메뉴 건너뛰기




Volumn 28, Issue , 2005, Pages 357-376

Neural network dynamics

Author keywords

Balance; Memory; Signal propagation; States; Sustained activity

Indexed keywords

COGNITION; NERVE CELL NETWORK; OSCILLATION; PRIORITY JOURNAL; REVIEW; SIGNAL PROCESSING; SPIKE; STIMULUS RESPONSE; WORKING MEMORY;

EID: 23344446786     PISSN: 0147006X     EISSN: None     Source Type: Book Series    
DOI: 10.1146/annurev.neuro.28.061604.135637     Document Type: Review
Times cited : (417)

References (81)
  • 1
    • 22244458151 scopus 로고
    • Asynchronous states in networks of pulse-coupled oscillators
    • Abbott LF, van Vreeswijk C. 1993. Asynchronous states in networks of pulse-coupled oscillators. Phys. Rev. E 48:1483-90
    • (1993) Phys. Rev. E , vol.48 , pp. 1483-1490
    • Abbott, L.F.1    Van Vreeswijk, C.2
  • 3
    • 0030468253 scopus 로고    scopus 로고
    • Propagation of synchronous spiking activity in feedforward neural networks
    • Aertsen A, Diesmann M, Gewaltig MO. 1996. Propagation of synchronous spiking activity in feedforward neural networks. J. Physiol. Paris 90:243-47
    • (1996) J. Physiol. Paris , vol.90 , pp. 243-247
    • Aertsen, A.1    Diesmann, M.2    Gewaltig, M.O.3
  • 4
    • 0030947941 scopus 로고    scopus 로고
    • Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex
    • Amit DJ, Brunel N. 1997. Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex. Cereb. Cortex 7:237-52
    • (1997) Cereb. Cortex , vol.7 , pp. 237-252
    • Amit, D.J.1    Brunel, N.2
  • 5
    • 0034623811 scopus 로고    scopus 로고
    • The contribution of noise to contrast invariance of orientation tuning in cat visual cortex
    • Anderson JS, Lampl I, Gillespie DC, Ferster D. 2000. The contribution of noise to contrast invariance of orientation tuning in cat visual cortex. Science 290:1968-72
    • (2000) Science , vol.290 , pp. 1968-1972
    • Anderson, J.S.1    Lampl, I.2    Gillespie, D.C.3    Ferster, D.4
  • 6
    • 0029767876 scopus 로고    scopus 로고
    • Dynamics of ongoing activity: Explanation of the large variability in evoked cortical responses
    • Arieli A, Sterkin A, Grinvald A, Aertsen A. 1996. Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses. Science 273:1868-71
    • (1996) Science , vol.273 , pp. 1868-1871
    • Arieli, A.1    Sterkin, A.2    Grinvald, A.3    Aertsen, A.4
  • 7
    • 0038604429 scopus 로고    scopus 로고
    • On embedding synfire chains in a balanced network
    • Aviel Y, Mehring C, Abeles M, Horn D. 2003. On embedding synfire chains in a balanced network. Neural Comput. 15:1321-40
    • (2003) Neural Comput. , vol.15 , pp. 1321-1340
    • Aviel, Y.1    Mehring, C.2    Abeles, M.3    Horn, D.4
  • 8
    • 0348010295 scopus 로고    scopus 로고
    • Neuronal avalanches in neocortical circuits
    • Beggs JM, Plenz D. 2003. Neuronal avalanches in neocortical circuits. J. Neurosci. 23:11167-77
    • (2003) J. Neurosci. , vol.23 , pp. 11167-11177
    • Beggs, J.M.1    Plenz, D.2
  • 9
    • 2642572763 scopus 로고    scopus 로고
    • Neuronal avalanches are diverse and precise activity patterns that are stable for many hours in cortical slice cultures
    • Beggs JM, Plenz D. 2004. Neuronal avalanches are diverse and precise activity patterns that are stable for many hours in cortical slice cultures. J. Neurosci. 24:5216-29
    • (2004) J. Neurosci. , vol.24 , pp. 5216-5229
    • Beggs, J.M.1    Plenz, D.2
  • 11
    • 0031054729 scopus 로고    scopus 로고
    • Traveling waves and the processing of weakly tuned inputs in a cortical network module
    • Ben-Yishai R, Hansel D, Sompolinsky H. 1997. Traveling waves and the processing of weakly tuned inputs in a cortical network module. J. Comput. Neurosci. 4:57-77
