
  • 7
    • 0034993945 scopus 로고    scopus 로고
    • Artificial neural network modeling of water table depth fluctuations
    • Coulibaly, P., Anctil, F., Aravena, R., Bobée, B., Artificial neural network modeling of water table depth fluctuations. Water Resour. Res. 37 (2001), 885–896.
    • (2001) Water Resour. Res. , vol.37 , pp. 885-896
    • Coulibaly, P.1    Anctil, F.2    Aravena, R.3    Bobée, B.4
  • 8
    • 77958495448 scopus 로고    scopus 로고
    • Hybrid neural modeling for groundwater level prediction
    • Dash, N., Panda, S., Remesan, R., Sahoo, N., Hybrid neural modeling for groundwater level prediction. Neural Comput. Applic 19 (2010), 1251–1263.
    • (2010) Neural Comput. Applic , vol.19 , pp. 1251-1263
    • Dash, N.1    Panda, S.2    Remesan, R.3    Sahoo, N.4
  • 11
    • 84898540640 scopus 로고    scopus 로고
    • Bayesian uncertainty analysis in hydrological modeling associated with watershed subdivision level: a case study of SLURP model applied to the Xiangxi River watershed, China
    • Han, J.-C., Huang, G.-H., Zhang, H., Li, Z., Li, Y.-P., Bayesian uncertainty analysis in hydrological modeling associated with watershed subdivision level: a case study of SLURP model applied to the Xiangxi River watershed, China. Stoch. Environ. Res. Risk Assess. 28 (2014), 973–989.
    • (2014) Stoch. Environ. Res. Risk Assess. , vol.28 , pp. 973-989
    • Han, J.-C.1    Huang, G.-H.2    Zhang, H.3    Li, Z.4    Li, Y.-P.5
  • 12
    • 84927619274 scopus 로고    scopus 로고
    • Chance-constrained overland flow modeling for improving conceptual distributed hydrologic simulations based on scaling representation of sub-daily rainfall variability
    • Han, J.-C., Huang, G., Huang, Y., Zhang, H., Li, Z., Chen, Q., Chance-constrained overland flow modeling for improving conceptual distributed hydrologic simulations based on scaling representation of sub-daily rainfall variability. Sci. Total Environ. 524–525 (2015), 8–22.
    • (2015) Sci. Total Environ. , vol.524-525 , pp. 8-22
    • Han, J.-C.1    Huang, G.2    Huang, Y.3    Zhang, H.4    Li, Z.5    Chen, Q.6
  • 13
    • 84921061473 scopus 로고    scopus 로고
    • Heterogeneous precipitation and streamflow trends in the Xiangxi river watershed, 1961–2010
    • Han, J.-C., Huang, G., Zhang, H., Li, Z., Li, Y., Heterogeneous precipitation and streamflow trends in the Xiangxi river watershed, 1961–2010. J. Hydrol. Eng. 19 (2014), 1247–1258.
    • (2014) J. Hydrol. Eng. , vol.19 , pp. 1247-1258
    • Han, J.-C.1    Huang, G.2    Zhang, H.3    Li, Z.4    Li, Y.5
  • 14
    • 74149092556 scopus 로고    scopus 로고
    • Clustering spatial–temporal precipitation data using wavelet transform and self-organizing map neural network
    • Hsu, K.-C., Li, S.-T., Clustering spatial–temporal precipitation data using wavelet transform and self-organizing map neural network. Adv. Water Resour. 33 (2010), 190–200.
    • (2010) Adv. Water Resour. , vol.33 , pp. 190-200
    • Hsu, K.-C.1    Li, S.-T.2
  • 15
    • 0036998831 scopus 로고    scopus 로고
    • Self-organizing linear output map (SOLO): an artificial neural network suitable for hydrologic modeling and analysis
    • 38–31-38-17
    • Hsu, K.-l., Gupta, H.V., Gao, X., Sorooshian, S., Imam, B., Self-organizing linear output map (SOLO): an artificial neural network suitable for hydrologic modeling and analysis. Water Resour. Res., 38, 2002 38–31-38-17.
    • (2002) Water Resour. Res. , vol.38
    • Hsu, K.-L.1    Gupta, H.V.2    Gao, X.3    Sorooshian, S.4    Imam, B.5
  • 16
    • 0026802527 scopus 로고
    • A stepwise cluster analysis method for predicting air quality in an urban environment
    • Huang, G., A stepwise cluster analysis method for predicting air quality in an urban environment. Atmos. Environ. Part B. Urban Atmos. 26 (1992), 349–357.
