메뉴 건너뛰기




Volumn 39, Issue , 2016, Pages 237-256

Correlations and Neuronal Population Information

Author keywords

Decoding; Fisher information; Neural coding; Neural variability; Perception; Theoretical neuroscience

Indexed keywords

ARTICLE; CELL POPULATION; CODING; CONCEPTUAL FRAMEWORK; CORRELATIONAL STUDY; HUMAN; INFORMATION PROCESSING; LINEAR FISHER INFORMATION; NERVE CELL POPULATION; NONHUMAN; PRIORITY JOURNAL; ACTION POTENTIAL; ANIMAL; ARTIFICIAL INTELLIGENCE; BIOLOGICAL MODEL; BRAIN; NERVE CELL; PHYSIOLOGY; PROCEDURES; STATISTICS;

EID: 84979516942     PISSN: 0147006X     EISSN: 15454126     Source Type: Book Series    
DOI: 10.1146/annurev-neuro-070815-013851     Document Type: Article
Times cited : (254)

References (135)
  • 1
    • 0032609779 scopus 로고    scopus 로고
    • The effect of correlated variability on the accuracy of a population code
    • Abbott LF, Dayan P. 1999. The effect of correlated variability on the accuracy of a population code. Neural Comput. 11: 91-101
    • (1999) Neural Comput. , vol.11 , pp. 91-101
    • Abbott, L.F.1    Dayan, P.2
  • 2
    • 84873044825 scopus 로고    scopus 로고
    • Adaptation improves neural coding efficiency despite increasing correlations in variability
    • Adibi M, McDonald JS, Clifford CWG, Arabzadeh E. 2013. Adaptation improves neural coding efficiency despite increasing correlations in variability. J. Neurosci. 33: 2108-20
    • (2013) J. Neurosci. , vol.33 , pp. 2108-2120
    • Adibi, M.1    McDonald, J.S.2    Clifford, C.W.G.3    Arabzadeh, E.4
  • 3
    • 84896699791 scopus 로고    scopus 로고
    • Population decoding in rat barrel cortex: Optimizing the linear readout of correlated population responses
    • Adibi M, McDonald JS, Clifford CWG, Arabzadeh E. 2014. Population decoding in rat barrel cortex: optimizing the linear readout of correlated population responses. PLOS Comput. Biol. 10(1): e1003415
    • (2014) PLOS Comput. Biol. , vol.10 , Issue.1 , pp. e1003415
    • Adibi, M.1    McDonald, J.S.2    Clifford, C.W.G.3    Arabzadeh, E.4
  • 4
    • 84960814543 scopus 로고    scopus 로고
    • Multiplicative and additive modulation of neuronal tuning with population activity affects encoded information
    • Arandia-Romero I, Tanabe S, Drugowitsch J, Kohn A, Moreno-Bote R. 2016. Multiplicative and additive modulation of neuronal tuning with population activity affects encoded information. Neuron 89(6): 1305-16
    • (2016) Neuron , vol.89 , Issue.6 , pp. 1305-1316
    • Arandia-Romero, I.1    Tanabe, S.2    Drugowitsch, J.3    Kohn, A.4    Moreno-Bote, R.5
  • 5
    • 0029767876 scopus 로고    scopus 로고
    • Dynamics of ongoing activity: Explanation of the large variability in evoked cortical responses
    • Arieli A, Sterkin A, Grinvald A, Aertsen A. 1996. Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses. Science 273: 1868-71
    • (1996) Science , vol.273 , pp. 1868-1871
    • Arieli, A.1    Sterkin, A.2    Grinvald, A.3    Aertsen, A.4
  • 6
    • 0000302918 scopus 로고
    • Towards a theory of early visual processing
    • Atick J, Redlich A. 1990. Towards a theory of early visual processing. Neural Comput. 2: 308-20
    • (1990) Neural Comput. , vol.2 , pp. 308-320
    • Atick, J.1    Redlich, A.2
  • 7
    • 33745726849 scopus 로고    scopus 로고
    • Neural correlations, population coding and computation
    • Averbeck BB, Latham PE, Pouget A. 2006. Neural correlations, population coding and computation. Nat. Rev. Neurosci. 7: 358-66
    • (2006) Nat. Rev. Neurosci. , vol.7 , pp. 358-366
    • Averbeck, B.B.1    Latham, P.E.2    Pouget, A.3
  • 8
    • 84907993545 scopus 로고    scopus 로고
    • Sparseness and expansion in sensory representations
    • Babadi B, Sompolinsky H. 2014. Sparseness and expansion in sensory representations. Neuron 83: 1213-26
    • (2014) Neuron , vol.83 , pp. 1213-1226
    • Babadi, B.1    Sompolinsky, H.2
  • 9
    • 0035282992 scopus 로고    scopus 로고
    • Correlated firing in macaque visual area MT: Time scales and relationship to behavior
    • Bair W, Zohary E, Newsome WT. 2001. Correlated firing in macaque visual area MT: time scales and relationship to behavior. J. Neurosci. 21: 1676-97
    • (2001) J. Neurosci. , vol.21 , pp. 1676-1697
    • Bair, W.1    Zohary, E.2    Newsome, W.T.3
  • 10
    • 84862848229 scopus 로고    scopus 로고
    • Inter-neuronal correlation distinguishes mechanisms of direction selectivity in cortical circuit models
    • Baker PM, Bair W. 2012. Inter-neuronal correlation distinguishes mechanisms of direction selectivity in cortical circuit models. J. Neurosci. 32: 8800-16
    • (2012) J. Neurosci. , vol.32 , pp. 8800-8816
    • Baker, P.M.1    Bair, W.2
  • 11
    • 0043264798 scopus 로고    scopus 로고
    • Redundancy reduction revisited
    • Barlow H. 2001. Redundancy reduction revisited. Network 12: 241-53
    • (2001) Network , vol.12 , pp. 241-253
    • Barlow, H.1
  • 12
    • 79958260391 scopus 로고    scopus 로고
    • Insights from a simple expression for linear Fisher information in a recurrently connected population of spiking neurons
    • Beck JM, Bejjanki VR, Pouget A. 2011. Insights from a simple expression for linear Fisher information in a recurrently connected population of spiking neurons. Neural Comput. 23: 1484-502
    • (2011) Neural Comput. , vol.23 , pp. 1484-1502
    • Beck, J.M.1    Bejjanki, V.R.2    Pouget, A.3
  • 13
    • 84877784552 scopus 로고    scopus 로고
    • Complex inference in neural circuits with probabilistic population codes and topic models
    • ed. P Bartlett. Cambridge, MA: MIT Press
    • Beck JM, Heller K, Pouget A. 2012. Complex inference in neural circuits with probabilistic population codes and topic models. In Advances in Neural Information Processing Systems, Vol. 4, ed. P Bartlett, pp. 3068-76. Cambridge, MA: MIT Press
