메뉴 건너뛰기




Volumn 284, Issue 2, 2017, Pages 196-210

Ground control to major TOM: mitochondria–nucleus communication

Author keywords

communication; dual targeting; mitochondria; nucleus; signaling pathways

Indexed keywords

ACETYL COENZYME A; HEME; IRON; MITOCHONDRIAL PROTEIN; PEPTIDE; REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE; ADENOSINE TRIPHOSPHATE; BASIC HELIX LOOP HELIX LEUCINE ZIPPER TRANSCRIPTION FACTOR; CARRIER PROTEIN; CELL SURFACE RECEPTOR; TOMM20 PROTEIN, HUMAN;

EID: 84978958228     PISSN: 1742464X     EISSN: 17424658     Source Type: Journal    
DOI: 10.1111/febs.13778     Document Type: Review
Times cited : (70)

References (101)
  • 2
    • 1842429937 scopus 로고    scopus 로고
    • Ancient invasions: from endosymbionts to organelles
    • Dyall SD (2004) Ancient invasions: from endosymbionts to organelles. Science 304, 253–257.
    • (2004) Science , vol.304 , pp. 253-257
    • Dyall, S.D.1
  • 3
    • 34250811284 scopus 로고    scopus 로고
    • Mitochondrial-nuclear communications
    • &
    • Ryan MT & Hoogenraad NJ (2007) Mitochondrial-nuclear communications. Annu Rev Biochem 76, 701–722.
    • (2007) Annu Rev Biochem , vol.76 , pp. 701-722
    • Ryan, M.T.1    Hoogenraad, N.J.2
  • 5
    • 79151480727 scopus 로고    scopus 로고
    • Ubiquitin – proteasome system and mitochondria – reciprocity
    • &
    • Livnat-Levanon N & Glickman M (2011) Ubiquitin – proteasome system and mitochondria – reciprocity. Biochim Biophys Acta 1809, 1–8.
    • (2011) Biochim Biophys Acta , vol.1809 , pp. 1-8
    • Livnat-Levanon, N.1    Glickman, M.2
  • 6
    • 84924308878 scopus 로고    scopus 로고
    • Mitochondria-nucleus network for genome stability
    • &
    • Kaniak-Golik A & Skoneczna A (2015) Mitochondria-nucleus network for genome stability. Free Radic Biol Med 82, 73–104.
    • (2015) Free Radic Biol Med , vol.82 , pp. 73-104
    • Kaniak-Golik, A.1    Skoneczna, A.2
  • 7
    • 84969900519 scopus 로고    scopus 로고
    • Synchronized mitochondrial and cytosolic translation programs
    • &
    • Couvillion MT, Soto IC, Shipkovenska G & Churchman LS (2016) Synchronized mitochondrial and cytosolic translation programs. Nature 533, 499–503.
    • (2016) Nature , vol.533 , pp. 499-503
    • Couvillion, M.T.1    Soto, I.C.2    Shipkovenska, G.3    Churchman, L.S.4
  • 8
    • 84895546187 scopus 로고    scopus 로고
    • Mitochondrial quality control and communications with the nucleus are important in maintaining mitochondrial function and cell health
    • &
    • Kotiadis VN, Duchen MR & Osellame LD (2014) Mitochondrial quality control and communications with the nucleus are important in maintaining mitochondrial function and cell health. Biochim Biophys Acta 1840, 1254–1265.
    • (2014) Biochim Biophys Acta , vol.1840 , pp. 1254-1265
    • Kotiadis, V.N.1    Duchen, M.R.2    Osellame, L.D.3
  • 9
    • 0035830867 scopus 로고    scopus 로고
    • Interorganellar communication
    • &, Altered nuclear gene expression profiles in a yeast mitochondrial dna mutant
    • Traven A, Wong JMS, Sopta M, Ingles CJ & Xu D (2001) Interorganellar communication. Altered nuclear gene expression profiles in a yeast mitochondrial dna mutant. J Biol Chem 276, 4020–4027.
    • (2001) J Biol Chem , vol.276 , pp. 4020-4027
    • Traven, A.1    Wong, J.M.S.2    Sopta, M.3    Ingles, C.J.4    Xu, D.5
  • 10
    • 0030669030 scopus 로고    scopus 로고
    • Exploring the metabolic and genetic control of gene expression on a genomic scale
    • DeRisi JL (1997) Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278, 680–686.
    • (1997) Science , vol.278 , pp. 680-686