    • (1992) Atmos. Environ. Part B. Urban Atmos. , vol.26 , pp. 349-357
    • Huang, G.1
  • 17
    • 33746585218 scopus 로고    scopus 로고
    • Development of a forecasting system for supporting remediation design and process control based on NAPL-biodegradation simulation and stepwise-cluster analysis
    • n/a-n/a
    • Huang, G.H., Huang, Y.F., Wang, G.Q., Xiao, H.N., Development of a forecasting system for supporting remediation design and process control based on NAPL-biodegradation simulation and stepwise-cluster analysis. Water Resour. Res., 42, 2006 n/a-n/a.
    • (2006) Water Resour. Res. , vol.42
    • Huang, G.H.1    Huang, Y.F.2    Wang, G.Q.3    Xiao, H.N.4
  • 18
    • 84886594570 scopus 로고    scopus 로고
    • Application of NN-ARX model to predict groundwater levels in the Neishaboor plain, Iran
    • Izady, A., Davary, K., Alizadeh, A., Nia, A.M., Ziaei, A.N., Hasheminia, S.M., Application of NN-ARX model to predict groundwater levels in the Neishaboor plain, Iran. Water Resour. Manage 27 (2013), 4773–4794.
    • (2013) Water Resour. Manage , vol.27 , pp. 4773-4794
    • Izady, A.1    Davary, K.2    Alizadeh, A.3    Nia, A.M.4    Ziaei, A.N.5    Hasheminia, S.M.6
  • 19
    • 77649184126 scopus 로고    scopus 로고
    • Parameter and modeling uncertainty simulated by GLUE and a formal Bayesian method for a conceptual hydrological model
    • Jin, X., Xu, C.-Y., Zhang, Q., Singh, V.P., Parameter and modeling uncertainty simulated by GLUE and a formal Bayesian method for a conceptual hydrological model. J. Hydrol. 383 (2010), 147–155.
    • (2010) J. Hydrol. , vol.383 , pp. 147-155
    • Jin, X.1    Xu, C.-Y.2    Zhang, Q.3    Singh, V.P.4
  • 20
    • 40749144865 scopus 로고    scopus 로고
    • Review of the self-organizing map (SOM) approach in water resources: analysis, modelling and application
    • Kalteh, A.M., Hjorth, P., Berndtsson, R., Review of the self-organizing map (SOM) approach in water resources: analysis, modelling and application. Environ. Model. Softw. 23 (2008), 835–845.
    • (2008) Environ. Model. Softw. , vol.23 , pp. 835-845
    • Kalteh, A.M.1    Hjorth, P.2    Berndtsson, R.3
  • 21
    • 0003410791 scopus 로고    scopus 로고
    • Self-organizing Maps
    • Springer Berlin, Heidelberg, New York
    • Kohonen, T., Self-organizing Maps. 1995, Springer, Berlin, Heidelberg, New York.
    • (1995)
    • Kohonen, T.1
  • 22
    • 0003410791 scopus 로고    scopus 로고
    • Self-organizing Maps
    • Springer-Verlag Berlin, Heidelberg
    • Kohonen, T., Self-organizing Maps. 1997, Springer-Verlag, Berlin, Heidelberg.
    • (1997)
    • Kohonen, T.1
  • 23
    • 84867101151 scopus 로고    scopus 로고
    • Validation studies of precipitation estimates from different satellite sensors over Hungary – analysis of new satellite-derived rain rate products for hydrological purposes
    • Lábó, E., Validation studies of precipitation estimates from different satellite sensors over Hungary – analysis of new satellite-derived rain rate products for hydrological purposes. J. Hydrol. 468–469 (2012), 173–187.
    • (2012) J. Hydrol. , vol.468-469 , pp. 173-187
    • Lábó, E.1
  • 24
    • 84920809106 scopus 로고    scopus 로고
    • A strategy to overcome adverse effects of autoregressive updating of streamflow forecasts
    • Li, M., Wang, Q.J., Bennett, J.C., Robertson, D.E., A strategy to overcome adverse effects of autoregressive updating of streamflow forecasts. Hydrol. Earth Syst. Sci. 19 (2015), 1–15.