    • (1997) J. Comput. Neurosci. , vol.4 , pp. 57-77
    • Ben-Yishai, R.1    Hansel, D.2    Sompolinsky, H.3
  • 12
    • 0034487599 scopus 로고    scopus 로고
    • Dynamics of networks of randomly connected excitatory and inhibitory spiking neurons
    • Brunel N. 2000. Dynamics of networks of randomly connected excitatory and inhibitory spiking neurons. J. Physiol. Paris 94:445-63
    • (2000) J. Physiol. Paris , vol.94 , pp. 445-463
    • Brunel, N.1
  • 13
    • 0033210816 scopus 로고    scopus 로고
    • Fast global oscillations in networks of integrate-and-fire neurons with low firing rates
    • Brunel N, Hakim D. 1999. Fast global oscillations in networks of integrate-and-fire neurons with low firing rates. Neural Comput. 11:1621-71
    • (1999) Neural Comput. , vol.11 , pp. 1621-1671
    • Brunel, N.1    Hakim, D.2
  • 14
    • 0032494755 scopus 로고    scopus 로고
    • Firing frequency of leaky intergrate-and-fire neurons with synaptic current dynamics
    • Brunel N, Sergi S. 1998. Firing frequency of leaky intergrate-and-fire neurons with synaptic current dynamics. J. Theor. Biol. 195:87-95
    • (1998) J. Theor. Biol. , vol.195 , pp. 87-95
    • Brunel, N.1    Sergi, S.2
  • 15
    • 0033561841 scopus 로고    scopus 로고
    • Analysis of integrate-and-fire neurons: Synchronization of synaptic input and output spikes
    • Burkitt AN, Clark GM. 1999. Analysis of integrate-and-fire neurons: synchronization of synaptic input and output spikes. Neural Comput. 11:871-901
    • (1999) Neural Comput. , vol.11 , pp. 871-901
    • Burkitt, A.N.1    Clark, G.M.2
  • 16
    • 0017194166 scopus 로고
    • The spontaneous activity of neurones in the cat's visual cortex
    • Burns BD, Webb AC. 1976. The spontaneous activity of neurones in the cat's visual cortex. Proc. R. Soc. London B Biol. Sci. 194:211-23
    • (1976) Proc. R. Soc. London B Biol. Sci. , vol.194 , pp. 211-223
    • Burns, B.D.1    Webb, A.C.2
  • 17
    • 3042523540 scopus 로고    scopus 로고
    • Neuronal oscillations in cortical networks
    • Buzsaki G, Draguhn A. 2004. Neuronal oscillations in cortical networks. Science 304:1926-29
    • (2004) Science , vol.304 , pp. 1926-1929
    • Buzsaki, G.1    Draguhn, A.2
  • 18
    • 0031762840 scopus 로고    scopus 로고
    • A model of visuospatial short-term memory in prefrontal cortex: Recurrent network and cellular bistability
    • Camperi M, Wang X-J. 1998. A model of visuospatial short-term memory in prefrontal cortex: recurrent network and cellular bistability. J. Comput. Neurosci. 5:383-405
    • (1998) J. Comput. Neurosci. , vol.5 , pp. 383-405
    • Camperi, M.1    Wang, X.-J.2
  • 19
    • 0034756436 scopus 로고    scopus 로고
    • Fokker-Planck approach to the pulse packet propagation in synfire chain
    • Cateau H, Fukai T. 2001. Fokker-Planck approach to the pulse packet propagation in synfire chain. Neural Netw. 14:675-85
    • (2001) Neural Netw. , vol.14 , pp. 675-685
    • Cateau, H.1    Fukai, T.2
  • 20
    • 0037104631 scopus 로고    scopus 로고
    • Gain modulation through background synaptic input
    • Chance FS, Abbott LF, Reyes AD. 2002. Gain modulation through background synaptic input. Neuron 35:773-82
    • (2002) Neuron , vol.35 , pp. 773-782
    • Chance, F.S.1    Abbott, L.F.2    Reyes, A.D.3
  • 21
    • 0033811553 scopus 로고    scopus 로고
    • Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model
    • Compte A, Brunel N, Goldman-Rakic PS, Wang X-J. 2000. Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model. Cereb. Cortex 10:910-23
    • (2000) Cereb. Cortex , vol.10 , pp. 910-923
