메뉴 건너뛰기




Volumn 3, Issue January, 2014, Pages 2240-2248

Fast sampling-based inference in balanced neuronal networks

Author keywords

[No Author keywords available]

Indexed keywords

BRAIN; CHAINS; DECISION MAKING; INFORMATION SCIENCE; MARKOV PROCESSES; NEURAL NETWORKS; NEURONS; PROBABILITY DISTRIBUTIONS; STOCHASTIC MODELS; STOCHASTIC SYSTEMS;

EID: 84937937938     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (45)

References (27)
  • 1
    • 0029895137 scopus 로고    scopus 로고
    • Speed of processing in the human visual system
    • S. Thorpe, D. Fize, and C. Marlot. Speed of processing in the human visual system. Nature, 381:520-522, 1996.
    • (1996) Nature , vol.381 , pp. 520-522
    • Thorpe, S.1    Fize, D.2    Marlot, C.3
  • 3
    • 8444239052 scopus 로고    scopus 로고
    • The Bayesian brain: The role of uncertainty in neural coding and computation
    • D. Knill and A. Pouget. The Bayesian brain: the role of uncertainty in neural coding and computation. Trends in Neurosciences, 27:712-719, 2004.
    • (2004) Trends in Neurosciences , vol.27 , pp. 712-719
    • Knill, D.1    Pouget, A.2
  • 4
    • 76749113376 scopus 로고    scopus 로고
    • Statistically optimal perception and learning: From behavior to neural representations
    • J. Fiser, P. Berkes, G. Orbán, and M. Lengyel. Statistically optimal perception and learning: from behavior to neural representations. Trends in Cognitive Sciences, 14:119-130, 2010.
    • (2010) Trends in Cognitive Sciences , vol.14 , pp. 119-130
    • Fiser, J.1    Berkes, P.2    Orbán, G.3    Lengyel, M.4
  • 5
    • 78650972934 scopus 로고    scopus 로고
    • Spontaneous cortical activity reveals hallmarks of an optimal internal model of the environment
    • P. Berkes, G. Orbán, M. Lengyel, and J. Fiser. Spontaneous cortical activity reveals hallmarks of an optimal internal model of the environment. Science, 331:83-87, 2011.
    • (2011) Science , vol.331 , pp. 83-87
    • Berkes, P.1    Orbán, G.2    Lengyel, M.3    Fiser, J.4
  • 8
    • 84863928398 scopus 로고    scopus 로고
    • Non-normal amplification in random balanced neuronal networks
    • G. Hennequin, T. P. Vogels, and W. Gerstner. Non-normal amplification in random balanced neuronal networks. Physical Review E, 86:011909 2012.
    • (2012) Physical Review E , vol.86
    • Hennequin, G.1    Vogels, T.P.2    Gerstner, W.3
  • 9
    • 60449120140 scopus 로고    scopus 로고
    • Balanced amplification: A new mechanism of selective amplification of neural activity patterns
    • B. K. Murphy and K. D. Miller. Balanced amplification: A new mechanism of selective amplification of neural activity patterns. Neuron, 61:635-648, 2009.
    • (2009) Neuron , vol.61 , pp. 635-648
    • Murphy, B.K.1    Miller, K.D.2
  • 11
    • 85057196821 scopus 로고    scopus 로고
    • MCMC using hamiltonian dynamics
    • R. Neal. MCMC using Hamiltonian dynamics. Handbook of MCMC, pages 113-162, 2011.
    • (2011) Handbook of MCMC , pp. 113-162
    • Neal, R.1
  • 13
    • 84898998354 scopus 로고    scopus 로고
    • Demixing odors - Fast inference in olfaction
    • C.J.C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger, editors Curran Associates, Inc.
    • A. Grabska-Barwinska, J. Beck, A. Pouget, and P. Latham. Demixing odors - fast inference in olfaction. In C.J.C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger, editors, Advances in Neural Information Processing Systems 26, pages 1968-1976. Curran Associates, Inc., 2013.
    • (2013) Advances in Neural Information Processing Systems , vol.26 , pp. 1968-1976
    • Grabska-Barwinska, A.1    Beck, J.2    Pouget, A.3    Latham, P.4
  • 16
    • 84860274402 scopus 로고    scopus 로고
