메뉴 건너뛰기




Volumn 17, Issue 4, 2014, Pages 594-600

Two types of asynchronous activity in networks of excitatory and inhibitory spiking neurons

Author keywords

[No Author keywords available]

Indexed keywords

ACTION POTENTIAL; ARTICLE; EXCITATORY POSTSYNAPTIC POTENTIAL; HUMAN; INHIBITORY POSTSYNAPTIC POTENTIAL; LEARNING; MODEL; NERVE CELL NETWORK; PRIORITY JOURNAL; SIMULATION; SYNAPTIC TRANSMISSION;

EID: 84897033914     PISSN: 10976256     EISSN: 15461726     Source Type: Journal    
DOI: 10.1038/nn.3658     Document Type: Article
Times cited : (271)

References (49)
  • 1
    • 0028024043 scopus 로고
    • Noise neural codes and cortical organization
    • Shadlen, M.N. & Newsome, W.T. Noise, neural codes and cortical organization. Curr. Opin. Neurobiol. 4, 569-579 (1994
    • (1994) Curr. Opin. Neurobiol , vol.4 , pp. 569-579
    • Shadlen, M.N.1    Newsome, W.T.2
  • 2
    • 0029835892 scopus 로고    scopus 로고
    • Chaos in neuronal networks with balanced excitatory and inhibitory activity
    • van Vreeswijk, C. & Sompolinsky, H. Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science 274, 1724-1726 (1996
    • (1996) Science , vol.274 , pp. 1724-1726
    • Van Vreeswijk, C.1    Sompolinsky, H.2
  • 3
    • 0030947941 scopus 로고    scopus 로고
    • Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex
    • Amit, D.J. & Brunel, N. Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex. Cereb. Cortex 7, 237-252 (1997
    • (1997) Cereb. Cortex , vol.7 , pp. 237-252
    • Amit, D.J.1    Brunel, N.2
  • 4
    • 0031182938 scopus 로고    scopus 로고
    • Physiological gain leads to high ISI variability in a simple model of a cortical regular spiking cell
    • Troyer, T.W. & Miller, K.D. Physiological gain leads to high ISI variability in a simple model of a cortical regular spiking cell. Neural Comput. 9, 971-983 (1997
    • (1997) Neural Comput , vol.9 , pp. 971-983
    • Troyer, T.W.1    Miller, K.D.2
  • 5
    • 0032525177 scopus 로고    scopus 로고
    • The variable discharge of cortical neurons: Implications for connectivity, computation, and information coding
    • Shadlen, M.N. & Newsome, W.T. The variable discharge of cortical neurons: Implications for connectivity, computation, and information coding. J. Neurosci. 18, 3870-3896 (1998
    • (1998) J. Neurosci , vol.18 , pp. 3870-3896
    • Shadlen, M.N.1    Newsome, W.T.2
  • 6
    • 0038688379 scopus 로고    scopus 로고
    • Turning on and off recurrent balanced cortical activity
    • Shu, Y., Hasenstaub, A. & McCormick, D.A. Turning on and off recurrent balanced cortical activity. Nature 423, 288-293 (2003
    • (2003) Nature , vol.423 , pp. 288-293
    • Shu, Y.1    Hasenstaub, A.2    McCormick, D.A.3
  • 7
    • 77954231844 scopus 로고    scopus 로고
    • Sensitivity to perturbations in vivo implies high noise and suggests rate coding in cortex
    • London, M., Roth, A., Beeren, L., Häusser, M. & Latham, P.E. Sensitivity to perturbations in vivo implies high noise and suggests rate coding in cortex. Nature 466, 123-127 (2010
    • (2010) Nature , vol.466 , pp. 123-127
    • London, M.1    Roth, A.2    Beeren, L.3    Häusser, M.4    Latham, P.E.5
  • 8
    • 75749100546 scopus 로고    scopus 로고