    • (2015) Hydrol. Earth Syst. Sci. , vol.19 , pp. 1-15
    • Li, M.1    Wang, Q.J.2    Bennett, J.C.3    Robertson, D.E.4
  • 26
    • 77953325250 scopus 로고    scopus 로고
    • Artificial neural network modeling for groundwater level forecasting in a river island of eastern India
    • Mohanty, S., Jha, M., Kumar, A., Sudheer, K.P., Artificial neural network modeling for groundwater level forecasting in a river island of eastern India. Water Resour. Manage 24 (2010), 1845–1865.
    • (2010) Water Resour. Manage , vol.24 , pp. 1845-1865
    • Mohanty, S.1    Jha, M.2    Kumar, A.3    Sudheer, K.P.4
  • 27
    • 84874285796 scopus 로고    scopus 로고
    • A wavelet-ANFIS hybrid model for groundwater level forecasting for different prediction periods
    • Moosavi, V., Vafakhah, M., Shirmohammadi, B., Behnia, N., A wavelet-ANFIS hybrid model for groundwater level forecasting for different prediction periods. Water Resour. Manage 27 (2013), 1301–1321.
    • (2013) Water Resour. Manage , vol.27 , pp. 1301-1321
    • Moosavi, V.1    Vafakhah, M.2    Shirmohammadi, B.3    Behnia, N.4
  • 28
    • 79955487601 scopus 로고    scopus 로고
    • Reliability of autoregressive error models as post-processors for probabilistic streamflow forecasts
    • Morawietz, M., Xu, C.Y., Gottschalk, L., Reliability of autoregressive error models as post-processors for probabilistic streamflow forecasts. Adv. Geosci. 29 (2011), 109–118.
    • (2011) Adv. Geosci. , vol.29 , pp. 109-118
    • Morawietz, M.1    Xu, C.Y.2    Gottschalk, L.3
  • 29
    • 34447500396 scopus 로고    scopus 로고
    • Model evaluation guidelines for systematic quantification of accuracy in watershed simulations
    • Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D., Veith, T.L., Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 50 (2007), 885–900.
    • (2007) Trans. ASABE , vol.50 , pp. 885-900
    • Moriasi, D.N.1    Arnold, J.G.2    Van Liew, M.W.3    Bingner, R.L.4    Harmel, R.D.5    Veith, T.L.6
  • 30
    • 84924401963 scopus 로고    scopus 로고
    • Wavelet-entropy data pre-processing approach for ANN-based groundwater level modeling
    • Nourani, V., Alami, M.T., Vousoughi, F.D., Wavelet-entropy data pre-processing approach for ANN-based groundwater level modeling. J. Hydrol. 524 (2015), 255–269.
    • (2015) J. Hydrol. , vol.524 , pp. 255-269
    • Nourani, V.1    Alami, M.T.2    Vousoughi, F.D.3
  • 31
    • 84871025948 scopus 로고    scopus 로고
    • Using self-organizing maps and wavelet transforms for space–time pre-processing of satellite precipitation and runoff data in neural network based rainfall–runoff modeling
    • Nourani, V., Baghanam, A.H., Adamowski, J., Gebremichael, M., Using self-organizing maps and wavelet transforms for space–time pre-processing of satellite precipitation and runoff data in neural network based rainfall–runoff modeling. J. Hydrol. 476 (2013), 228–243.
    • (2013) J. Hydrol. , vol.476 , pp. 228-243
    • Nourani, V.1    Baghanam, A.H.2    Adamowski, J.3    Gebremichael, M.4
  • 32
    • 79952309190 scopus 로고    scopus 로고
    • Spatiotemporal groundwater level forecasting in coastal aquifers by hybrid artificial neural network-geostatistics model: a case study
    • Nourani, V., Ejlali, R.G., Alami, M.T., Spatiotemporal groundwater level forecasting in coastal aquifers by hybrid artificial neural network-geostatistics model: a case study. Environ. Eng. Sci. 28 (2011), 217–228.
    • (2011) Environ. Eng. Sci. , vol.28 , pp. 217-228
    • Nourani, V.1    Ejlali, R.G.2    Alami, M.T.3
  • 33
    • 34548814785 scopus 로고    scopus 로고
    • A stepwise-inference-based optimization system for supporting remediation of petroleum-contaminated sites
    • Qin, X.S., Huang, G.H., Chakma, A., A stepwise-inference-based optimization system for supporting remediation of petroleum-contaminated sites. Water Air Soil Pollut. 185 (2007), 349–368.