    • (2012) Advances in Neural Information Processing Systems , vol.4 , pp. 3068-3076
    • Beck, J.M.1    Heller, K.2    Pouget, A.3
  • 14
    • 84859638124 scopus 로고    scopus 로고
    • Not noisy, just wrong: The role of suboptimal inference in behavioral variability
    • Beck JM, Ma WJ, Pitkow X, Latham PE, Pouget A. 2012. Not noisy, just wrong: the role of suboptimal inference in behavioral variability. Neuron 74: 30-39
    • (2012) Neuron , vol.74 , pp. 30-39
    • Beck, J.M.1    Ma, W.J.2    Pitkow, X.3    Latham, P.E.4    Pouget, A.5
  • 15
    • 79955465698 scopus 로고    scopus 로고
    • Perceptual learning as improved probabilistic inference in early sensory areas
    • Bejjanki VR, Beck JM, Lu ZL, Pouget A. 2011. Perceptual learning as improved probabilistic inference in early sensory areas. Nat. Neurosci. 14: 642-48
    • (2011) Nat. Neurosci. , vol.14 , pp. 642-648
    • Bejjanki, V.R.1    Beck, J.M.2    Lu, Z.L.3    Pouget, A.4
  • 17
    • 78650972934 scopus 로고    scopus 로고
    • Spontaneous cortical activity reveals hallmarks of an optimal internal model of the environment
    • Berkes P, Orbán G, Lengyel M, Fiser J. 2011. Spontaneous cortical activity reveals hallmarks of an optimal internal model of the environment. Science 331: 83-87
    • (2011) Science , vol.331 , pp. 83-87
    • Berkes, P.1    Orbán, G.2    Lengyel, M.3    Fiser, J.4
  • 18
    • 0031020135 scopus 로고    scopus 로고
    • Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex
    • Bosking WH, Zhang Y, Schofield B, Fitzpatrick D. 1997. Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex. J. Neurosci. 17: 2112-27
    • (1997) J. Neurosci. , vol.17 , pp. 2112-2127
    • Bosking, W.H.1    Zhang, Y.2    Schofield, B.3    Fitzpatrick, D.4
  • 19
    • 84930446843 scopus 로고    scopus 로고
    • Role of input correlations in shaping the variability and noise correlations of evoked activity in the neocortex
    • Bujan AF, Aertsen A, Kumar A. 2015. Role of input correlations in shaping the variability and noise correlations of evoked activity in the neocortex. J. Neurosci. 35: 8611-25
    • (2015) J. Neurosci. , vol.35 , pp. 8611-8625
    • Bujan, A.F.1    Aertsen, A.2    Kumar, A.3
  • 20
    • 33646270389 scopus 로고    scopus 로고
    • Tuning curves, neuronal variability, and sensory coding
    • Butts DA, Goldman MS. 2006. Tuning curves, neuronal variability, and sensory coding. PLOS Biol. 4(4): e92
    • (2006) PLOS Biol. , vol.4 , Issue.4 , pp. e92
    • Butts, D.A.1    Goldman, M.S.2
  • 22
    • 84925311687 scopus 로고    scopus 로고
    • Coding principles of the canonical cortical microcircuit in the avian brain
    • Calabrese A, Woolley SM. 2015. Coding principles of the canonical cortical microcircuit in the avian brain. PNAS 112: 3517-22
    • (2015) PNAS , vol.112 , pp. 3517-3522
    • Calabrese, A.1    Woolley, S.M.2
  • 23
    • 79959663278 scopus 로고    scopus 로고
    • Measuring and interpreting neuronal correlations
    • Cohen MR, Kohn A. 2011. Measuring and interpreting neuronal correlations. Nat. Neurosci. 14: 811-19
    • (2011) Nat. Neurosci. , vol.14 , pp. 811-819
    • Cohen, M.R.1    Kohn, A.2
  • 24
    • 70549106847 scopus 로고    scopus 로고
    • Attention improves performance primarily by reducing interneuronal correlations
    • Cohen MR, Maunsell JH. 2009. Attention improves performance primarily by reducing interneuronal correlations. Nat. Neurosci. 12: 1594-600
    • (2009) Nat. Neurosci. , vol.12 , pp. 1594-1600
    • Cohen, M.R.1    Maunsell, J.H.2
  • 25
    • 53049100907 scopus 로고    scopus 로고
    • Context-dependent changes in functional circuitry in visual area MT
    • Cohen MR, Newsome WT. 2008. Context-dependent changes in functional circuitry in visual area MT. Neuron 60: 162-73
    • (2008) Neuron , vol.60 , pp. 162-173
    • Cohen, M.R.1    Newsome, W.T.2
  • 26
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C, Vapnik V. 1995. Support-vector networks. Mach. Learn. 20: 273-97
    • (1995) Mach. Learn. , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 27
    • 84923367237 scopus 로고    scopus 로고
    • Functional organization of excitatory synaptic strength in primary visual cortex
    • Cossell L, Iacaruso MF, Muir DR, Houlton R, Sader EN, et al. 2015. Functional organization of excitatory synaptic strength in primary visual cortex. Nature 518: 399-403
    • (2015) Nature , vol.518 , pp. 399-403
    • Cossell, L.1    Iacaruso, M.F.2    Muir, D.R.3    Houlton, R.4    Sader, E.N.5
  • 28
    • 84912108079 scopus 로고    scopus 로고
    • High-fidelity coding with correlated neurons
    • da Silveira RA, Berry MJ II. 2014. High-fidelity coding with correlated neurons. PLOS Comput. Biol. 10(11): e1003970
    • (2014) PLOS Comput. Biol. , vol.10 , Issue.11 , pp. e1003970
    • Da Silveira, R.A.1    Berry, I.I.M.J.2
  • 30
    • 0033360244 scopus 로고    scopus 로고
    • Reading population codes: A neural implementation of ideal observers
    • Deneve S, Latham PE, Pouget A. 1999. Reading population codes: A neural implementation of ideal observers. Nat. Neurosci. 2: 740-45
    • (1999) Nat. Neurosci. , vol.2 , pp. 740-745
    • Deneve, S.1    Latham, P.E.2    Pouget, A.3
  • 31
    • 84921910906 scopus 로고    scopus 로고
    • The structure of pairwise correlation in mouse primary visual cortex reveals functional organization in the absence of an orientation map
    • Denman DJ, Contreras D. 2014. The structure of pairwise correlation in mouse primary visual cortex reveals functional organization in the absence of an orientation map. Cereb. Cortex 24: 2707-20
    • (2014) Cereb. Cortex , vol.24 , pp. 2707-2720
    • Denman, D.J.1    Contreras, D.2
  • 32
    • 84856743552 scopus 로고    scopus 로고
    • Howdoes the brain solve visual object recognition?