    • The asynchronous state in cortical circuits
    • Renart, A. et al. The asynchronous state in cortical circuits. Science 327, 587-590 (2010
    • (2010) Science , vol.327 , pp. 587-590
    • Renart, A.1
  • 9
    • 0034006515 scopus 로고    scopus 로고
    • Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons
    • Brunel, N. Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. J. Comput. Neurosci. 8, 183-208 (2000
    • (2000) J. Comput. Neurosci , vol.8 , pp. 183-208
    • Brunel, N.1
  • 10
    • 78650812064 scopus 로고    scopus 로고
    • Dynamical entropy production in spiking neuron networks in the balanced state
    • Monteforte, M. & Wolf, F. Dynamical entropy production in spiking neuron networks in the balanced state. Phys. Rev. Lett. 105, 268104 (2010
    • (2010) Phys. Rev. Lett , vol.105 , pp. 268104
    • Monteforte, M.1    Wolf, F.2
  • 11
    • 84872392824 scopus 로고    scopus 로고
    • Dynamic flux tubes form reservoirs of stability in neuronal circuits
    • Monteforte, M. & Wolf, F. Dynamic flux tubes form reservoirs of stability in neuronal circuits. Phys. Rev. X 2, 041007 (2012
    • (2012) Phys. Rev. X , vol.2 , pp. 041007
    • Monteforte, M.1    Wolf, F.2
  • 12
    • 0034814469 scopus 로고    scopus 로고
    • Effects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition
    • Brunel, N. & Wang, X-J. Effects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition. J. Comput. Neurosci. 11, 63-85 (2001
    • (2001) J. Comput. Neurosci , vol.11 , pp. 63-85
    • Brunel, N.1    Wang, X.-J.2
  • 13
    • 0037028039 scopus 로고    scopus 로고
    • Probabilistic decision making by slow reverberation in cortical circuits
    • Wang, X-J. Probabilistic decision making by slow reverberation in cortical circuits. Neuron 36, 955-968 (2002
    • (2002) Neuron , vol.36 , pp. 955-968
    • Wang, X.-J.1
  • 16
    • 1842421269 scopus 로고    scopus 로고
    • Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication
    • Jaeger, H. & Haas, H. Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication. Science 304, 78-80 (2004
    • (2004) Science , vol.304 , pp. 78-80
    • Jaeger, H.1    Haas, H.2
  • 17
    • 68949147577 scopus 로고    scopus 로고
    • Generating coherent patterns of activity from chaotic neural networks
    • Sussillo, D. & Abbott, L.F. Generating coherent patterns of activity from chaotic neural networks. Neuron 63, 544-557 (2009
    • (2009) Neuron , vol.63 , pp. 544-557
    • Sussillo, D.1    Abbott, L.F.2
  • 18
    • 81555214501 scopus 로고    scopus 로고
    • Beyond the edge of chaos: Amplification and temporal integration by recurrent networks in the chaotic regime
    • Toyoizumi, T. & Abbott, L.F. Beyond the edge of chaos: Amplification and temporal integration by recurrent networks in the chaotic regime. Phys. Rev. E 84, 051908 (2011
    • (2011) Phys. Rev , vol.E84 , pp. 051908
    • Toyoizumi, T.1    Abbott, L.F.2
  • 19
    • 84879686840 scopus 로고    scopus 로고
    • Robust timing and motor patterns by taming chaos in recurrent neural networks
    • Laje, R. & Buonomano, D.V. Robust timing and motor patterns by taming chaos in recurrent neural networks. Nat. Neurosci. 16, 925-933 (2013
    • (2013) Nat. Neurosci , vol.16 , pp. 925-933