    • DeRisi, J.L.1
  • 11
    • 0029863284 scopus 로고    scopus 로고
    • Yeast SNF1 protein kinase interacts with SIP4, a C6 zinc cluster transcriptional activator: a new role for SNF1 in the glucose response
    • &
    • Lesage P, Yang X & Carlson M (1996) Yeast SNF1 protein kinase interacts with SIP4, a C6 zinc cluster transcriptional activator: a new role for SNF1 in the glucose response. Mol Cell Biol 16, 1921–1928.
    • (1996) Mol Cell Biol , vol.16 , pp. 1921-1928
    • Lesage, P.1    Yang, X.2    Carlson, M.3
  • 12
    • 33845656956 scopus 로고    scopus 로고
    • Mitochondrial retrograde signaling
    • &
    • Liu Z & Butow RA (2006) Mitochondrial retrograde signaling. Annu Rev Genet 40, 159–185.
    • (2006) Annu Rev Genet , vol.40 , pp. 159-185
    • Liu, Z.1    Butow, R.A.2
  • 13
    • 0031027203 scopus 로고    scopus 로고
    • A basic helix-loop-helix-leucine zipper transcription complex in yeast functions in a signaling pathway from mitochondria to the nucleus
    • &
    • Jia Y, Rothermel B, Thornton J & Butow RA (1997) A basic helix-loop-helix-leucine zipper transcription complex in yeast functions in a signaling pathway from mitochondria to the nucleus. Mol Cell Biol 17, 1110–1117.
    • (1997) Mol Cell Biol , vol.17 , pp. 1110-1117
    • Jia, Y.1    Rothermel, B.2    Thornton, J.3    Butow, R.A.4
  • 14
    • 0034046342 scopus 로고    scopus 로고
    • Mitochondria-to-nuclear signaling is regulated by the subcellular localization of the transcription factors Rtg1p and Rtg3p
    • &
    • Sekito T, Thornton J & Butow RA (2000) Mitochondria-to-nuclear signaling is regulated by the subcellular localization of the transcription factors Rtg1p and Rtg3p. Mol Biol Cell 11, 2103–2115.
    • (2000) Mol Biol Cell , vol.11 , pp. 2103-2115
    • Sekito, T.1    Thornton, J.2    Butow, R.A.3
  • 15
    • 0036200999 scopus 로고    scopus 로고
    • RTG-dependent mitochondria-to-nucleus signaling is regulated by MKS1 and is linked to formation of yeast prion [URE3]
    • &
    • Sekito T, Liu Z, Thornton J & Butow RA (2002) RTG-dependent mitochondria-to-nucleus signaling is regulated by MKS1 and is linked to formation of yeast prion [URE3]. Mol Biol Cell 13, 795–804.
    • (2002) Mol Biol Cell , vol.13 , pp. 795-804
    • Sekito, T.1    Liu, Z.2    Thornton, J.3    Butow, R.A.4
  • 16
    • 84866409979 scopus 로고    scopus 로고
    • The yeast retrograde response as a model of intracellular signaling of mitochondrial dysfunction
    • &
    • Jazwinski SM & Kriete A (2012) The yeast retrograde response as a model of intracellular signaling of mitochondrial dysfunction. Front Physiol 3, 1–12.
    • (2012) Front Physiol , vol.3 , pp. 1-12
    • Jazwinski, S.M.1    Kriete, A.2
  • 17
    • 0141922982 scopus 로고    scopus 로고
    • Retrograde signaling is regulated by the dynamic interaction between Rtg2p and Mks1p
    • &
    • Liu Z, Sekito T, Spírek M, Thornton J & Butow RA (2003) Retrograde signaling is regulated by the dynamic interaction between Rtg2p and Mks1p. Mol Cell 12, 401–411.
    • (2003) Mol Cell , vol.12 , pp. 401-411
    • Liu, Z.1    Sekito, T.2    Spírek, M.3    Thornton, J.4    Butow, R.A.5
  • 18
    • 26244451589 scopus 로고    scopus 로고
    • A novel degron-mediated degradation of the RTG pathway regulator, Mks1p, by SCFGrr1
    • &
    • Liu Z, Spírek M, Thornton J & Butow RA (2005) A novel degron-mediated degradation of the RTG pathway regulator, Mks1p, by SCFGrr1. Mol Biol Cell 16, 4893–4904.
    • (2005) Mol Biol Cell , vol.16 , pp. 4893-4904
    • Liu, Z.1    Spírek, M.2    Thornton, J.3    Butow, R.A.4
  • 19
    • 72149110062 scopus 로고    scopus 로고