    • DiCarlo JJ, Zoccolan D, Rust NC. 2012. Howdoes the brain solve visual object recognition? Neuron 73: 415-34
    • (2012) Neuron , vol.73 , pp. 415-434
    • DiCarlo, J.J.1    Zoccolan, D.2    Rust, N.C.3
  • 34
    • 84897427371 scopus 로고    scopus 로고
    • State dependence of noise correlations in macaque primary visual cortex
    • Ecker AS, Berens P, Cotton RJ, Subramaniyan M, Denfield GH, et al. 2014. State dependence of noise correlations in macaque primary visual cortex. Neuron 82: 235-48
    • (2014) Neuron , vol.82 , pp. 235-248
    • Ecker, A.S.1    Berens, P.2    Cotton, R.J.3    Subramaniyan, M.4    Denfield, G.H.5
  • 36
    • 80053650190 scopus 로고    scopus 로고
    • The effect of noise correlations in populations of diversely tuned neurons
    • Ecker AS, Berens P, Tolias AS, Bethge M. 2011. The effect of noise correlations in populations of diversely tuned neurons. J. Neurosci. 31: 14272-83
    • (2011) J. Neurosci. , vol.31 , pp. 14272-14283
    • Ecker, A.S.1    Berens, P.2    Tolias, A.S.3    Bethge, M.4
  • 38
    • 84655167229 scopus 로고    scopus 로고
    • Neural correlates of reliability-based cue weighting during multisensory integration
    • Fetsch CR, Pouget A, DeAngelis GC, Angelaki DE. 2011. Neural correlates of reliability-based cue weighting during multisensory integration. Nat. Neurosci. 15: 146-54
    • (2011) Nat. Neurosci. , vol.15 , pp. 146-154
    • Fetsch, C.R.1    Pouget, A.2    DeAngelis, G.C.3    Angelaki, D.E.4
  • 39
    • 76749113376 scopus 로고    scopus 로고
    • Statistically optimal perception and learning: From behavior to neural representations
    • Fiser J, Berkes P, Orbán G, Lengyel M. 2010. Statistically optimal perception and learning: from behavior to neural representations. Trends Cogn. Sci. 14: 119-30
    • (2010) Trends Cogn. Sci. , vol.14 , pp. 119-130
    • Fiser, J.1    Berkes, P.2    Orbán, G.3    Lengyel, M.4
  • 40
    • 0002657234 scopus 로고
    • The 'ideal homunculus': Statistical inference from neural population responses
    • ed. F Eeckman, J Bower. Norwell, MA: Kluwer Acad
    • Foldiak P. 1993. The 'ideal homunculus': statistical inference from neural population responses. In Computation and Neural Systems, ed. F Eeckman, J Bower, pp. 55-60. Norwell, MA: Kluwer Acad.
    • (1993) Computation and Neural Systems , pp. 55-60
    • Foldiak, P.1
  • 41
    • 84880321884 scopus 로고    scopus 로고
    • Neuronal computations in the olfactory system of zebrafish
    • Friedrich RW. 2013. Neuronal computations in the olfactory system of zebrafish. Annu. Rev. Neurosci. 36: 383-402
    • (2013) Annu. Rev. Neurosci. , vol.36 , pp. 383-402
    • Friedrich, R.W.1
  • 42
    • 0035793358 scopus 로고    scopus 로고
    • Dynamic optimization of odor representations by slow temporal patterning of mitral cell activity
    • Friedrich RW, Laurent G. 2001. Dynamic optimization of odor representations by slow temporal patterning of mitral cell activity. Science 291: 889-94
    • (2001) Science , vol.291 , pp. 889-894
    • Friedrich, R.W.1    Laurent, G.2
  • 43
    • 84907255039 scopus 로고    scopus 로고
    • Efficient sensory encoding and Bayesian inference with heterogeneous neural populations
    • GanguliD, Simoncelli EP. 2014. Efficient sensory encoding and Bayesian inference with heterogeneous neural populations. Neural Comput. 26: 2103-34
    • (2014) Neural Comput. , vol.26 , pp. 2103-2134
    • Ganguli, D.1    Simoncelli, E.P.2
  • 44
    • 84880767917 scopus 로고    scopus 로고
    • Successful reconstruction of a physiological circuit with known connectivity from spiking activity alone
    • Gerhard F, Kispersky T, Gutierrez GJ, Marder E, Kramer M, Eden U. 2013. Successful reconstruction of a physiological circuit with known connectivity from spiking activity alone. PLOS Comput. Biol. 9(7): e1003138
    • (2013) PLOS Comput. Biol. , vol.9 , Issue.7 , pp. e1003138
    • Gerhard, F.1    Kispersky, T.2    Gutierrez, G.J.3    Marder, E.4    Kramer, M.5    Eden, U.6
  • 45
    • 82955174158 scopus 로고    scopus 로고
    • Bayesian inference for generalized linear models for spiking neurons
    • Gerwinn S, Macke JH, Bethge M. 2010. Bayesian inference for generalized linear models for spiking neurons. Front. Comput. Neurosci. 4: 12
    • (2010) Front. Comput. Neurosci. , vol.4 , pp. 12
    • Gerwinn, S.1    Macke, J.H.2    Bethge, M.3
  • 46
    • 0037877795 scopus 로고
    • Theory of correlations in stochastic neural networks
    • Ginzburg II, SompolinskyH. 1994. Theory of correlations in stochastic neural networks. Phys. Rev. E. 50: 3171-91
    • (1994) Phys. Rev. E. , vol.50 , pp. 3171-3191
    • Ginzburg, I.I.1    Sompolinsky, H.2
  • 49
    • 79251595755 scopus 로고    scopus 로고
    • Decoding the activity of neuronal populations in macaque primary visual cortex
    • Graf AB, Kohn A, Jazayeri M, Movshon JA. 2011. Decoding the activity of neuronal populations in macaque primary visual cortex. Nat. Neurosci. 14: 239-45
    • (2011) Nat. Neurosci. , vol.14 , pp. 239-245
    • Graf, A.B.1    Kohn, A.2    Jazayeri, M.3    Movshon, J.A.4
  • 50
    • 84884196458 scopus 로고    scopus 로고
    • Synaptic input correlations leading to membrane potential decorrelation of spontaneous activity in cortex
    • Graupner M, Reyes AD. 2013. Synaptic input correlations leading to membrane potential decorrelation of spontaneous activity in cortex. J. Neurosci. 33: 15075-85