    • Laje, R.1    Buonomano, D.V.2
  • 20
    • 58549091090 scopus 로고    scopus 로고
    • State-dependent computations: Spatiotemporal processing in cortical networks
    • Buonomano, D.V. & Maass, W. State-dependent computations: Spatiotemporal processing in cortical networks. Nat. Rev. Neurosci. 10, 113-125 (2009
    • (2009) Nat. Rev. Neurosci , vol.10 , pp. 113-125
    • Buonomano, D.V.1    Maass, W.2
  • 21
    • 84875033427 scopus 로고    scopus 로고
    • Topological and dynamical complexity of random neural networks
    • Wainrib, G. & Touboul, J. Topological and dynamical complexity of random neural networks. Phys. Rev. Lett. 110, 118101 (2013
    • (2013) Phys. Rev. Lett , vol.110 , pp. 118101
    • Wainrib, G.1    Touboul, J.2
  • 22
    • 84877827546 scopus 로고    scopus 로고
    • Opening the black box: Low-dimensional dynamics in high-dimensional recurrent neural networks
    • Sussillo, D. & Barak, O. Opening the black box: Low-dimensional dynamics in high-dimensional recurrent neural networks. Neural Comput. 25, 626-649 (2013
    • (2013) Neural Comput , vol.25 , pp. 626-649
    • Sussillo, D.1    Barak, O.2
  • 23
    • 84877832983 scopus 로고    scopus 로고
    • Randomly connected networks have short temporal memory
    • Wallace, E., Maei, H.R. & Latham, P.E.L. Randomly connected networks have short temporal memory. Neural Comput. 25, 1408-1439 (2013
    • (2013) Neural Comput , vol.25 , pp. 1408-1439
    • Wallace, E.1    Maei, H.R.2    Latham, P.E.L.3
  • 24
    • 84868117004 scopus 로고    scopus 로고
    • Two layers of neural variability
    • Churchland, M.M. & Abbott, L.F. Two layers of neural variability. Nat. Neurosci. 15, 1472-1474 (2012
    • (2012) Nat. Neurosci , vol.15 , pp. 1472-1474
    • Churchland, M.M.1    Abbott, L.F.2
  • 25
    • 0033210816 scopus 로고    scopus 로고
    • Fast global oscillations in networks of integrate-and-fire neurons with low firing rates
    • Brunel, N. & Hakim, V. Fast global oscillations in networks of integrate-and-fire neurons with low firing rates. Neural Comput. 11, 1621-1671 (1999
    • (1999) Neural Comput , vol.11 , pp. 1621-1671
    • Brunel, N.1    Hakim, V.2
  • 26
    • 36149028967 scopus 로고
    • Quantitative study of attractor neural network retrieving at low spike rates 1 substrate spikes rates and neuronal gain
    • Amit, D.J. & Tsodyks, M.V. Quantitative study of attractor neural network retrieving at low spike rates. 1. Substrate spikes, rates and neuronal gain. Network 2, 259-273 (1991
    • (1991) Network , vol.2 , pp. 259-273
    • Amit, D.J.1    Tsodyks, M.V.2
  • 27
    • 33750582231 scopus 로고    scopus 로고
    • Eigenvalue spectra of random matrices for neural networks
    • Rajan, K. & Abbott, L.F. Eigenvalue spectra of random matrices for neural networks. Phys. Rev. Lett. 97, 188104 (2006
    • (2006) Phys. Rev. Lett , vol.97 , pp. 188104
    • Rajan, K.1    Abbott, L.F.2
  • 28
    • 1542610142 scopus 로고    scopus 로고
    • Topological speed limits to network synchronization
    • Timme, M., Wolf, F. & Geisel, T. Topological speed limits to network synchronization. Phys. Rev. Lett. 92, 074101 (2004
    • (2004) Phys. Rev. Lett , vol.92 , pp. 074101
    • Timme, M.1    Wolf, F.2    Geisel, T.3