    • (2007) Water Air Soil Pollut. , vol.185 , pp. 349-368
    • Qin, X.S.1    Huang, G.H.2    Chakma, A.3
  • 34
    • 0003604539 scopus 로고
    • Applied Modeling of Hydrological Time Series
    • Water Resources Publications Denver
    • Salas, J.D., Delleur, J.W., Yevjevich, V., Lane, W.L., Applied Modeling of Hydrological Time Series. 1990, Water Resources Publications, Denver.
    • (1990)
    • Salas, J.D.1    Delleur, J.W.2    Yevjevich, V.3    Lane, W.L.4
  • 35
    • 70350560321 scopus 로고    scopus 로고
    • A stepwise-cluster microbial biomass inference model in food waste composting
    • Sun, W., Huang, G.H., Zeng, G., Qin, X., Sun, X., A stepwise-cluster microbial biomass inference model in food waste composting. Waste Manag. 29 (2009), 2956–2968.
    • (2009) Waste Manag. , vol.29 , pp. 2956-2968
    • Sun, W.1    Huang, G.H.2    Zeng, G.3    Qin, X.4    Sun, X.5
  • 36
    • 84918836115 scopus 로고    scopus 로고
    • A spatio-temporal hybrid neural network-Kriging model for groundwater level simulation
    • Tapoglou, E., Karatzas, G.P., Trichakis, I.C., Varouchakis, E.A., A spatio-temporal hybrid neural network-Kriging model for groundwater level simulation. J. Hydrol. 519:Part D (2014), 3193–3203.
    • (2014) J. Hydrol. , vol.519 , pp. 3193-3203
    • Tapoglou, E.1    Karatzas, G.P.2    Trichakis, I.C.3    Varouchakis, E.A.4
  • 37
    • 0142025118 scopus 로고    scopus 로고
    • A computational study of several relocation methods for k-means algorithms
    • Tarsitano, A., A computational study of several relocation methods for k-means algorithms. Pattern Recognit. 36 (2003), 2955–2966.
    • (2003) Pattern Recognit. , vol.36 , pp. 2955-2966
    • Tarsitano, A.1
  • 38
    • 33746594699 scopus 로고
    • Statistical Inference in Geology
    • Wiley New York
    • Wilks, S.S., Statistical Inference in Geology. 1963, Wiley, New York.
    • (1963)
    • Wilks, S.S.1
  • 39
    • 84861014349 scopus 로고    scopus 로고
    • An integrated SOM-based multivariate approach for spatio-temporal patterns identification and source apportionment of pollution in complex river network
    • Yang, Y., Wang, C., Guo, H., Sheng, H., Zhou, F., An integrated SOM-based multivariate approach for spatio-temporal patterns identification and source apportionment of pollution in complex river network. Environ. Pollut. 168 (2012), 71–79.
    • (2012) Environ. Pollut. , vol.168 , pp. 71-79
    • Yang, Y.1    Wang, C.2    Guo, H.3    Sheng, H.4    Zhou, F.5
  • 40
    • 78650179085 scopus 로고    scopus 로고
    • A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer
    • Yoon, H., Jun, S.-C., Hyun, Y., Bae, G.-O., Lee, K.-K., A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer. J. Hydrol. 396 (2011), 128–138.
    • (2011) J. Hydrol. , vol.396 , pp. 128-138
    • Yoon, H.1    Jun, S.-C.2    Hyun, Y.3    Bae, G.-O.4    Lee, K.-K.5
  • 41
    • 84938694371 scopus 로고    scopus 로고
    • Uncertainty based modeling of rainfall-runoff: combined differential evolution adaptive Metropolis (DREAM) and K-means clustering
    • Zahmatkesh, Z., Karamouz, M., Nazif, S., Uncertainty based modeling of rainfall-runoff: combined differential evolution adaptive Metropolis (DREAM) and K-means clustering. Adv. Water Resour. 83 (2015), 405–420.
    • (2015) Adv. Water Resour. , vol.83 , pp. 405-420
    • Zahmatkesh, Z.1    Karamouz, M.2    Nazif, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.