    • (2013) J. Neurosci. , vol.33 , pp. 15075-15085
    • Graupner, M.1    Reyes, A.D.2
  • 51
    • 80051863950 scopus 로고    scopus 로고
    • Perceptual learning reduces interneuronal correlations in macaque visual cortex
    • Gu Y, Liu S, Fetsch CR, Yang Y, Fok S, et al. 2011. Perceptual learning reduces interneuronal correlations in macaque visual cortex. Neuron 71: 750-61
    • (2011) Neuron , vol.71 , pp. 750-761
    • Gu, Y.1    Liu, S.2    Fetsch, C.R.3    Yang, Y.4    Fok, S.5
  • 52
    • 40749107504 scopus 로고    scopus 로고
    • Adaptive coding of visual information in neural populations
    • Gutnisky DA, Dragoi V. 2008. Adaptive coding of visual information in neural populations. Nature 452: 220-24
    • (2008) Nature , vol.452 , pp. 220-224
    • Gutnisky, D.A.1    Dragoi, V.2
  • 54
    • 84873080341 scopus 로고    scopus 로고
    • Inferring decoding strategies from choice probabilities in the presence of correlated variability
    • Haefner RM, Gerwinn S, Macke JH, Bethge M. 2013. Inferring decoding strategies from choice probabilities in the presence of correlated variability. Nat. Neurosci. 16: 235-42
    • (2013) Nat. Neurosci. , vol.16 , pp. 235-242
    • Haefner, R.M.1    Gerwinn, S.2    Macke, J.H.3    Bethge, M.4
  • 55
    • 84868670939 scopus 로고    scopus 로고
    • Correlated variability in laminar cortical circuits
    • Hansen BJ, ChelaruMI, Dragoi V. 2012. Correlated variability in laminar cortical circuits. Neuron 76: 590-602
    • (2012) Neuron , vol.76 , pp. 590-602
    • Hansen, B.J.1    Chelaru, M.I.2    Dragoi, V.3
  • 57
    • 84937937938 scopus 로고    scopus 로고
    • Fast sampling-based inference in balanced neuronal networks
    • ed. P Bartlett. Cambridge, MA: MIT Press
    • Hennequin G, Aitchison L, Lengyel M. 2014. Fast sampling-based inference in balanced neuronal networks. In Advances in Neural Information Processing Systems, Vol. 27, ed. P Bartlett, pp. 2240-48. Cambridge, MA: MIT Press
    • (2014) Advances in Neural Information Processing Systems , vol.27 , pp. 2240-2248
    • Hennequin, G.1    Aitchison, L.2    Lengyel, M.3
  • 58
    • 84878435673 scopus 로고    scopus 로고
    • Attention-induced variance and noise correlation reduction in macaque V1 is mediated by NMDA receptors
    • Herrero JL, Gieselmann MA, Sanayei M, Thiele A. 2013. Attention-induced variance and noise correlation reduction in macaque V1 is mediated by NMDA receptors. Neuron 78: 729-39
    • (2013) Neuron , vol.78 , pp. 729-739
    • Herrero, J.L.1    Gieselmann, M.A.2    Sanayei, M.3    Thiele, A.4
  • 59
    • 84880295816 scopus 로고    scopus 로고
    • Microcircuits for hierarchical elaboration of object coding across primate temporal areas
    • Hirabayashi T, TakeuchiD, Tamura T Miyashita Y. 2013. Microcircuits for hierarchical elaboration of object coding across primate temporal areas. Science 341: 191-95
    • (2013) Science , vol.341 , pp. 191-195
    • Hirabayashi, T.1    Takeuchi, D.2    Tamura Miyashita T, Y.3
  • 60
    • 66349086504 scopus 로고    scopus 로고
    • Noise correlations in cortical area MT and their potential impact on trial-bytrial variation in the direction and speed of smooth-pursuit eye movements
    • Huang X, Lisberger SG. 2009. Noise correlations in cortical area MT and their potential impact on trial-bytrial variation in the direction and speed of smooth-pursuit eye movements. J. Neurophysiol. 101: 3012-30
    • (2009) J. Neurophysiol. , vol.101 , pp. 3012-3030
    • Huang, X.1    Lisberger, S.G.2
  • 61
    • 33745758495 scopus 로고    scopus 로고
    • Optimal representation of sensory information by neural populations
    • Jazayeri M, Movshon JA. 2006. Optimal representation of sensory information by neural populations. Nat. Neurosci. 9: 690-96
    • (2006) Nat. Neurosci. , vol.9 , pp. 690-696
    • Jazayeri, M.1    Movshon, J.A.2
  • 62
    • 84876804414 scopus 로고    scopus 로고
    • Associative learning enhances population coding by inverting interneuronal correlation patterns
    • Jeanne JM, Sharpee TO, Gentner TQ. 2013. Associative learning enhances population coding by inverting interneuronal correlation patterns. Neuron 78: 352-63
    • (2013) Neuron , vol.78 , pp. 352-363
    • Jeanne, J.M.1    Sharpee, T.O.2    Gentner, T.Q.3
  • 64
    • 84953259398 scopus 로고    scopus 로고
    • Measuring Fisher information accurately in correlated neural populations
    • Kanitscheider I, Coen-Cagli R, Kohn A, Pouget A. 2015. Measuring Fisher information accurately in correlated neural populations. PLOS Comput. Bio. 11(6): e1004218
    • (2015) PLOS Comput. Bio. , vol.11 , Issue.6 , pp. e1004218
    • Kanitscheider, I.1    Coen-Cagli, R.2    Kohn, A.3    Pouget, A.4
  • 65
    • 84950321602 scopus 로고    scopus 로고
    • The origin of information-limiting correlations
    • Kanitscheider I, Coen-Cagli R, Pouget A. 2015. The origin of information-limiting correlations. PNAS. 112: E6973-82
    • (2015) PNAS. , vol.112 , pp. E6973-E6982
    • Kanitscheider, I.1    Coen-Cagli, R.2    Pouget, A.3
  • 66
    • 17044417268 scopus 로고    scopus 로고
    • Stimulus dependence of neuronal correlation in primary visual cortex of the macaque
    • Kohn A, Smith MA. 2005. Stimulus dependence of neuronal correlation in primary visual cortex of the macaque. J. Neurosci. 25: 3661-73
    • (2005) J. Neurosci. , vol.25 , pp. 3661-3673
    • Kohn, A.1    Smith, M.A.2
  • 67
