메뉴 건너뛰기




Volumn 196, Issue 1, 2011, Pages 201-219

Statistical technique for analysing functional connectivity of multiple spike trains

Author keywords

Conditional likelihood; Cox method; Hazard function; Modulated renewal process

Indexed keywords

ARTICLE; CONFIDENCE INTERVAL; CORRELATION ANALYSIS; INTERMETHOD COMPARISON; METHODOLOGY; NERVE CELL; NERVE CELL NETWORK; PRIORITY JOURNAL; PROBABILITY; PROPORTIONAL HAZARDS MODEL; STATISTICAL ANALYSIS; STATISTICAL MODEL;

EID: 79951556711     PISSN: 01650270     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jneumeth.2011.01.003     Document Type: Article
Times cited : (37)

References (49)
  • 1
    • 0024599599 scopus 로고
    • Dynamics of neuronal firing correlation: modulation of effective connectivity
    • Aertsen A.M.H.J., Gerstein G.L., Habib M.K., Palm G. Dynamics of neuronal firing correlation: modulation of effective connectivity. J Neurophysiol 1989, 61:900-917.
    • (1989) J Neurophysiol , vol.61 , pp. 900-917
    • Aertsen, A.M.H.J.1    Gerstein, G.L.2    Habib, M.K.3    Palm, G.4
  • 3
    • 34247512449 scopus 로고    scopus 로고
    • Spatially organized spike correlation in cat visual cortex
    • Berger D., Warren D., Normann R., Arieli A., Grun S. Spatially organized spike correlation in cat visual cortex. Neurocomputing 2007, 70:2112-2116.
    • (2007) Neurocomputing , vol.70 , pp. 2112-2116
    • Berger, D.1    Warren, D.2    Normann, R.3    Arieli, A.4    Grun, S.5
  • 4
    • 77953507339 scopus 로고    scopus 로고
    • Efficient identification of assembly neurons within massively parallel spike trains
    • Berger D., Borgelt C., Louis S., Morrison A., Grun S. Efficient identification of assembly neurons within massively parallel spike trains. Comput Intell Neurosci 2010, 1-18.
    • (2010) Comput Intell Neurosci , pp. 1-18
    • Berger, D.1    Borgelt, C.2    Louis, S.3    Morrison, A.4    Grun, S.5
  • 5
    • 0022362777 scopus 로고
    • A new statistical method for identifying interconnections between neuronal network elements
    • Borisyuk G.N., Borisyuk R.M., Kirillov A.B., Kovalenko E.I., Kryukov V.I. A new statistical method for identifying interconnections between neuronal network elements. Biol Cybern 1985, 52:301-306.
    • (1985) Biol Cybern , vol.52 , pp. 301-306
    • Borisyuk, G.N.1    Borisyuk, R.M.2    Kirillov, A.B.3    Kovalenko, E.I.4    Kryukov, V.I.5
  • 6
    • 0036812477 scopus 로고    scopus 로고
    • Oscillatory activity in the neural networks of spiking elements
    • Borisyuk R. Oscillatory activity in the neural networks of spiking elements. BioSystems 2002, 67:3-16.
    • (2002) BioSystems , vol.67 , pp. 3-16
    • Borisyuk, R.1
  • 9
    • 0000040173 scopus 로고
    • The identification of point process systems
    • Brillinger D.R. The identification of point process systems. Ann Probab 1975, 3:909-929.
    • (1975) Ann Probab , vol.3 , pp. 909-929
    • Brillinger, D.R.1
  • 10
    • 0003281213 scopus 로고
    • Estimation of the second-order intensities of a bivariate stationary point process
    • Brillinger D.R. Estimation of the second-order intensities of a bivariate stationary point process. J R Stat Soc B 1976, 38:60-66.
    • (1976) J R Stat Soc B , vol.38 , pp. 60-66
    • Brillinger, D.R.1
  • 11
    • 0017159134 scopus 로고
    • Identification of synaptic interactions
    • Brillinger D.R. Identification of synaptic interactions. Biol Cybern 1976, 22:213-228.
    • (1976) Biol Cybern , vol.22 , pp. 213-228
    • Brillinger, D.R.1
  • 12
    • 0003000006 scopus 로고
    • Measuring the association of point process: a case history
    • Brillinger D.R. Measuring the association of point process: a case history. Am Math Monthly 1976, 83(1):16-22.
    • (1976) Am Math Monthly , vol.83 , Issue.1 , pp. 16-22
    • Brillinger, D.R.1
  • 13
    • 0023686914 scopus 로고
    • Maximum likelihood analysis of spike trains of interacting nerve cells