    • Aup1-mediated regulation of Rtg3 during mitophagy
    • &
    • Journo D, Mor A & Abeliovich H (2009) Aup1-mediated regulation of Rtg3 during mitophagy. J Biol Chem 284, 35885–35895.
    • (2009) J Biol Chem , vol.284 , pp. 35885-35895
    • Journo, D.1    Mor, A.2    Abeliovich, H.3
  • 20
    • 0026085418 scopus 로고
    • Intramitochondrial functions regulate nonmitochondrial citrate synthase (CIT2) expression in Saccharomyces cerevisiae
    • &
    • Liao XS, Small WC, Srere PA & Butow RA (1991) Intramitochondrial functions regulate nonmitochondrial citrate synthase (CIT2) expression in Saccharomyces cerevisiae. Mol Cell Biol 11, 38–46.
    • (1991) Mol Cell Biol , vol.11 , pp. 38-46
    • Liao, X.S.1    Small, W.C.2    Srere, P.A.3    Butow, R.A.4
  • 21
    • 0028795797 scopus 로고
    • Cloning of yeast HAP5: a novel subunit of a heterotrimeric complex required for CCAAT binding
    • &
    • McNabb DS, Xing Y & Guarente L (1995) Cloning of yeast HAP5: a novel subunit of a heterotrimeric complex required for CCAAT binding. Genes Dev 9, 47–58.
    • (1995) Genes Dev , vol.9 , pp. 47-58
    • McNabb, D.S.1    Xing, Y.2    Guarente, L.3
  • 22
    • 0030659593 scopus 로고    scopus 로고
    • The Saccharomyces cerevisiae Hap5p homolog from fission yeast reveals two conserved domains that are essential for assembly of heterotetrameric CCAAT-binding factor
    • &
    • McNabb DS, Tseng KA & Guarente L (1997) The Saccharomyces cerevisiae Hap5p homolog from fission yeast reveals two conserved domains that are essential for assembly of heterotetrameric CCAAT-binding factor. Mol Cell Biol 17, 7008–7018.
    • (1997) Mol Cell Biol , vol.17 , pp. 7008-7018
    • McNabb, D.S.1    Tseng, K.A.2    Guarente, L.3
  • 23
    • 0027524176 scopus 로고
    • RTG1 and RTG2: two yeast genes required for a novel path of communication from mitochondria to the nucleus
    • &
    • Liao X & Butow RA (1993) RTG1 and RTG2: two yeast genes required for a novel path of communication from mitochondria to the nucleus. Cell 72, 61–71.
    • (1993) Cell , vol.72 , pp. 61-71
    • Liao, X.1    Butow, R.A.2
  • 24
    • 84947436885 scopus 로고    scopus 로고
    • Metabolic profiling of retrograde pathway transcription factors rtg1 and rtg3 knockout yeast
    • &
    • Hashim Z, Mukai Y, Bamba T & Fukusaki E (2014) Metabolic profiling of retrograde pathway transcription factors rtg1 and rtg3 knockout yeast. Metabolites 4, 580–598.
    • (2014) Metabolites , vol.4 , pp. 580-598
    • Hashim, Z.1    Mukai, Y.2    Bamba, T.3    Fukusaki, E.4
  • 25
    • 84923225586 scopus 로고    scopus 로고
    • RTG1- and RTG2-dependent retrograde signaling controls mitochondrial activity and stress resistance in Saccharomyces cerevisiae
    • &
    • Torelli NQ, Ferreira-Júnior JR, Kowaltowski AJ & da Cunha FM (2015) RTG1- and RTG2-dependent retrograde signaling controls mitochondrial activity and stress resistance in Saccharomyces cerevisiae. Free Radic Biol Med 81, 30–37.
    • (2015) Free Radic Biol Med , vol.81 , pp. 30-37
    • Torelli, N.Q.1    Ferreira-Júnior, J.R.2    Kowaltowski, A.J.3    da Cunha, F.M.4
  • 26
    • 33646580767 scopus 로고    scopus 로고
    • Long chain base tolerance in Saccharomyces cerevisiae is induced by retrograde signals from the mitochondria
    • &
    • Panwar SL & Moye-Rowley WS (2006) Long chain base tolerance in Saccharomyces cerevisiae is induced by retrograde signals from the mitochondria. J Biol Chem 281, 6376–6384.
    • (2006) J Biol Chem , vol.281 , pp. 6376-6384
    • Panwar, S.L.1    Moye-Rowley, W.S.2
  • 27
    • 0032947552 scopus 로고    scopus 로고