    • 69449095354 scopus 로고    scopus 로고
    • Correlations and brain states: From electrophysiology to functional imaging
    • Kohn A, Zandvakili A, Smith MA. 2009. Correlations and brain states: from electrophysiology to functional imaging. Curr. Opin. Neurobiol. 19: 434-38
    • (2009) Curr. Opin. Neurobiol. , vol.19 , pp. 434-438
    • Kohn, A.1    Zandvakili, A.2    Smith, M.A.3
  • 68
    • 77951623793 scopus 로고    scopus 로고
    • Learning-related fine-scale specificity imaged in motor cortex circuits of behaving mice
    • Komiyama T, Sato TR, O'ConnorDH, ZhangYX, HuberD, et al. 2010. Learning-related fine-scale specificity imaged in motor cortex circuits of behaving mice. Nature 464: 1182-86
    • (2010) Nature , vol.464 , pp. 1182-1186
    • Komiyama, T.1    Sato, T.R.2    O'Connor, D.H.3    Zhang, Y.X.4    Huber, D.5
  • 69
    • 77955979385 scopus 로고    scopus 로고
    • Spiking activity propagation in neuronal networks: Reconciling different perspectives on neural coding
    • Kumar A, Rotter S, Aertsen A. 2010. Spiking activity propagation in neuronal networks: reconciling different perspectives on neural coding. Nat. Rev. Neurosci. 11: 615-27
    • (2010) Nat. Rev. Neurosci. , vol.11 , pp. 615-627
    • Kumar, A.1    Rotter, S.2    Aertsen, A.3
  • 70
    • 84938740146 scopus 로고    scopus 로고
    • The nature of shared cortical variability
    • Lin IC, Okun M, Carandini M, Harris KD. 2015. The nature of shared cortical variability. Neuron 87: 644-56
    • (2015) Neuron , vol.87 , pp. 644-656
    • Lin, I.C.1    Okun, M.2    Carandini, M.3    Harris, K.D.4
  • 71
    • 0037387041 scopus 로고    scopus 로고
    • On the transmission of rate code in long feedforward networks with excitatory-inhibitory balance
    • Litvak V, Sompolinsky H, Segev I, Abeles M. 2003. On the transmission of rate code in long feedforward networks with excitatory-inhibitory balance. J. Neurosci. 23: 3006-15
    • (2003) J. Neurosci. , vol.23 , pp. 3006-3015
    • Litvak, V.1    Sompolinsky, H.2    Segev, I.3    Abeles, M.4
  • 72
    • 84868159004 scopus 로고    scopus 로고
    • Slow dynamics and high variability in balanced cortical networks with clustered connections
    • Litwin-Kumar A, Doiron B. 2012. Slow dynamics and high variability in balanced cortical networks with clustered connections. Nat. Neurosci. 15: 1498-1505
    • (2012) Nat. Neurosci. , vol.15 , pp. 1498-1505
    • Litwin-Kumar, A.1    Doiron, B.2
  • 73
    • 33750437292 scopus 로고    scopus 로고
    • Bayesian inference with probabilistic population codes
    • Ma WJ, Beck JM, Latham PE, Pouget A. 2006. Bayesian inference with probabilistic population codes. Nat. Neurosci. 9: 1432-38
    • (2006) Nat. Neurosci. , vol.9 , pp. 1432-1438
    • Ma, W.J.1    Beck, J.M.2    Latham, P.E.3    Pouget, A.4
  • 74
    • 84876550551 scopus 로고    scopus 로고
    • Functional heterogeneity in neighboring neurons of cat primary visual cortex in response to both artificial and natural stimuli
    • Martin KA, Schroder S. 2013. Functional heterogeneity in neighboring neurons of cat primary visual cortex in response to both artificial and natural stimuli. J. Neurosci. 33: 7325-44
    • (2013) J. Neurosci. , vol.33 , pp. 7325-7344
    • Martin, K.A.1    Schroder, S.2
  • 75
    • 79951556711 scopus 로고    scopus 로고
    • Statistical technique for analysing functional connectivity of multiple spike trains
    • Masud MS, Borisyuk R. 2011. Statistical technique for analysing functional connectivity of multiple spike trains. J. Neurosci. Methods 196: 201-19
    • (2011) J. Neurosci. Methods , vol.196 , pp. 201-219
    • Masud, M.S.1    Borisyuk, R.2
  • 76
  • 77
    • 70349086073 scopus 로고    scopus 로고
    • Spatial attention decorrelates intrinsic activity fluctuations in macaque area V4
    • Mitchell JF, Sundberg KA, Reynolds JH. 2009. Spatial attention decorrelates intrinsic activity fluctuations in macaque area V4. Neuron 63: 879-88
    • (2009) Neuron , vol.63 , pp. 879-888
    • Mitchell, J.F.1    Sundberg, K.A.2    Reynolds, J.H.3
  • 80
    • 84862647308 scopus 로고    scopus 로고
    • Decision-related activity in sensory neurons: Correlations among neurons and with behavior
    • Nienborg H, Cohen MR, Cumming BG. 2012. Decision-related activity in sensory neurons: correlations among neurons and with behavior. Annu. Rev. Neurosci. 35: 463-83
    • (2012) Annu. Rev. Neurosci. , vol.35 , pp. 463-483
    • Nienborg, H.1    Cohen, M.R.2    Cumming, B.G.3
  • 82
    • 23044490853 scopus 로고    scopus 로고
    • Analyzing functional connectivity using a network likelihood model of ensemble neural spiking activity
    • Okatan M, Wilson MA, Brown EN. 2005. Analyzing functional connectivity using a network likelihood model of ensemble neural spiking activity. Neural Comput. 17: 1927-61
    • (2005) Neural Comput. , vol.17 , pp. 1927-1961
    • Okatan, M.1    Wilson, M.A.2    Brown, E.N.3
  • 83
    • 84929945957 scopus 로고    scopus 로고
    • Diverse coupling of neurons to populations in sensory cortex
    • Okun M, SteinmetzNA, Cossell L, IacarusoMF, Ko H, et al. 2015. Diverse coupling of neurons to populations in sensory cortex. Nature 521: 511-15
    • (2015) Nature , vol.521 , pp. 511-515
    • Okun, M.1    Steinmetz, N.A.2    Cossell, L.3    Iacaruso, M.F.4    Ko, H.5
  • 84
    • 84897033914 scopus 로고    scopus 로고
    • Two types of asynchronous activity in networks of excitatory and inhibitory spiking neurons