  • 29
    • 79551566720 scopus 로고    scopus 로고
    • From spiking neuron models to linear-nonlinear models
    • Ostojic, S. & Brunel, N. From spiking neuron models to linear-nonlinear models. PLoS Comput. Biol. 7, e1001056 (2011
    • (2011) PLoS Comput. Biol , vol.7
    • Ostojic, S.1    Brunel, N.2
  • 30
    • 84887310609 scopus 로고    scopus 로고
    • Complex-valued firing-rate model that approximates the dynamics of spiking networks
    • Schaffer, E.S., Ostojic, S. & Abbott, L.F.A. Complex-valued firing-rate model that approximates the dynamics of spiking networks. PLoS Comput. Biol. 9, e1003301 (2013
    • (2013) PLoS Comput. Biol , vol.9
    • Schaffer, E.S.1    Ostojic, S.2    Abbott, L.F.A.3
  • 31
    • 77954485043 scopus 로고    scopus 로고
    • Stimulus-dependent suppression of chaos in recurrent neural networks
    • Rajan, K., Abbott, L.F. & Sompolinsky, H. Stimulus-dependent suppression of chaos in recurrent neural networks. Phys. Rev. E 82, 011903 (2010
    • (2010) Phys. Rev , vol.E82 , pp. 011903
    • Rajan, K.1    Abbott, L.F.2    Sompolinsky, H.3
  • 32
    • 37649008608 scopus 로고    scopus 로고
    • Techniques for extracting single-trial activity patterns from large-scale neural recordings
    • Churchland, M.M., Yu, B.M., Sahani, M. & Shenoy, K.V. Techniques for extracting single-trial activity patterns from large-scale neural recordings. Curr. Opin. Neurobiol. 17, 609-618 (2007
    • (2007) Curr. Opin. Neurobiol , vol.17 , pp. 609-618
    • Churchland, M.M.1    Yu, B.M.2    Sahani, M.3    Shenoy, K.V.4
  • 33
    • 46849100436 scopus 로고    scopus 로고
    • Neuroscience transient dynamics for neural processing
    • Rabinovich, M., Huerta, R. & Laurent, G. Neuroscience. Transient dynamics for neural processing. Science 321, 48-50 (2008
    • (2008) Science , vol.321 , pp. 48-50
    • Rabinovich, M.1    Huerta, R.2    Laurent, G.3
  • 34
    • 84863881230 scopus 로고    scopus 로고
    • Internal representation of task rules by recurrent dynamics: The importance of the diversity of neural responses
    • Rigotti, M., Rubin, D.B.D., Wang, X-J. & Fusi, S. Internal representation of task rules by recurrent dynamics: The importance of the diversity of neural responses. Front. Comput. Neurosci. 4, 24 (2010
    • (2010) Front. Comput. Neurosci , vol.4 , Issue.24
    • Rigotti, M.1    Rubin, D.B.D.2    Wang, X.-J.3    Fusi, S.4
  • 35
    • 84878390558 scopus 로고    scopus 로고
    • The importance of mixed selectivity in complex cognitive tasks
    • Rigotti, M. et al. The importance of mixed selectivity in complex cognitive tasks. Nature 497, 585-590 (2013
    • (2013) Nature , vol.497 , pp. 585-590
    • Rigotti, M.1
  • 36
    • 27844461164 scopus 로고    scopus 로고
    • Transient dynamics versus fixed points in odor representations by locust antennal lobe projection neurons
    • Mazor, O. & Laurent, G. Transient dynamics versus fixed points in odor representations by locust antennal lobe projection neurons. Neuron 48, 661-673 (2005
    • (2005) Neuron , vol.48 , pp. 661-673
    • Mazor, O.1    Laurent, G.2
  • 37
    • 78049285293 scopus 로고    scopus 로고
    • Cortical preparatory activity: Representation of movement or first cog in a dynamical machine?