    • A stochastic Newton MCMC method for large-scale statistical inverse problems with application to seismic inversion
    • J. Martin, L. C. Wilcox, C. Burstedde, and O. Ghattas. A stochastic Newton MCMC method for large-scale statistical inverse problems with application to seismic inversion. SIAM Journal on Scientific Computing, 34:A1460-A1487, 2012.
    • (2012) SIAM Journal on Scientific Computing , vol.34 , pp. A1460-A1487
    • Martin, J.1    Wilcox, L.C.2    Burstedde, C.3    Ghattas, O.4
  • 18
    • 0000999440 scopus 로고
    • Learning and relearning in boltzmann machines
    • D E Rumelhart, J L McClelland, and the PDP Research Group, editors Foundations, chapter 7 MIT Press, Cambridge, MA
    • G. E. Hinton and T. J. Sejnowski. Learning and relearning in Boltzmann machines. In D E Rumelhart, J L McClelland, and the PDP Research Group, editors, Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Volume 1: Foundations, chapter 7, pages 282-317. MIT Press, Cambridge, MA, 1986.
    • (1986) Parallel Distributed Processing: Explorations in the Microstructure of Cognition , vol.1 , pp. 282-317
    • Hinton, G.E.1    Sejnowski, T.J.2
  • 19
    • 0029652445 scopus 로고
    • The "wake-sleep" algorithm for unsupervised neural networks
    • G E Hinton, P Dayan, B J Frey, and R M Neal. The "wake-sleep" algorithm for unsupervised neural networks. Science, 268(5214):1158-1161, 1995.
    • (1995) Science , vol.268 , Issue.5214 , pp. 1158-1161
    • Hinton, G.E.1    Dayan, P.2    Frey, B.J.3    Neal, R.M.4
  • 20
    • 81355133300 scopus 로고    scopus 로고
    • Neural dynamics as sampling: A model for stochastic computation in recurrent networks of spiking neurons
    • L. Buesing, J. Bill, B. Nessler, and W. Maass. Neural dynamics as sampling: a model for stochastic computation in recurrent networks of spiking neurons. PLoS Computational Biology, 7:1-22, 2011.
    • (2011) PLoS Computational Biology , vol.7 , pp. 1-22
    • Buesing, L.1    Bill, J.2    Nessler, B.3    Maass, W.4
  • 22
    • 84902438429 scopus 로고    scopus 로고
    • Optimal control of transient dynamics in balanced networks supports generation of complex movements
    • G. Hennequin, T. P. Vogels, and W. Gerstner. Optimal control of transient dynamics in balanced networks supports generation of complex movements. Neuron, 82, 2014.
    • (2014) Neuron , vol.82
    • Hennequin, G.1    Vogels, T.P.2    Gerstner, W.3
  • 23
    • 77956890234 scopus 로고
    • Monte carlo sampling methods using Markov chains and their applications
    • W. Keith Hastings. Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57:97-109, 1970.
    • (1970) Biometrika , vol.57 , pp. 97-109
    • Keith Hastings, W.1
  • 24
    • 84884253477 scopus 로고    scopus 로고
    • Violation of detailed balance accelerates relaxation
    • Akihisa Ichiki and Masayuki Ohzeki. Violation of detailed balance accelerates relaxation. Physical Review E, 88:020101 2013.
    • (2013) Physical Review E , vol.88
    • Ichiki, A.1    Ohzeki, M.2
  • 25
    • 85162055116 scopus 로고    scopus 로고
    • Improving the asymptotic performance of Markov chain monte-carlo by inserting vortices
    • J.D. Lafferty, C.K.I. Williams, J. Shawe-Taylor, R.S. Zemel, and A. Culotta, editors
    • Y. Sun, J. Schmidhuber, and F. J. Gomez. Improving the asymptotic performance of Markov Chain Monte-Carlo by inserting vortices. In J.D. Lafferty, C.K.I. Williams, J. Shawe-Taylor, R.S. Zemel, and A. Culotta, editors, Advances in Neural Information Processing Systems 23, pages 2235-2243. 2010.
    • (2010) Advances in Neural Information Processing Systems , vol.23 , pp. 2235-2243
    • Sun, Y.1    Schmidhuber, J.2    Gomez, F.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.