    • Brillinger D.R. Maximum likelihood analysis of spike trains of interacting nerve cells. Biol Cybern 1988, 59:189-200.
    • (1988) Biol Cybern , vol.59 , pp. 189-200
    • Brillinger, D.R.1
  • 14
    • 0000059288 scopus 로고
    • Nerve cell spike train data analysis: a progression of technique
    • Brillinger D.R. Nerve cell spike train data analysis: a progression of technique. J Am Stat Assoc 1992, 87:260-271.
    • (1992) J Am Stat Assoc , vol.87 , pp. 260-271
    • Brillinger, D.R.1
  • 15
    • 2142765521 scopus 로고    scopus 로고
    • Multiple neural spike train data analysis: state-of-the-art and future challenges
    • Brown E.N., Kass R.E., Mitra P.P. Multiple neural spike train data analysis: state-of-the-art and future challenges. Nat Neurosci 2004, 7:456-461.
    • (2004) Nat Neurosci , vol.7 , pp. 456-461
    • Brown, E.N.1    Kass, R.E.2    Mitra, P.P.3
  • 16
    • 0023688346 scopus 로고
    • Maximum likelihood identification of neuronal point process systems
    • Chornoboy E.S., Schramm L.P., Karr A.F. Maximum likelihood identification of neuronal point process systems. Biol Cybern 1988, 59:265-275.
    • (1988) Biol Cybern , vol.59 , pp. 265-275
    • Chornoboy, E.S.1    Schramm, L.P.2    Karr, A.F.3
  • 18
    • 0002677308 scopus 로고
    • The statistical analysis of dependencies in point processes
    • Willey, New York, P.A. Lewis (Ed.)
    • Cox D.R. The statistical analysis of dependencies in point processes. Stochastic point processes 1972, 55-66. Willey, New York. P.A. Lewis (Ed.).
    • (1972) Stochastic point processes , pp. 55-66
    • Cox, D.R.1
  • 20
    • 65249090828 scopus 로고    scopus 로고
    • Identifying functional connectivity in large-scale neural ensemble recordings: a multiscale data mining approach
    • Eldawlatly S., Jin R., Oweiss K.G. Identifying functional connectivity in large-scale neural ensemble recordings: a multiscale data mining approach. Neural Comput 2009, 21:450-477.
    • (2009) Neural Comput , vol.21 , pp. 450-477
    • Eldawlatly, S.1    Jin, R.2    Oweiss, K.G.3
  • 21
    • 0014680923 scopus 로고
    • Simultaneously recorded trains of action potentials: analysis and functional interpretation
    • Gerstein G.L., Perkel D.H. Simultaneously recorded trains of action potentials: analysis and functional interpretation. Science 1969, 164:828-830.
    • (1969) Science , vol.164 , pp. 828-830
    • Gerstein, G.L.1    Perkel, D.H.2
  • 22
    • 0015332584 scopus 로고
    • Mutual temporal relationships among neuronal spike trains: statistical techniques for display and analysis
    • Gerstein G.L., Perkel D.H. Mutual temporal relationships among neuronal spike trains: statistical techniques for display and analysis. Biophys J 1972, 12:453-473.
    • (1972) Biophys J , vol.12 , pp. 453-473
    • Gerstein, G.L.1    Perkel, D.H.2
  • 25
    • 33747272940 scopus 로고    scopus 로고
    • The parameters of the stochastic leaky integrate-and-fire neuronal model
    • Lansky P., Sanda P., He J. The parameters of the stochastic leaky integrate-and-fire neuronal model. J Comput Neurosci 2006, 21:211-223.
    • (2006) J Comput Neurosci , vol.21 , pp. 211-223
    • Lansky, P.1    Sanda, P.2    He, J.3
  • 26
    • 77953812749 scopus 로고    scopus 로고
    • Surrogate spike train generation through dithering in operational time
    • Louis S., Gerstein G.L., Grun S., Diesmann M. Surrogate spike train generation through dithering in operational time. Front Comput Neurosci 2010, 4:127.
    • (2010) Front Comput Neurosci , vol.4 , pp. 127
    • Louis, S.1    Gerstein, G.L.2    Grun, S.3    Diesmann, M.4
  • 27
    • 81055138698 scopus 로고    scopus 로고
    • Generation and selection of surrogate methods for correlation analysis
    • Springer Verlag, S. Grun, S. Rotter (Eds.) Analysis of parallel spike trains
    • Louis S., Borgelt C., Grun S. Generation and selection of surrogate methods for correlation analysis. Springer series in computational neuroscience 2010, vol. 7:359-382. Springer Verlag. S. Grun, S. Rotter (Eds.).