    • Ostojic S. 2014. Two types of asynchronous activity in networks of excitatory and inhibitory spiking neurons. Nat. Neurosci. 17: 594-600
    • (2014) Nat. Neurosci. , vol.17 , pp. 594-600
    • Ostojic, S.1
  • 85
    • 69049105412 scopus 로고    scopus 로고
    • How connectivity, background activity, and synaptic properties shape the cross-correlation between spike trains
    • Ostojic S, Brunel N, Hakim V. 2009. How connectivity, background activity, and synaptic properties shape the cross-correlation between spike trains. J. Neurosci. 29: 10234-53
    • (2009) J. Neurosci. , vol.29 , pp. 10234-10253
    • Ostojic, S.1    Brunel, N.2    Hakim, V.3
  • 86
    • 84922353570 scopus 로고    scopus 로고
    • State-dependent population coding in primary auditory cortex
    • Pachitariu M, Lyamzin DR, Sahani M, Lesica NA. 2015. State-dependent population coding in primary auditory cortex. J. Neurosci. 35: 2058-73
    • (2015) J. Neurosci. , vol.35 , pp. 2058-2073
    • Pachitariu, M.1    Lyamzin, D.R.2    Sahani, M.3    Lesica, N.A.4
  • 87
    • 0023876432 scopus 로고
    • Atheory for the use of visual orientation information which exploits the columnar structure of striate cortex
    • Paradiso MA. 1988. Atheory for the use of visual orientation information which exploits the columnar structure of striate cortex. Biol. Cybern. 58: 35-49
    • (1988) Biol. Cybern. , vol.58 , pp. 35-49
    • Paradiso, M.A.1
  • 88
    • 50049100348 scopus 로고    scopus 로고
    • Spatio-temporal correlations and visual signalling in a complete neuronal population
    • Pillow JW, Shlens J, Paninski L, Sher A, Litke AM, et al. 2008. Spatio-temporal correlations and visual signalling in a complete neuronal population. Nature 454: 995-99
    • (2008) Nature , vol.454 , pp. 995-999
    • Pillow, J.W.1    Shlens, J.2    Paninski, L.3    Sher, A.4    Litke, A.M.5
  • 91
    • 0034329021 scopus 로고    scopus 로고
    • Information processing with population codes
    • Pouget A, Dayan P, Zemel R. 2000. Information processing with population codes. Nat. Rev. Neurosci. 1: 125-32
    • (2000) Nat. Rev. Neurosci. , vol.1 , pp. 125-132
    • Pouget, A.1    Dayan, P.2    Zemel, R.3
  • 92
    • 0040972289 scopus 로고
    • Connectionist model of orientation identification
    • Pouget A, Thorpe S. 1991. Connectionist model of orientation identification. Connect. Sci. 3: 127-42
    • (1991) Connect. Sci. , vol.3 , pp. 127-142
    • Pouget, A.1    Thorpe, S.2
  • 93
    • 49649123252 scopus 로고    scopus 로고
    • Internal brain state regulates membrane potential synchrony in barrel cortex of behaving mice
    • Poulet JF, Petersen CC. 2008. Internal brain state regulates membrane potential synchrony in barrel cortex of behaving mice. Nature 454: 881-85
    • (2008) Nature , vol.454 , pp. 881-885
    • Poulet, J.F.1    Petersen, C.C.2
  • 94
    • 84957829411 scopus 로고    scopus 로고
    • Attention stabilizes the shared gain of V4 populations
    • Rabinowitz NC, Goris RL, Cohen M, Simoncelli EP. 2015. Attention stabilizes the shared gain of V4 populations. eLife 2(4): e08998
    • (2015) ELife , vol.2 , Issue.4 , pp. e08998
    • Rabinowitz, N.C.1    Goris, R.L.2    Cohen, M.3    Simoncelli, E.P.4
  • 95
    • 84873041867 scopus 로고    scopus 로고
    • Top-down modulation of lateral interactions in visual cortex
    • Ramalingam N, McManus JNJ, Li W, Gilbert CD. 2013. Top-down modulation of lateral interactions in visual cortex. J. Neurosci. 33: 1773-89
    • (2013) J. Neurosci. , vol.33 , pp. 1773-1789
    • Ramalingam, N.1    McManus, J.N.J.2    Li, W.3    Gilbert, C.D.4
  • 96
    • 79951839888 scopus 로고    scopus 로고
    • Statistical comparison of spike responses to natural stimuli in monkey area V1 with simulated responses of a detailed laminar network model for a patch of V1
    • Rasch MJ, Schuch K, Logothetis NK, Maass W. 2011. Statistical comparison of spike responses to natural stimuli in monkey area V1 with simulated responses of a detailed laminar network model for a patch of V1. J. Neurophysiol. 105: 757-78
    • (2011) J. Neurophysiol. , vol.105 , pp. 757-778
    • Rasch, M.J.1    Schuch, K.2    Logothetis, N.K.3    Maass, W.4
  • 97
    • 0028804778 scopus 로고
    • Specificity of monosynaptic connections from thalamus to visual cortex
    • Reid RC, Alonso JM. 1995. Specificity of monosynaptic connections from thalamus to visual cortex. Nature 378: 281-84
    • (1995) Nature , vol.378 , pp. 281-284
    • Reid, R.C.1    Alonso, J.M.2
  • 99
    • 84856381794 scopus 로고    scopus 로고
    • Transmission of population-coded information
    • Renart A, van RossumMC. 2012. Transmission of population-coded information. Neural Comput. 24: 391-407
    • (2012) Neural Comput. , vol.24 , pp. 391-407
    • Renart, A.1    Van Rossum, M.C.2
  • 100
    • 0002109138 scopus 로고
    • A theory of Pavlovian conditioning: The effectiveness of reinforcement and non-reinforcement
    • ed. AH Black, WF Prokasy. New York: Appleton-Century-Crofts
    • Rescorla RA, Wagner AR. 1972. A theory of Pavlovian conditioning: the effectiveness of reinforcement and non-reinforcement. In Classical Conditioning II: Current Research and Theory, ed. AH Black, WF Prokasy, pp. 64-69. New York: Appleton-Century-Crofts
    • (1972) Classical Conditioning II: Current Research and Theory , pp. 64-69
    • Rescorla, R.A.1    Wagner, A.R.2