    • Compte, A.1    Brunel, N.2    Goldman-Rakic, P.S.3    Wang, X.-J.4
  • 23
    • 0000618665 scopus 로고    scopus 로고
    • Self-organized criticality in the olami-feder-christensen model
    • de Carvalho JX, Prado CP. 2000. Self-organized criticality in the olami-feder-christensen model. Phys. Rev. Lett. 84:4006-9
    • (2000) Phys. Rev. Lett. , vol.84 , pp. 4006-4009
    • De Carvalho, J.X.1    Prado, C.P.2
  • 24
    • 0019856238 scopus 로고
    • The variability of discharge of simple cells in the cat striat cortex
    • Dean AF. 1981. The variability of discharge of simple cells in the cat striat cortex. Exp. Brain Res. 44:437-40
    • (1981) Exp. Brain Res. , vol.44 , pp. 437-440
    • Dean, A.F.1
  • 25
    • 0000884846 scopus 로고
    • Oscillations, complex spatiotemporal behavior, and information transport in networks of excitatory and inhibitory neurons
    • Destexhe A. 1994. Oscillations, complex spatiotemporal behavior, and information transport in networks of excitatory and inhibitory neurons. Phys. Rev. E 50:1594-606
    • (1994) Phys. Rev. E , vol.50 , pp. 1594-1606
    • Destexhe, A.1
  • 26
    • 0033518170 scopus 로고    scopus 로고
    • Stable propagation of synchronous spiking in cortical neural networks
    • Diesmann M, Gewaltig MO, Aertsen A. 1999. Stable propagation of synchronous spiking in cortical neural networks. Nature 402:529-33
    • (1999) Nature , vol.402 , pp. 529-533
    • Diesmann, M.1    Gewaltig, M.O.2    Aertsen, A.3
  • 27
    • 0018646930 scopus 로고
    • Temporal oscillations in neuronal nets
    • Ermentrout GB, Cowan JD. 1979. Temporal oscillations in neuronal nets. J. Math. Biol. 7:265-80
    • (1979) J. Math. Biol. , vol.7 , pp. 265-280
    • Ermentrout, G.B.1    Cowan, J.D.2
  • 28
    • 0033110047 scopus 로고    scopus 로고
    • Collective behavior of networks with linear (VLSI) integrate and fire neurons
    • Fusi S, Mattia M. 1999. Collective behavior of networks with linear (VLSI) integrate and fire neurons. Neural Comput. 11:633-52
    • (1999) Neural Comput. , vol.11 , pp. 633-652
    • Fusi, S.1    Mattia, M.2
  • 29
    • 0033630628 scopus 로고    scopus 로고
    • Population dynamics of spiking neurons: Fast transients, asynchronous state, and locking
    • Gerstner W. 2000. Population dynamics of spiking neurons: fast transients, asynchronous state, and locking. Neural Comput. 12:43-89
    • (2000) Neural Comput. , vol.12 , pp. 43-89
    • Gerstner, W.1
  • 30
    • 0031915961 scopus 로고    scopus 로고
    • Models of neuronal transient synchrony during propagation of activity through neocortical circuitry
    • Golomb D. 1998. Models of neuronal transient synchrony during propagation of activity through neocortical circuitry. J. Neurophysiol. 79:1-12
    • (1998) J. Neurophysiol. , vol.79 , pp. 1-12
    • Golomb, D.1
  • 31
    • 0001297707 scopus 로고
    • Dynamics of globally coupled inhibitory neurons with hereogeneity
    • Golomb D, Rinzel J. 1993. Dynamics of globally coupled inhibitory neurons with hereogeneity. Phys. Rev. E 48:4810-14
    • (1993) Phys. Rev. E , vol.48 , pp. 4810-4814
    • Golomb, D.1    Rinzel, J.2
  • 32
    • 0028457501 scopus 로고
    • Synchronous oscillations in neuronal systems: Mechanisms and functions
    • Gray CM. 1994. Synchronous oscillations in neuronal systems: mechanisms and functions. J. Comput. Neurosci. 1:11-38
    • (1994) J. Comput. Neurosci. , vol.1 , pp. 11-38
    • Gray, C.M.1
  • 33
    • 0035687166 scopus 로고    scopus 로고
    • Turning on and off with excitation: The role of spike-timing asynchrony and synchrony in sustained neural activity