    • (2010) Springer series in computational neuroscience , vol.7 , pp. 359-382
    • Louis, S.1    Borgelt, C.2    Grun, S.3
  • 28
    • 0029317916 scopus 로고
    • Detecting higher-order interactions among the spiking events in a group of neurons
    • Martignon L., von Hasseln H., Grun S., Aertsen A., Palm G. Detecting higher-order interactions among the spiking events in a group of neurons. Biol Cybern 1995, 73:69-81.
    • (1995) Biol Cybern , vol.73 , pp. 69-81
    • Martignon, L.1    von Hasseln, H.2    Grun, S.3    Aertsen, A.4    Palm, G.5
  • 29
    • 0034324119 scopus 로고    scopus 로고
    • Neural coding: higher-order temporal patterns in the neurostatistics of cell assemblies
    • Martignon L., Deco G., Laskey K., Diamond M., Freiwald W., Vaadia E. Neural coding: higher-order temporal patterns in the neurostatistics of cell assemblies. Neural Comput 2000, 12:2621-2653.
    • (2000) Neural Comput , vol.12 , pp. 2621-2653
    • Martignon, L.1    Deco, G.2    Laskey, K.3    Diamond, M.4    Freiwald, W.5    Vaadia, E.6
  • 30
    • 41249095433 scopus 로고    scopus 로고
    • Parameter estimation for a leaky integrate-and-fire neuronal model from ISI data
    • Mullowney P., Iyengar S. Parameter estimation for a leaky integrate-and-fire neuronal model from ISI data. J Comput Neurosci 2008, 24:179-194.
    • (2008) J Comput Neurosci , vol.24 , pp. 179-194
    • Mullowney, P.1    Iyengar, S.2
  • 31
    • 23044490853 scopus 로고    scopus 로고
    • Analyzing functional connectivity using a network likelihood model of ensemble neural spiking activity
    • Okatan M., Wilson M.A., Brown E.N. Analyzing functional connectivity using a network likelihood model of ensemble neural spiking activity. Neural Comput 2005, 17:1927-1961.
    • (2005) Neural Comput , vol.17 , pp. 1927-1961
    • Okatan, M.1    Wilson, M.A.2    Brown, E.N.3
  • 33
    • 34848820532 scopus 로고    scopus 로고
    • Lewi Statistical models for neural encoding, decoding, and optimal stimulus design
    • Paninski L., Pillow J., Lewi Statistical models for neural encoding, decoding, and optimal stimulus design. Prog Brain Res 2007, 165:493-508.
    • (2007) Prog Brain Res , vol.165 , pp. 493-508
    • Paninski, L.1    Pillow, J.2
  • 34
    • 9744274025 scopus 로고    scopus 로고
    • Maximum likelihood estimation of cascade point process neural encoding model
    • Paninski L. Maximum likelihood estimation of cascade point process neural encoding model. Network: Comput Neural Syst 2004, 15:243-262.
    • (2004) Network: Comput Neural Syst , vol.15 , pp. 243-262
    • Paninski, L.1
  • 35
    • 0017227520 scopus 로고
    • A computer program for simulating a network of interacting neurons. I. Organization and physiological assumptions
    • Perkel D.H. A computer program for simulating a network of interacting neurons. I. Organization and physiological assumptions. Comput Biomed Res 1976, 9:31-43.
    • (1976) Comput Biomed Res , vol.9 , pp. 31-43
    • Perkel, D.H.1
  • 36
    • 0014104894 scopus 로고
    • Neuronal spike trains and stochastic point processes II. Simultaneous spike trains
    • Perkel D.H., Gerstein G.L., Moore G.P. Neuronal spike trains and stochastic point processes II. Simultaneous spike trains. Biophys J 1967, 7:419-440.
    • (1967) Biophys J , vol.7 , pp. 419-440
    • Perkel, D.H.1    Gerstein, G.L.2    Moore, G.P.3
  • 37
    • 63649096237 scopus 로고    scopus 로고
    • Likelihood-based approaches to modeling the neural code
    • MIT Press, Kenji Doya, S. Ishii, Alexandre Pouget, R.P.N. Rao (Eds.)
    • Pillow J. Likelihood-based approaches to modeling the neural code. Bayesian brain probabilistic approaches to neural coding 2007, 53-70. MIT Press. Kenji Doya, S. Ishii, Alexandre Pouget, R.P.N. Rao (Eds.).
    • (2007) Bayesian brain probabilistic approaches to neural coding , pp. 53-70