  • 101
    • 4344581624 scopus 로고    scopus 로고
    • Synchrony and covariation of firing rates in the primary visual cortex during contour grouping
    • Roelfsema PR, Lamme VA, SpekreijseH. 2004. Synchrony and covariation of firing rates in the primary visual cortex during contour grouping. Nat. Neurosci. 7: 982-91
    • (2004) Nat. Neurosci. , vol.7 , pp. 982-991
    • Roelfsema, P.R.1    Lamme, V.A.2    Spekreijse, H.3
  • 102
    • 84908498429 scopus 로고    scopus 로고
    • Attention can either increase or decrease spike count correlations in visual cortex
    • Ruff DA, CohenMR. 2014. Attention can either increase or decrease spike count correlations in visual cortex. Nat. Neurosci. 17: 1591-97
    • (2014) Nat. Neurosci. , vol.17 , pp. 1591-1597
    • Ruff, D.A.1    Cohen, M.R.2
  • 103
    • 0028457488 scopus 로고
    • Vector reconstruction from firing rates
    • Salinas E, Abbott LF. 1994. Vector reconstruction from firing rates. J. Comput. Neurosci. 1: 89-107
    • (1994) J. Comput. Neurosci. , vol.1 , pp. 89-107
    • Salinas, E.1    Abbott, L.F.2
  • 104
    • 0034663013 scopus 로고    scopus 로고
    • Impact of correlated synaptic input on output firing rate and variability in simple neuronal models
    • Salinas E, Sejnowski TJ. 2000. Impact of correlated synaptic input on output firing rate and variability in simple neuronal models. J. Neurosci. 20: 6193-6209
    • (2000) J. Neurosci. , vol.20 , pp. 6193-6209
    • Salinas, E.1    Sejnowski, T.J.2
  • 105
    • 0029992583 scopus 로고    scopus 로고
    • Probability density estimation for the interpretation of neural population codes
    • Sanger T. 1996. Probability density estimation for the interpretation of neural population codes. J. Neurophys. 76: 2790-2793
    • (1996) J. Neurophys. , vol.76 , pp. 2790-2793
    • Sanger, T.1
  • 106
    • 84864313554 scopus 로고    scopus 로고
    • Traveling waves in visual cortex
    • Sato TK, Nauhaus I, Carandini M. 2012. Traveling waves in visual cortex. Neuron 75: 218-29
    • (2012) Neuron , vol.75 , pp. 218-229
    • Sato, T.K.1    Nauhaus, I.2    Carandini, M.3
  • 107
    • 33646170322 scopus 로고    scopus 로고
    • Weak pairwise correlations imply strongly correlated network states in a neural population
    • Schneidman E, Berry MJ II, Segev R, BialekW. 2006. Weak pairwise correlations imply strongly correlated network states in a neural population. Nature 440: 1007-12
    • (2006) Nature , vol.440 , pp. 1007-1012
    • Schneidman, E.1    Berry, M.J.2    Segev, R.3    Bialek, W.4
  • 109
    • 16544371162 scopus 로고    scopus 로고
    • Tuning curve sharpening for orientation selectivity: Coding efficiency and the impact of correlations
    • Seriès P, Latham PE, Pouget A. 2004. Tuning curve sharpening for orientation selectivity: coding efficiency and the impact of correlations. Nat. Neurosci. 7: 1129-35
    • (2004) Nat. Neurosci. , vol.7 , pp. 1129-1135
    • Seriès, P.1    Latham, P.E.2    Pouget, A.3
  • 110
    • 0027332068 scopus 로고
    • Simple models for reading neuronal population codes
    • Seung HS, Sompolinsky H. 1993. Simple models for reading neuronal population codes. PNAS 90: 10749-53
    • (1993) PNAS , vol.90 , pp. 10749-10753
    • Seung, H.S.1    Sompolinsky, H.2
  • 111
    • 0032525177 scopus 로고    scopus 로고
    • The variable discharge of cortical neurons: Implications for connectivity, computation, and information coding
    • Shadlen MN, Newsome WT. 1998. The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J. Neurosci. 18: 3870-96
    • (1998) J. Neurosci. , vol.18 , pp. 3870-3896
    • Shadlen, M.N.1    Newsome, W.T.2
  • 112
  • 113
    • 33745808854 scopus 로고    scopus 로고
    • Implications of neuronal diversity on population coding
    • Shamir M, Sompolinsky H. 2006. Implications of neuronal diversity on population coding. Neural Comput. 18: 1951-86
    • (2006) Neural Comput. , vol.18 , pp. 1951-1986
    • Shamir, M.1    Sompolinsky, H.2
  • 114
    • 0034934777 scopus 로고    scopus 로고
    • Natural image statistics and neural representation
    • Simoncelli EP, Olshausen BA. 2001. Natural image statistics and neural representation. Annu. Rev. Neurosci. 24: 1193-1216
    • (2001) Annu. Rev. Neurosci. , vol.24 , pp. 1193-1216
    • Simoncelli, E.P.1    Olshausen, B.A.2
  • 115
    • 84874074859 scopus 로고    scopus 로고
    • Laminar dependence of neuronal correlations in visual cortex
    • SmithMA, Jia X, Zandvakili A, Kohn A. 2013. Laminar dependence of neuronal correlations in visual cortex. J. Neurophysiol. 109: 940-47
    • (2013) J. Neurophysiol. , vol.109 , pp. 940-947
    • Smith, M.A.1    Jia, X.2    Zandvakili, A.3    Kohn, A.4
  • 116
    • 58149393855 scopus 로고    scopus 로고
    • Spatial and temporal scales of neuronal correlation in primary visual cortex
    • Smith MA, Kohn A. 2008. Spatial and temporal scales of neuronal correlation in primary visual cortex. J. Neurosci. 28: 12591-603
    • (2008) J. Neurosci. , vol.28 , pp. 12591-12603
    • Smith, M.A.1    Kohn, A.2
  • 117
    • 84877093214 scopus 로고    scopus 로고
    • Spatial and temporal scales of neuronal correlation in visual areaV4
    • SmithMA, SommerMA. 2013. Spatial and temporal scales of neuronal correlation in visual areaV4. J. Neurosci. 33: 5422-32
    • (2013) J. Neurosci. , vol.33 , pp. 5422-5432
    • Smith, M.A.1    Sommer, M.A.2
  • 118
    • 84973426939 scopus 로고    scopus 로고