    • Gutkin BS, Laing CR, Colby CL, Chow CC, Ermentrout GB. 2001. Turning on and off with excitation: the role of spike-timing asynchrony and synchrony in sustained neural activity. J. Comput. Neurosci. 11:121-34
    • (2001) J. Comput. Neurosci. , vol.11 , pp. 121-134
    • Gutkin, B.S.1    Laing, C.R.2    Colby, C.L.3    Chow, C.C.4    Ermentrout, G.B.5
  • 34
    • 0037365779 scopus 로고    scopus 로고
    • Permitted and forbidden sets in symmetric threshold-linear networks
    • Hahnloser RHR, Seung HS, Slotine JJ. 2003. Permitted and forbidden sets in symmetric threshold-linear networks. Neural Comput. 15:621-38
    • (2003) Neural Comput. , vol.15 , pp. 621-638
    • Hahnloser, R.H.R.1    Seung, H.S.2    Slotine, J.J.3
  • 35
    • 0035971275 scopus 로고
    • Existence and stability of persistent states in large neuronal networks
    • Hansel D, Mato G. 1993. Existence and stability of persistent states in large neuronal networks. Phys. Rev. Lett. 86:4175-78
    • (1993) Phys. Rev. Lett. , vol.86 , pp. 4175-4178
    • Hansel, D.1    Mato, G.2
  • 36
    • 0037264368 scopus 로고    scopus 로고
    • Asynchronous states and the emergence of synchrony in large networks of interacting excitatory and inhibitory neurons
    • Hansel D, Mato G. 2002. Asynchronous states and the emergence of synchrony in large networks of interacting excitatory and inhibitory neurons. Neural Comput. 15:1-56
    • (2002) Neural Comput. , vol.15 , pp. 1-56
    • Hansel, D.1    Mato, G.2
  • 37
    • 0002433285 scopus 로고    scopus 로고
    • Modeling feature selectivity in local cortical circuits
    • ed. C Koch, I Segev, Cambridge, MA: MIT Press
    • Hansel D, Sompolinsky H. 2000. Modeling feature selectivity in local cortical circuits. In Methods in Neuronal Modeling: From Synapses to Networks, ed. C Koch, I Segev, pp. 499-567. Cambridge, MA: MIT Press
    • (2000) Methods in Neuronal Modeling: From Synapses to Networks , pp. 499-567
    • Hansel, D.1    Sompolinsky, H.2
  • 40
    • 0029894898 scopus 로고    scopus 로고
    • Comparison of discharge variability in vitro and in vivo in cat visual cortex neurons
    • Holt GR, Softky WR, Koch C, Douglas RJ. 1996. Comparison of discharge variability in vitro and in vivo in cat visual cortex neurons. J. Neurophysiol. 75:1806-14
    • (1996) J. Neurophysiol. , vol.75 , pp. 1806-1814
    • Holt, G.R.1    Softky, W.R.2    Koch, C.3    Douglas, R.J.4
  • 41
    • 0030296427 scopus 로고    scopus 로고
    • Dynamical representation of odors by oscillating and evolving neural assemblies
    • Laurent G. 1996. Dynamical representation of odors by oscillating and evolving neural assemblies. Trends Neurosci. 19:489-96
    • (1996) Trends Neurosci. , vol.19 , pp. 489-496
    • Laurent, G.1
  • 42
    • 0037379804 scopus 로고    scopus 로고
    • Very slow activity fluctuations in monkey visual cortex: Implications for functional brain imaging
    • Leopold DA, Murayama Y, Logothetis NK. 2003. Very slow activity fluctuations in monkey visual cortex: Implications for functional brain imaging. Cereb. Cortex 13:422-433
    • (2003) Cereb. Cortex , vol.13 , pp. 422-433
    • Leopold, D.A.1    Murayama, Y.2    Logothetis, N.K.3
  • 43
    • 2542461423 scopus 로고    scopus 로고
    • High-conductance states in a mean-field cortical network model
    • Lerchner A, Ahmadi M, Hertz J. 2004. High-conductance states in a mean-field cortical network model. Neurocomputing 58-60:935-40
    • (2004) Neurocomputing , vol.58-60 , pp. 935-940
    • Lerchner, A.1    Ahmadi, M.2    Hertz, J.3
  • 44
    • 0037387041 scopus 로고    scopus 로고
    • On the transmission of rate code in long feedforward networks with excitatory-inhibitory balance
