-
1
-
-
0142166851
-
A neural probabilistic language model
-
Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin. A neural probabilistic language model. Journal of Machine Learning Research, 3:1137-1155, 2003.
-
(2003)
Journal of Machine Learning Research
, vol.3
, pp. 1137-1155
-
-
Bengio, Y.1
Ducharme, R.2
Vincent, P.3
Janvin, C.4
-
2
-
-
0035478854
-
Random forests
-
L. Breiman. Random forests. In Machine Learning, volume 45(1), 2001.
-
(2001)
Machine Learning
, vol.45
, Issue.1
-
-
Breiman, L.1
-
4
-
-
56449095373
-
A unified architecture for natural language processing: Deep neural networks with multitask learning
-
New York, NY, USA. ACM
-
R. Collobert and J. Weston. A unified architecture for natural language processing: deep neural networks with multitask learning. In ICML '08: Proceedings of the 25th international conference on Machine learning, pages 160-167, New York, NY, USA, 2008. ACM.
-
(2008)
ICML '08: Proceedings of the 25th International Conference on Machine Learning
, pp. 160-167
-
-
Collobert, R.1
Weston, J.2
-
5
-
-
55349114379
-
Statistical analysis of bayes optimal subset ranking
-
D. Cossock and T. Zhang. Statistical analysis of bayes optimal subset ranking. IEEE Transactions on Information Theory, 54(11):5140-5154, 2008.
-
(2008)
IEEE Transactions on Information Theory
, vol.54
, Issue.11
, pp. 5140-5154
-
-
Cossock, D.1
Zhang, T.2
-
6
-
-
78649914423
-
Performance of recommender algorithms on top-n recommendation tasks
-
New York, NY, USA. ACM
-
P. Cremonesi, Y. Koren, and R. Turrin. Performance of recommender algorithms on top-n recommendation tasks. In Proceedings of the fourth ACM conference on Recommender systems, RecSys '10, pages 39-46, New York, NY, USA, 2010. ACM.
-
(2010)
Proceedings of the Fourth ACM Conference on Recommender Systems, RecSys '10
, pp. 39-46
-
-
Cremonesi, P.1
Koren, Y.2
Turrin, R.3
-
7
-
-
72449208539
-
On the local optimality of lambdarank
-
New York, NY, USA. ACM
-
P. Donmez, K. M. Svore, and C. J. Burges. On the local optimality of lambdarank. In Proceedings of the 32nd international ACM SIGIR conference on Research and development in information retrieval, SIGIR '09, pages 460-467, New York, NY, USA, 2009. ACM.
-
(2009)
Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR '09
, pp. 460-467
-
-
Donmez, P.1
Svore, K.M.2
Burges, C.J.3
-
8
-
-
4644367942
-
An efficient boosting algorithm for combining preferences
-
Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer. An efficient boosting algorithm for combining preferences. J. Mach. Learn. Res., 4:933-969, 2003.
-
(2003)
J. Mach. Learn. Res.
, vol.4
, pp. 933-969
-
-
Freund, Y.1
Iyer, R.2
Schapire, R.E.3
Singer, Y.4
-
9
-
-
0035470889
-
Greedy function approximation: A gradient boosting machine
-
J. H. Friedman. Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29:1189-1232, 2000. (Pubitemid 33405972)
-
(2001)
Annals of Statistics
, vol.29
, Issue.5
, pp. 1189-1232
-
-
Friedman, J.H.1
-
10
-
-
84892467338
-
Matchin: Eliciting user preferences with an online game
-
New York, NY, USA. ACM
-
S. Hacker and L. von Ahn. Matchin: eliciting user preferences with an online game. In CHI '09: Proceedings of the 27th international conference on Human factors in computing systems, pages 1207 -1216, New York, NY, USA, 2009. ACM.