    • Local and global correlations between neurons in the middle temporal area of primate visual cortex
    • Solomon SS, Chen SC, Morley JW, Solomon SG. 2014. Local and global correlations between neurons in the middle temporal area of primate visual cortex. Cereb. Cortex 25: 3182-96
    • (2014) Cereb. Cortex , vol.25 , pp. 3182-3196
    • Solomon, S.S.1    Chen, S.C.2    Morley, J.W.3    Solomon, S.G.4
  • 119
    • 0035510409 scopus 로고    scopus 로고
    • Population coding in neuronal systems with correlated noise
    • Sompolinsky H, Yoon H, Kang K, Shamir M. 2001. Population coding in neuronal systems with correlated noise. Phys. Rev. E. 64: 051904
    • (2001) Phys. Rev. E. , vol.64 , pp. 051904
    • Sompolinsky, H.1    Yoon, H.2    Kang, K.3    Shamir, M.4
  • 120
    • 18044383304 scopus 로고    scopus 로고
    • Highly nonrandom features of synaptic connectivity in local cortical circuits
    • Song S, Söström PJ, Reigl M, Nelson S, Chklovskii DB. 2005. Highly nonrandom features of synaptic connectivity in local cortical circuits. PLOS Biol. 3(3): e68
    • (2005) PLOS Biol. , vol.3 , Issue.3 , pp. e68
    • Song, S.1    Sjöström, P.J.2    Reigl, M.3    Nelson, S.4    Chklovskii, D.B.5
  • 122
    • 84899950089 scopus 로고    scopus 로고
    • Sensory stimulation shifts visual cortex from synchronous to asynchronous states
    • Tan AY, Chen Y, Scholl B, Seidemann E, Priebe NJ. 2014. Sensory stimulation shifts visual cortex from synchronous to asynchronous states. Nature 509: 226-29
    • (2014) Nature , vol.509 , pp. 226-229
    • Tan, A.Y.1    Chen, Y.2    Scholl, B.3    Seidemann, E.4    Priebe, N.J.5
  • 123
    • 0020563088 scopus 로고
    • The statistical reliability of signals in single neurons in cat and monkey visual cortex
    • Tolhurst DJ, Movshon JA, Dean AF. 1983. The statistical reliability of signals in single neurons in cat and monkey visual cortex. Vis. Res. 23: 775-85
    • (1983) Vis. Res. , vol.23 , pp. 775-785
    • Tolhurst, D.J.1    Movshon, J.A.2    Dean, A.F.3
  • 124
    • 0029835892 scopus 로고    scopus 로고
    • Chaos in neuronal networks with balanced excitatory and inhibitory activity
    • van Vreeswijk C, Sompolinsky H. 1996. Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science 274: 1724-26
    • (1996) Science , vol.274 , pp. 1724-1726
    • Van Vreeswijk, C.1    Sompolinsky, H.2
  • 125
    • 28044448948 scopus 로고    scopus 로고
    • Signal propagation and logic gating in networks of integrate-and-fire neurons
    • Vogels TP, Abbott LF. 2005. Signal propagation and logic gating in networks of integrate-and-fire neurons. J. Neurosci. 25: 10786-95
    • (2005) J. Neurosci. , vol.25 , pp. 10786-10795
    • Vogels, T.P.1    Abbott, L.F.2
  • 128
    • 0036134418 scopus 로고    scopus 로고
    • Representational accuracy of stochastic neural populations
    • Wilke SD, Eurich CW. 2002. Representational accuracy of stochastic neural populations. Neural Comput. 14: 155-89
    • (2002) Neural Comput. , vol.14 , pp. 155-189
    • Wilke, S.D.1    Eurich, C.W.2
  • 129
    • 84933586365 scopus 로고    scopus 로고
    • Sensory integration dynamics in a hierarchical network explains choice probabilities in cortical area MT
    • Wimmer K, Compte A, Roxin A, Peixoto D, Renart A, de la Rocha J. 2015. Sensory integration dynamics in a hierarchical network explains choice probabilities in cortical area MT. Nat. Commun. 6: 6177
    • (2015) Nat. Commun. , vol.6 , pp. 6177
    • Wimmer, K.1    Compte, A.2    Roxin, A.3    Peixoto, D.4    Renart, A.5    De La Rocha, J.6
  • 130
    • 0035319119 scopus 로고    scopus 로고
    • Population coding with correlation and an unfaithful model
    • Wu S, Nakahara H, Amari S. 2001. Population coding with correlation and an unfaithful model. Neural Comput. 13: 775-97
    • (2001) Neural Comput. , vol.13 , pp. 775-797
    • Wu, S.1    Nakahara, H.2    Amari, S.3
  • 131
    • 14544308338 scopus 로고    scopus 로고
    • Excitatory cortical neurons form fine-scale functional networks
    • Yoshimura Y, Dantzker JLM, Callaway EM. 2005. Excitatory cortical neurons form fine-scale functional networks. Nature 433: 868-73
    • (2005) Nature , vol.433 , pp. 868-873
    • Yoshimura, Y.1    Dantzker, J.L.M.2    Callaway, E.M.3
  • 133
    • 84888211890 scopus 로고    scopus 로고
    • Functional coupling from simple to complex cells in the visually driven cortical circuit
    • Yu J, Ferster D. 2013. Functional coupling from simple to complex cells in the visually driven cortical circuit. J. Neurosci. 33: 18855-66
    • (2013) J. Neurosci. , vol.33 , pp. 18855-18866
    • Yu, J.1    Ferster, D.2
  • 134
    • 84939482107 scopus 로고    scopus 로고
    • Coordinated neuronal activity enhances corticocortical communication
    • Zandvakili A, Kohn A. 2015. Coordinated neuronal activity enhances corticocortical communication. Neuron 87: 827-39
    • (2015) Neuron , vol.87 , pp. 827-839
    • Zandvakili, A.1    Kohn, A.2
  • 135
    • 0028290996 scopus 로고
    • Correlated neuronal discharge rate and its implications for psychophysical performance
    • Zohary E, Shadlen MN, Newsome WT. 1994. Correlated neuronal discharge rate and its implications for psychophysical performance. Nature 370: 140-43
    • (1994) Nature , vol.370 , pp. 140-143
    • Zohary, E.1    Shadlen, M.N.2    Newsome, W.T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.