    • Pillow, J.1
  • 39
    • 2342432204 scopus 로고    scopus 로고
    • Significance of joint-spike events based on trial-shuffling by efficient combinatorial methods
    • Pipa G., Diesmann M., Grun S. Significance of joint-spike events based on trial-shuffling by efficient combinatorial methods. Complexity 2003, 8(4):79-86.
    • (2003) Complexity , vol.8 , Issue.4 , pp. 79-86
    • Pipa, G.1    Diesmann, M.2    Grun, S.3
  • 40
    • 3042526258 scopus 로고    scopus 로고
    • Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering
    • Quiroga R.Q., Nadasdy Z., Shaul Y.B. Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering. Neural Comput 2004, 16:1661-1687.
    • (2004) Neural Comput , vol.16 , pp. 1661-1687
    • Quiroga, R.Q.1    Nadasdy, Z.2    Shaul, Y.B.3
  • 41
    • 77953812054 scopus 로고    scopus 로고
    • Statistical analysis of large-scale neuronal recording data
    • Reed J.L., Kaas J.H. Statistical analysis of large-scale neuronal recording data. Neural Networks 2010, 23:673-684.
    • (2010) Neural Networks , vol.23 , pp. 673-684
    • Reed, J.L.1    Kaas, J.H.2
  • 42
    • 42149195907 scopus 로고    scopus 로고
    • Bayesian modelling and analysis of spatio-temporal neuronal networks
    • Rigat F., de Gunst M., van Pelt J. Bayesian modelling and analysis of spatio-temporal neuronal networks. Bayesian Anal 2006, 1:733-764.
    • (2006) Bayesian Anal , vol.1 , pp. 733-764
    • Rigat, F.1    de Gunst, M.2    van Pelt, J.3
  • 43
    • 77953811671 scopus 로고    scopus 로고
    • CuBIC: cumulant based inference of higher-order correlations in massively parallel spike trains
    • Staude B., Rotter S., Grun S. CuBIC: cumulant based inference of higher-order correlations in massively parallel spike trains. J Comput Neurosci 2010, 29(1-2):327-350.
    • (2010) J Comput Neurosci , vol.29 , Issue.1-2 , pp. 327-350
    • Staude, B.1    Rotter, S.2    Grun, S.3
  • 44
    • 79951555871 scopus 로고    scopus 로고
    • Higher order correlations and cumulants
    • Springer Verlag, S. Grun, S. Rotter (Eds.) Analysis of parallel spike trains
    • Staude B., Grun S., Rotter S. Higher order correlations and cumulants. Springer series in computational neuroscience 2010, vol. 7:253-282. Springer Verlag. S. Grun, S. Rotter (Eds.).
    • (2010) Springer series in computational neuroscience , vol.7 , pp. 253-282
    • Staude, B.1    Grun, S.2    Rotter, S.3
  • 47
    • 11844297827 scopus 로고    scopus 로고
    • The correlation grid: analysis of synchronous spiking in multi-dimensional spike train data and identification of feasible connection architectures
    • Stuart L., Walter M., Borisyuk R. The correlation grid: analysis of synchronous spiking in multi-dimensional spike train data and identification of feasible connection architectures. BioSystems 2005, 79:223-233.
    • (2005) BioSystems , vol.79 , pp. 223-233
    • Stuart, L.1    Walter, M.2    Borisyuk, R.3
  • 48
    • 12544253489 scopus 로고    scopus 로고
    • A point process framework for relating neural spiking activity to spiking history, neural ensemble, and extrinsic covariate effects
    • Truccolo W., Eden U.T., Fellows M.R., Donoghue J.P., Brown E.N. A point process framework for relating neural spiking activity to spiking history, neural ensemble, and extrinsic covariate effects. J Neurophysiol 2005, 93:1074-1089.
    • (2005) J Neurophysiol , vol.93 , pp. 1074-1089
    • Truccolo, W.1    Eden, U.T.2    Fellows, M.R.3    Donoghue, J.P.4    Brown, E.N.5
  • 49
    • 0017799081 scopus 로고
    • Neuronal interspike time distributions and the estimation of neurophysiological and neuroanatomical parameters
    • Tuckwell H., Richter W. Neuronal interspike time distributions and the estimation of neurophysiological and neuroanatomical parameters. J Theor Biol 1978, 71:167-183.
    • (1978) J Theor Biol , vol.71 , pp. 167-183
    • Tuckwell, H.1    Richter, W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.