-
1
-
-
56049109090
-
Map-reduce for machine learning on multicore
-
B. Schölkopf, J. Platt, and T. Hoffman, editors, MIT Press, Cambridge, MA
-
C.-T. Chu, S. K. Kim, Y.-A. Lin, Y. Yu, G. Bradski, A. Y. Ng, and K. Olukotun. Map-reduce for machine learning on multicore. In B. Schölkopf, J. Platt, and T. Hoffman, editors, Advances in Neural Information Processing Systems 19, pages 281-288. MIT Press, Cambridge, MA, 2007.
-
(2007)
Advances in Neural Information Processing Systems 19
, pp. 281-288
-
-
Chu, C.-T.1
Kim, S.K.2
Lin, Y.-A.3
Yu, Y.4
Bradski, G.5
Ng, A.Y.6
Olukotun, K.7
-
2
-
-
77950537175
-
Regularization paths for generalized linear models via coordinate descent
-
J. H. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, 33(1):1-22, 2 2010.
-
(2010)
Journal of Statistical Software
, vol.33
, Issue.1
, pp. 1-22
-
-
Friedman, J.H.1
Hastie, T.2
Tibshirani, R.3
-
4
-
-
84881103539
-
-
The bellkor solution to the netflix grand prize
-
Y. Koren. The bellkor solution to the netflix grand prize. 2009.
-
(2009)
-
-
Koren, Y.1
-
6
-
-
80052883059
-
Advances in collaborative filtering
-
F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor, editors, Springer
-
Y. Koren and R. M. Bell. Advances in collaborative filtering. In F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor, editors, Recommender Systems Handbook, pages 145-186. Springer, 2011.
-
(2011)
Recommender Systems Handbook
, pp. 145-186
-
-
Koren, Y.1
Bell, R.M.2
-
8
-
-
29344464364
-
Simple estimators for relational bayesian classifiers
-
Washington, DC, USA. IEEE Computer Society
-
J. Neville, D. Jensen, and B. Gallagher. Simple estimators for relational bayesian classifiers. In Proceedings of the Third IEEE International Conference on Data Mining, ICDM '03, pages 609-612, Washington, DC, USA, 2003. IEEE Computer Society.
-
(2003)
In Proceedings of the Third IEEE International Conference on Data Mining, ICDM '03
, pp. 609-612
-
-
Neville, J.1
Jensen, D.2
Gallagher, B.3
-
9
-
-
32044451133
-
Distribution-based aggregation for relational learning with identifier attributes
-
Feb
-
C. Perlich and F. Provost. Distribution-based aggregation for relational learning with identifier attributes. Mach. Learn., 62(1-2):65-105, Feb. 2006.
-
(2006)
Mach. Learn
, vol.62
, Issue.1-2
, pp. 65-105
-
-
Perlich, C.1
Provost, F.2
-
10
-
-
78649966572
-
Fast als-based matrix factorization for explicit and implicit feedback datasets
-
New York, NY, USA. ACM
-
I. Pilászy, D. Zibriczky, and D. Tikk. Fast als-based matrix factorization for explicit and implicit feedback datasets. In RecSys '10: Proceedings of the fourth ACM conference on Recommender systems, pages 71-78, New York, NY, USA, 2010. ACM.
-
(2010)
In RecSys '10: Proceedings of the fourth ACM conference on Recommender systems
, pp. 71-78
-
-
Pilászy, I.1
Zibriczky, D.2
Tikk, D.3
-
11
-
-
77958547447
-
Bayesian matrix factorization with side information and dirichlet process mixtures
-
I. Porteous, A. Asuncion, and M. Welling. Bayesian matrix factorization with side information and dirichlet process mixtures. In Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2010, pages 563-568, 2010.
-
(2010)
In Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2010
, pp. 563-568
-
-
Porteous, I.1
Asuncion, A.2
Welling, M.3
-
12
-
-
79951760087
-
Factorization machines
-
Washington, DC, USA. IEEE Computer Society
-
S. Rendle. Factorization machines. In Proceedings of the 2010 IEEE International Conference on Data Mining, ICDM '10, pages 995-1000, Washington, DC, USA, 2010. IEEE Computer Society.
-
(2010)
In Proceedings of the 2010 IEEE International Conference on Data Mining, ICDM '10
, pp. 995-1000
-
-
Rendle, S.1
-
13
-
-
84863614151
-
Factorization machines with libFM
-
May
-
S. Rendle. Factorization machines with libFM. ACM Trans. Intell. Syst. Technol., 3(3):57:1-57:22, May 2012.
-
(2012)
ACM Trans. Intell. Syst. Technol
, vol.3
, Issue.3
, pp. 1-57
-
-
Rendle, S.1
-
14
-
-
84898043294
-
Social network and click-through prediction with factorization machines
-
S. Rendle. Social network and click-through prediction with factorization machines. In KDD-Cup Workshop, 2012.
-
(2012)
In KDD-Cup Workshop
-
-
Rendle, S.1
-
15
-
-
77950902603
-
Pairwise interaction tensor factorization for personalized tag recommendation
-
New York, NY, USA. ACM.
-
S. Rendle and L. Schmidt-Thieme. Pairwise interaction tensor factorization for personalized tag recommendation. In WSDM '10: Proceedings of the third ACM international conference on Web search and data mining, pages 81-90, New York, NY, USA, 2010. ACM.
-
(2010)
In WSDM '10: Proceedings of the third ACM international conference on Web search and data mining
, pp. 81-90
-
-
Rendle, S.1
Schmidt-Thieme, L.2
-
16
-
-
56449131205
-
Bayesian probabilistic matrix factorization using Markov chain Monte Carlo
-
New York, NY, USA. ACM.