    • Churchland, M.M., Cunningham, J.P., Kaufman, M.T., Ryu, S.I. & Shenoy, K.V. Cortical preparatory activity: Representation of movement or first cog in a dynamical machine? Neuron 68, 387-400 (2010
    • (2010) Neuron , vol.68 , pp. 387-400
    • Churchland, M.M.1    Cunningham, J.P.2    Kaufman, M.T.3    Ryu, S.I.4    Shenoy, K.V.5
  • 38
    • 77649187675 scopus 로고    scopus 로고
    • Stimulus onset quenches neural variability: A widespread cortical phenomenon
    • Churchland, M.M. et al. Stimulus onset quenches neural variability: A widespread cortical phenomenon. Nat. Neurosci. 13, 369-378 (2010
    • (2010) Nat. Neurosci , vol.13 , pp. 369-378
    • Churchland, M.M.1
  • 41
    • 0033630628 scopus 로고    scopus 로고
    • Population dynamics of spiking neurons: Fast transients, asynchronous states, and locking
    • Gerstner, W. Population dynamics of spiking neurons: Fast transients, asynchronous states, and locking. Neural Comput. 12, 43-89 (2000
    • (2000) Neural Comput , vol.12 , pp. 43-89
    • Gerstner, W.1
  • 42
    • 32544439341 scopus 로고    scopus 로고
    • A recurrent network mechanism of time integration in perceptual decisions
    • Wong, K.F. & Wang, X-J. A recurrent network mechanism of time integration in perceptual decisions. J. Neurosci. 26, 1314-1328 (2006
    • (2006) J. Neurosci , vol.26 , pp. 1314-1328
    • Wong, K.F.1    Wang, X.-J.2
  • 43
    • 84883761922 scopus 로고    scopus 로고
    • Emergent dynamics in a model of visual cortex
    • Rangan, A.V. & Young, L.S. Emergent dynamics in a model of visual cortex. J. Comput. Neurosci. 35, 155-167 (2013
    • (2013) J. Comput. Neurosci , vol.35 , pp. 155-167
    • Rangan, A.V.1    Young, L.S.2
  • 44
    • 84868159004 scopus 로고    scopus 로고
    • Slow dynamics and high variability in balanced cortical networks with clustered connections
    • Litwin-Kumar, A. & Doiron, B. Slow dynamics and high variability in balanced cortical networks with clustered connections. Nat. Neurosci. 15, 1498-1505 (2012
    • (2012) Nat. Neurosci , vol.15 , pp. 1498-1505
    • Litwin-Kumar, A.1    Doiron, B.2
  • 46
    • 80755168024 scopus 로고    scopus 로고
    • On the distribution of firing rates in networks of cortical neurons
    • Roxin, A., Brunel, N., Hansel, D., Mongillo, G. & van Vreeswijk, C. On the distribution of firing rates in networks of cortical neurons. J. Neurosci. 31, 16217-16226 (2011
    • (2011) J. Neurosci , vol.31 , pp. 16217-16226
    • Roxin, A.1    Brunel, N.2    Hansel, D.3    Mongillo, G.4    Van Vreeswijk, C.5
  • 47
    • 78049437495 scopus 로고    scopus 로고
    • Instantaneous non-linear processing by pulse-coupled threshold units
    • Helias, M., Deger, M., Rotter, S. & Diesmann, M. Instantaneous non-linear processing by pulse-coupled threshold units. PLoS Comp. Biol. 6, e1000929 (2010
    • (2010) PLoS Comp. Biol , vol.6
    • Helias, M.1    Deger, M.2    Rotter, S.3    Diesmann, M.4
  • 48
    • 79959931689 scopus 로고    scopus 로고
    • Interspike interval distributions of spiking neurons driven by fluctuating inputs
    • Ostojic, S. Interspike interval distributions of spiking neurons driven by fluctuating inputs. J. Neurophysiol. 106, 361-373 (2011
    • (2011) J. Neurophysiol , vol.106 , pp. 361-373
    • Ostojic, S.1
  • 49
    • 85162015339 scopus 로고    scopus 로고
    • Inferring stimulus selectivity from the spatial structure of neural network dynamics
    • eds. Lafferty, J., Williams, C.K.I., Shawe-Taylor, J., Zemel, R. & Culotta A 1975 1983 (Curran
    • Rajan, K., Abbott, L.F. & Sompolinsky, H. Inferring stimulus selectivity from the spatial structure of neural network dynamics. in Advances in Neural Information Processing Systems 23 (eds. Lafferty, J., Williams, C.K.I., Shawe-Taylor, J., Zemel, R. & Culotta A.) 1975-1983 (Curran, 2010
    • (2010) Advances in Neural Information Processing Systems , vol.23
    • Rajan, K.1    Abbott, L.F.2    Sompolinsky, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.