    • Litvak V, Sompolinsky H, Segev I, Abeles M. 2003. On the transmission of rate code in long feedforward networks with excitatory-inhibitory balance. J. Neurosci. 23:3006-15
    • (2003) J. Neurosci. , vol.23 , pp. 3006-3015
    • Litvak, V.1    Sompolinsky, H.2    Segev, I.3    Abeles, M.4
  • 45
    • 0029847273 scopus 로고    scopus 로고
    • Principles of rhythmic motor pattern generation
    • Marder E, Calabrese RL. 1996. Principles of rhythmic motor pattern generation. Physiol. Rev. 76:687-17
    • (1996) Physiol. Rev. , vol.76 , pp. 687-717
    • Marder, E.1    Calabrese, R.L.2
  • 46
    • 0031025623 scopus 로고    scopus 로고
    • On the relationship between synaptic input and spike output jitter in individual neurons
    • Marsalek PR, Koch C, Maunsell J. 1997. On the relationship between synaptic input and spike output jitter in individual neurons. Proc. Natl. Acad. Sci. USA 94:735-40
    • (1997) Proc. Natl. Acad. Sci. USA , vol.94 , pp. 735-740
    • Marsalek, P.R.1    Koch, C.2    Maunsell, J.3
  • 47
    • 0142028099 scopus 로고    scopus 로고
    • Activity dynamics and propagation of synchronous spiking in locally connected random networks
    • Mehring C, Hehl U, Kubo M, Diesmann M, Aertsen A. 2003. Activity dynamics and propagation of synchronous spiking in locally connected random networks Biol. Cybern. 88:395-408
    • (2003) Biol. Cybern. , vol.88 , pp. 395-408
    • Mehring, C.1    Hehl, U.2    Kubo, M.3    Diesmann, M.4    Aertsen, A.5
  • 48
    • 0003582543 scopus 로고    scopus 로고
    • Cambridge, UK: Cambridge Univ. Press. 478 pp.
    • Ott E. 2002. Chaos in Dynamical Systems. Cambridge, UK: Cambridge Univ. Press. 478 pp.
    • (2002) Chaos in Dynamical Systems
    • Ott, E.1
  • 49
    • 0037377790 scopus 로고    scopus 로고
    • Natural logarithmic relationship between brain oscillators
    • Penttonen M, Buzsaki G. 2003. Natural logarithmic relationship between brain oscillators. Thalamus Relat. Syst. 2:145-52
    • (2003) Thalamus Relat. Syst. , vol.2 , pp. 145-152
    • Penttonen, M.1    Buzsaki, G.2
  • 50
    • 13744259954 scopus 로고    scopus 로고
    • Similar network activity from widely disparate combinations of intrinsic properties and synaptic strengths
    • Prinz AA, Bucher D, Marder E. 2004. Similar network activity from widely disparate combinations of intrinsic properties and synaptic strengths. Nat. Neurosci. 12:1345-52
    • (2004) Nat. Neurosci. , vol.12 , pp. 1345-1352
    • Prinz, A.A.1    Bucher, D.2    Marder, E.3
  • 51
    • 0037566546 scopus 로고    scopus 로고
    • Robust spatial working memory through homeostatic synaptic scaling in heterogeneous cortical networks
    • Renart A, Song P, Wang X-J. 2003. Robust spatial working memory through homeostatic synaptic scaling in heterogeneous cortical networks. Neuron 38:473-85
    • (2003) Neuron , vol.38 , pp. 473-485
    • Renart, A.1    Song, P.2    Wang, X.-J.3
  • 52
    • 0038697974 scopus 로고    scopus 로고
    • Synchrony-dependent propagation of firing rate in iteratively constructed networks in vitro
    • Reyes AD. 2003. Synchrony-dependent propagation of firing rate in iteratively constructed networks in vitro. Nat. Neurosci. 6:593-99
    • (2003) Nat. Neurosci. , vol.6 , pp. 593-599
    • Reyes, A.D.1
  • 54
    • 0002453062 scopus 로고    scopus 로고
    • Analysis of neural excitability and oscillations
    • ed. C Koch, I Segev. Cambridge, MA: MIT Press
    • Rinzel J, Ermentrout GB. 1998. Analysis of neural excitability and oscillations. In Methods in Neuronal Modeling, ed. C Koch, I Segev, pp. 251-91. Cambridge, MA: MIT Press
    • (1998) Methods in Neuronal Modeling , pp. 251-291
    • Rinzel, J.1    Ermentrout, G.B.2
  • 55
    • 0036717209 scopus 로고    scopus 로고