-
(2009)
CHI '09: Proceedings of the 27th International Conference on Human Factors in Computing Systems
, pp. 1207-1216
-
-
Hacker, S.1
Von Ahn, L.2
-
11
-
-
0008371352
-
Large margin rank boundaries for ordinal regression
-
P. J. Bartlett, B. Schölkopf, D. Schuurmans, and A. J. Smola, editors. MIT Press
-
R. Herbrich, T. Graepel, and K. Obermayer. Large margin rank boundaries for ordinal regression. In P. J. Bartlett, B. Schölkopf, D. Schuurmans, and A. J. Smola, editors, Advances in Large Margin Classifiers, pages 115-132. MIT Press, 2000.
-
(2000)
Advances in Large Margin Classifiers
, pp. 115-132
-
-
Herbrich, R.1
Graepel, T.2
Obermayer, K.3
-
12
-
-
1842637192
-
Cumulated gain-based evaluation of IR techniques
-
DOI 10.1145/582415.582418
-
K. Järvelin and J. Kekäläinen. Cumulated gain-based evaluation of ir techniques. ACM Trans. Inf. Syst., 20:422-446, October 2002. (Pubitemid 44642296)
-
(2002)
ACM Transactions on Information Systems
, vol.20
, Issue.4
, pp. 422-446
-
-
Jarvelin, K.1
Kekalainen, J.2
-
13
-
-
0242456822
-
Optimizing search engines using clickthrough data
-
New York, NY, USA. ACM
-
T. Joachims. Optimizing search engines using clickthrough data. In Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining, KDD '02, pages 133-142, New York, NY, USA, 2002. ACM.
-
(2002)
Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '02
, pp. 133-142
-
-
Joachims, T.1
-
14
-
-
85008044987
-
Matrix factorization techniques for recommender systems
-
Y. Koren, R. Bell, and C. Volinsky. Matrix Factorization Techniques for Recommender Systems. Computer, 42(8):30-37, 2009.
-
(2009)
Computer
, vol.42
, Issue.8
, pp. 30-37
-
-
Koren, Y.1
Bell, R.2
Volinsky, C.3
-
18
-
-
84857846578
-
Web-search ranking with initialized gradient boosted regression trees
-
A. Mohan, Z. Chen, and K. Q. Weinberger. Web-search ranking with initialized gradient boosted regression trees. Journal of Machine Learning Research, Workshop and Conference Proceedings, 14:77-89, 2011.
-
(2011)
Journal of Machine Learning Research, Workshop and Conference Proceedings
, vol.14
, pp. 77-89
-
-
Mohan, A.1
Chen, Z.2
Weinberger, K.Q.3
-
19
-
-
35348840947
-
Predicting clicks: Estimating the click-through rate for new ads
-
DOI 10.1145/1242572.1242643, 16th International World Wide Web Conference, WWW2007
-
M. Richardson, E. Dominowska, and R. Ragno. Predicting clicks: estimating the click-through rate for new ads. In Proceedings of the 16th international conference on World Wide Web, WWW '07, pages 521-530, New York, NY, USA, 2007. ACM. (Pubitemid 47582281)
-
(2007)
16th International World Wide Web Conference, WWW2007
, pp. 521-530
-
-
Richardson, M.1
Dominowska, E.2
Ragno, R.3
-
23
-
-
36448954244
-
AdaRank: A boosting algorithm for information retrieval
-
DOI 10.1145/1277741.1277809, Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR'07
-
J. Xu and H. Li. Adarank: a boosting algorithm for information retrieval. In Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval, SIGIR '07, pages 391-398, New York, NY, USA, 2007. ACM. (Pubitemid 350164985)
-
(2007)
Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR'07
, pp. 391-398
-
-
Xu, J.1
Li, H.2
-
24
-
-
57349175558
-
Directly optimizing evaluation measures in learning to rank
-
New York, NY, USA. ACM
-
J. Xu, T.-Y. Liu, M. Lu, H. Li, and W.-Y. Ma. Directly optimizing evaluation measures in learning to rank. In Proceedings of the 31st annual international ACM SIGIR conference on Research and development in information retrieval, SIGIR '08, pages 107-114, New York, NY, USA, 2008. ACM.
-
(2008)
Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR '08
, pp. 107-114
-
-
Xu, J.1
Liu, T.-Y.2
Lu, M.3
Li, H.4
Ma, W.-Y.5
|