-
R. Salakhutdinov and A. Mnih. Bayesian probabilistic matrix factorization using Markov chain Monte Carlo. In Proceedings of the 25th international conference on Machine learning, ICML '08, pages 880-887, New York, NY, USA, 2008. ACM.
-
(2008)
In Proceedings of the 25th international conference on Machine learning, ICML '08
, pp. 880-887
-
-
Salakhutdinov, R.1
Mnih, A.2
-
17
-
-
85161989354
-
Probabilistic matrix factorization
-
J. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Cambridge, MA. MIT Press
-
R. Salakhutdinov and A. Mnih. Probabilistic matrix factorization. In J. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems 20, pages 1257-1264, Cambridge, MA, 2008. MIT Press.
-
(2008)
Advances in Neural Information Processing Systems 20
, pp. 1257-1264
-
-
Salakhutdinov, R.1
Mnih, A.2
-
18
-
-
77950941535
-
Matchbox: large scale online bayesian recommendations
-
New York, NY, USA. ACM
-
D. H. Stern, R. Herbrich, and T. Graepel. Matchbox: large scale online bayesian recommendations. In Proceedings of the 18th international conference on World wide web, WWW '09, pages 111-120, New York, NY, USA, 2009. ACM.
-
(2009)
In Proceedings of the 18th international conference on World wide web, WWW '09
, pp. 111-120
-
-
Stern, D.H.1
Herbrich, R.2
Graepel, T.3
-
19
-
-
64149121935
-
Scalable collaborative filtering approaches for large recommender systems
-
June
-
G. Takács, I. Pilászy, B. Németh, and D. Tikk. Scalable collaborative filtering approaches for large recommender systems. J. Mach. Learn. Res., 10:623-656, June 2009.
-
(2009)
J. Mach. Learn. Res
, vol.10
, pp. 623-656
-
-
Takács, G.1
Pilászy, I.2
Németh, B.3
Tikk, D.4
-
20
-
-
71149087699
-
Feature hashing for large scale multitask learning
-
ACM
-
K. Weinberger, A. Dasgupta, J. Langford, A. Smola, and J. Attenberg. Feature hashing for large scale multitask learning. In Proceedings of the 26th Annual International Conference on Machine Learning, pages 1113-1120. ACM, 2009.
-
(2009)
In Proceedings of the 26th Annual International Conference on Machine Learning
, pp. 1113-1120
-
-
Weinberger, K.1
Dasgupta, A.2
Langford, J.3
Smola, A.4
Attenberg, J.5
-
21
-
-
80052121737
-
Temporal collaborative filtering with bayesian probabilistic tensor factorization
-
SIAM
-
L. Xiong, X. Chen, T.-K. Huang, J. Schneider, and J. G. Carbonell. Temporal collaborative filtering with bayesian probabilistic tensor factorization. In Proceedings of the SIAM International Conference on Data Mining, pages 211-222. SIAM, 2010.
-
(2010)
In Proceedings of the SIAM International Conference on Data Mining
, pp. 211-222
-
-
Xiong, L.1
Chen, X.2
Huang, T.-K.3
Schneider, J.4
Carbonell, J.G.5
-
22
-
-
77956195198
-
Large linear classification when data cannot fit in memory
-
New York, NY, USA. ACM
-
H.-F. Yu, C.-J. Hsieh, K.-W. Chang, and C.-J. Lin. Large linear classification when data cannot fit in memory. In Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD '10, pages 833-842, New York, NY, USA, 2010. ACM.
-
(2010)
In Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD '10
, pp. 833-842
-
-
Yu, H.-F.1
Hsieh, C.-J.2
Chang, K.-W.3
Lin, C.-J.4
-
23
-
-
79960300637
-
Feature engineering and classifier ensemble for kdd cup 2010
-
H.-F. Yu, H.-Y. Lo, H.-P. Hsieh, J.-K. Lou, T. G. McKenzie, J.-W. Chou, P.-H. Chung, C.-H. Ho, C.-F. Chang, Y.-H. Wei, J.-Y. Weng, E.-S. Yan, C.-W. Chang, T.-T. Kuo, Y.-C. Lo, P. T. Chang, C. Po, C.-Y. Wang, Y.-H. Huang, C.-W. Hung, Y.-X. Ruan, Y.-S. Lin, S. de Lin, H.-T. Lin, and C.-J. Lin. Feature engineering and classifier ensemble for kdd cup 2010. In Proceedings of KDD Cup and Workshop, 2010.
-
(2010)
In Proceedings of KDD Cup and Workshop
-
-
Yu, H.-F.1
Lo, H.-Y.2
Hsieh, H.-P.3
Lou, J.-K.4
McKenzie, T.G.5
Chou, J.-W.6
Chung, P.-H.7
Ho, C.-H.8
Chang, C.-F.9
Wei, Y.-H.10
Weng, J.-Y.11
Yan, E.-S.12
Chang, C.-W.13
Kuo, T.-T.14
Lo, Y.-C.15
Chang, P.T.16
Po, C.17
Wang, C.-Y.18
Huang, Y.-H.19
Hung, C.-W.20
Ruan, Y.-X.21
Lin, Y.-S.22
de Lin, S.23
Lin, H.-T.24
Lin, C.-J.25
more..
-
24
-
-
83855162681
-
Stochastic relational models for large-scale dyadic data using MCMC
-
D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors
-
S. Zhu, K. Yu, and Y. Gong. Stochastic relational models for large-scale dyadic data using MCMC. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, Advances in Neural Information Processing Systems 21, pages 1993-2000, 2009.
-
(2009)
Advances in Neural Information Processing Systems 21
, pp. 1993-2000
-
-
Zhu, S.1
Yu, K.2
Gong, Y.3
|