    • Integrate-and-fire neurons driven by correlated stochastic input
    • Salinas E, Sejnowski T. 2002. Integrate-and-fire neurons driven by correlated stochastic input. Neural Comput. 14:2111-55
    • (2002) Neural Comput. , vol.14 , pp. 2111-2155
    • Salinas, E.1    Sejnowski, T.2
  • 56
    • 0033711439 scopus 로고    scopus 로고
    • Stability of the memory of eye position in a recurrent network of conductance-based model neurons
    • Seung HS, Lee DD, Reis BY, Tank DW. 2000. Stability of the memory of eye position in a recurrent network of conductance-based model neurons. Neuron 26:259-71
    • (2000) Neuron , vol.26 , pp. 259-271
    • Seung, H.S.1    Lee, D.D.2    Reis, B.Y.3    Tank, D.W.4
  • 57
  • 58
    • 0041324844 scopus 로고    scopus 로고
    • Rate models for conductance-based cortical neuronal networks
    • Shriki O, Hansel D, Sompolinsky H. 2003. Rate models for conductance-based cortical neuronal networks Neural Comput. 15:1809-41
    • (2003) Neural Comput. , vol.15 , pp. 1809-1841
    • Shriki, O.1    Hansel, D.2    Sompolinsky, H.3
  • 60
    • 0027498486 scopus 로고
    • The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs
    • Softky WR, Koch C. 1993. The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. J. Neurosci. 13:334-50
    • (1993) J. Neurosci. , vol.13 , pp. 334-350
    • Softky, W.R.1    Koch, C.2
  • 63
    • 0037757598 scopus 로고    scopus 로고
    • The dynamical stability of reverberatory neural circuits
    • Tegner J, Compte A, Wang X-J. 2002. The dynamical stability of reverberatory neural circuits. Biol. Cybern. 87:471-81
    • (2002) Biol. Cybern. , vol.87 , pp. 471-481
    • Tegner, J.1    Compte, A.2    Wang, X.-J.3
  • 64
    • 0030975409 scopus 로고    scopus 로고
    • Simulation of gamma rhythms in networks of interneurons and pyramidal cells
    • Traub R, Jefferys JGR, Whittington MA. 1997. Simulation of gamma rhythms in networks of interneurons and pyramidal cells. J. Comput. Neurosci. 4:141-50
    • (1997) J. Comput. Neurosci. , vol.4 , pp. 141-150
    • Traub, R.1    Jefferys, J.G.R.2    Whittington, M.A.3
  • 66
    • 0024503070 scopus 로고
    • Model of the origin of rhythmic population oscillations in the hippocampal slice
    • Traub RD, Miles R, Wong RKS. 1989. Model of the origin of rhythmic population oscillations in the hippocampal slice. Science 243:1319-25
    • (1989) Science , vol.243 , pp. 1319-1325
    • Traub, R.D.1    Miles, R.2    Wong, R.K.S.3
  • 67
    • 0031182938 scopus 로고    scopus 로고
    • Physiological gain leads to high ISI variability in a simple model of a cortical regular spiking cell
    • Troyer TW, Miller KD. 1997. Physiological gain leads to high ISI variability in a simple model of a cortical regular spiking cell. Neural Comput. 9:971-83
    • (1997) Neural Comput. , vol.9 , pp. 971-983
    • Troyer, T.W.1    Miller, K.D.2
  • 68
    • 0000794781 scopus 로고
    • Rapid switching in balanced cortical network models
    • Tsodyks M, Sejnowski TJ. 1995. Rapid switching in balanced cortical network models. Network 6:1-14
    • (1995) Network , vol.6 , pp. 1-14
    • Tsodyks, M.1    Sejnowski, T.J.2
  • 70
    • 0001463212 scopus 로고
    • Network amplification of local fluctuations causes high spike rate variability, fractal patterns and oscillatory local field potentials
    • Usher M, Stemmler M, Koch C. 1994. Network amplification of local fluctuations causes high spike rate variability, fractal patterns and oscillatory local field potentials. Neural Comput. 6:795-836
    • (1994) Neural Comput. , vol.6 , pp. 795-836
    • Usher, M.1    Stemmler, M.2    Koch, C.3
  • 71
    • 0036523040 scopus 로고    scopus 로고
    • Fast propagation of firing rates through layered networks of noisy neurons
    • van Rossum MC, Turrigiano GG, Nelson SB. 2002. Fast propagation of firing rates through layered networks of noisy neurons. J. Neurosci. 22:1956-66
    • (2002) J. Neurosci. , vol.22 , pp. 1956-1966
    • Van Rossum, M.C.1    Turrigiano, G.G.2    Nelson, S.B.3
  • 72
    • 0001282080 scopus 로고    scopus 로고
    • Analysis of the asynchronous state in networks of strongly coupled oscillators
    • van Vreeswijk C. 2000. Analysis of the asynchronous state in networks of strongly coupled oscillators. Phys. Rev. Lett. 84:5110-13
    • (2000) Phys. Rev. Lett. , vol.84 , pp. 5110-5113
    • Van Vreeswijk, C.1
  • 73
    • 0029835892 scopus 로고    scopus 로고
    • Chaos in neuronal networks with balanced excitatory and inhibitory activity
    • van Vreeswijk C, Sompolinsky H. 1996. Chaos in neuronal networks with balanced excitatory and inhibitory activity Science 274:1724-26
    • (1996) Science , vol.274 , pp. 1724-1726
    • Van Vreeswijk, C.1    Sompolinsky, H.2
  • 74
    • 0032528729 scopus 로고    scopus 로고
    • Chaotic balanced state in a model of cortical circuits
    • van Vreeswijk C, Sompolinsky H. 1998. Chaotic balanced state in a model of cortical circuits. Neural Comput. 10:1321-71
    • (1998) Neural Comput. , vol.10 , pp. 1321-1371
    • Van Vreeswijk, C.1    Sompolinsky, H.2
  • 75
    • 33644488973 scopus 로고    scopus 로고
    • Signal propagation in large networks of integrate-and-fire neurons
    • Abstr.
    • Vogels TP, Abbott LF. 2004. Signal propagation in large networks of integrate-and-fire neurons. Soc. Neurosci. 970.7 (Abstr.)
    • (2004) Soc. Neurosci.
    • Vogels, T.P.1    Abbott, L.F.2
  • 76
    • 22244434922 scopus 로고    scopus 로고
    • Gamma oscillations by synaptic inhibition in a hippocampal interneuronal network model
    • Wang X-J, Buzsaki G. 1996. Gamma oscillations by synaptic inhibition in a hippocampal interneuronal network model. J. Neurosci. 19:9587-603
    • (1996) J. Neurosci. , vol.19 , pp. 9587-9603
    • Wang, X.-J.1    Buzsaki, G.2
  • 77
    • 0142219864 scopus 로고    scopus 로고
    • Special issue: Persistent neural activity: Experiments and theory
    • Wang X-J, Goldman-Rakic P, eds. 2004. Special issue: Persistent neural activity: experiments and theory. Cereb. Cortex 13:1123-269
    • (2004) Cereb. Cortex , vol.13 , pp. 1123-1269
    • Wang, X.-J.1    Goldman-Rakic, P.2
  • 78
    • 0031881939 scopus 로고    scopus 로고
    • Synchronization and oscillatory dynamics in heterogeneous, mutually inhibibitory neurons
    • White JA, Chow CC, Ritt J, Soto-Trovino C, Kopell N. 1998. Synchronization and oscillatory dynamics in heterogeneous, mutually inhibibitory neurons. J. Comput. Neurosci. 5:5-16
    • (1998) J. Comput. Neurosci. , vol.5 , pp. 5-16
    • White, J.A.1    Chow, C.C.2    Ritt, J.3    Soto-Trovino, C.4    Kopell, N.5
  • 80
    • 0015260274 scopus 로고
    • Excitatory and inhibitory interactions in localized populations of model neurons
    • Wilson HR, Cowan JD. 1972. Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J. 12:1-24
    • (1972) Biophys. J. , vol.12 , pp. 1-24
    • Wilson, H.R.1    Cowan, J.D.2
  • 81
    • 0042474344 scopus 로고
    • Self-organized branching processes: Mean-field theory for avalanches
    • Zapperi S, Baekgaard Lauritsen K, Stanley HE. 1995. Self-organized branching processes: mean-field theory for avalanches. Phys. Rev. Lett. 75:4071-74
    • (1995) Phys. Rev. Lett. , vol.75 , pp. 4071-4074
    • Zapperi, S.1    Baekgaard Lauritsen, K.2    Stanley, H.E.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.