    • Interorganelle signaling is a determinant of longevity in Saccharomyces cerevisiae
    • &
    • Kirchman PA, Kim S, Lai C-Y & Jazwinski SM (1999) Interorganelle signaling is a determinant of longevity in Saccharomyces cerevisiae. Genetics 152, 179–190.
    • (1999) Genetics , vol.152 , pp. 179-190
    • Kirchman, P.A.1    Kim, S.2    Lai, C.-Y.3    Jazwinski, S.M.4
  • 28
    • 84947447535 scopus 로고    scopus 로고
    • Mitochondrial retrograde signaling : triggers, pathways, and outcomes
    • &
    • Marques F, Torelli NQ & Kowaltowski AJ (2015) Mitochondrial retrograde signaling : triggers, pathways, and outcomes. Oxid Med Cell Longev 2015, 482582.
    • (2015) Oxid Med Cell Longev , vol.2015 , pp. 482582
    • Marques, F.1    Torelli, N.Q.2    Kowaltowski, A.J.3
  • 29
    • 84876018717 scopus 로고    scopus 로고
    • Loss of mitochondrial membrane potential triggers the retrograde response extending yeast replicative lifespan
    • &
    • Miceli MV, Jiang JC, Tiwari A, Rodriguez-Quiñones JF & Jazwinski SM (2012) Loss of mitochondrial membrane potential triggers the retrograde response extending yeast replicative lifespan. Front Genet 2, 1–11.
    • (2012) Front Genet , vol.2 , pp. 1-11
    • Miceli, M.V.1    Jiang, J.C.2    Tiwari, A.3    Rodriguez-Quiñones, J.F.4    Jazwinski, S.M.5
  • 32
    • 3943054839 scopus 로고    scopus 로고
    • The Sir2 family of protein deacetylases
    • &
    • Blander G & Guarente L (2004) The Sir2 family of protein deacetylases. Annu Rev Biochem 73, 417–435.
    • (2004) Annu Rev Biochem , vol.73 , pp. 417-435
    • Blander, G.1    Guarente, L.2
  • 33
    • 33344475027 scopus 로고    scopus 로고
    • Evidence for a novel mitochondria-to-nucleus signalling pathway in respiring cells lacking i-AAA protease and the ABC-transporter Mdl1
    • &
    • Arnold I, Wagner-Ecker M, Ansorge W & Langer T (2006) Evidence for a novel mitochondria-to-nucleus signalling pathway in respiring cells lacking i-AAA protease and the ABC-transporter Mdl1. Gene 367, 74–88.
    • (2006) Gene , vol.367 , pp. 74-88
    • Arnold, I.1    Wagner-Ecker, M.2    Ansorge, W.3    Langer, T.4
  • 34
    • 58249142539 scopus 로고    scopus 로고
    • Multiple pathways of mitochondrial-nuclear communication in yeast: intergenomic signaling involves ABF1 and affects a different set of genes than retrograde regulation
    • &
    • Woo DK, Phang TL, Trawick JD & Poyton RO (2009) Multiple pathways of mitochondrial-nuclear communication in yeast: intergenomic signaling involves ABF1 and affects a different set of genes than retrograde regulation. Biochim Biophys Acta 1789, 135–145.
    • (2009) Biochim Biophys Acta , vol.1789 , pp. 135-145
    • Woo, D.K.1    Phang, T.L.2    Trawick, J.D.3    Poyton, R.O.4
  • 35
    • 4544297212 scopus 로고    scopus 로고
    • Genome-wide analysis of ARS (autonomously replicating sequence) binding factor 1 (Abf1p)-mediated transcriptional regulation in Saccharomyces cerevisiae
    • &
    • Miyake T, Reese J, Loch CM, Auble DT & Li R (2004) Genome-wide analysis of ARS (autonomously replicating sequence) binding factor 1 (Abf1p)-mediated transcriptional regulation in Saccharomyces cerevisiae. J Biol Chem 279, 34865–34872.
    • (2004) J Biol Chem , vol.279 , pp. 34865-34872
    • Miyake, T.1    Reese, J.2    Loch, C.M.3    Auble, D.T.4    Li, R.5
  • 37
    • 23644458112 scopus 로고    scopus 로고
    • Retrograde regulation of multidrug resistance in Saccharomyces cerevisiae
    • Moye-Rowley WS (2005) Retrograde regulation of multidrug resistance in Saccharomyces cerevisiae. Gene 354, 15–21.
    • (2005) Gene , vol.354 , pp. 15-21
    • Moye-Rowley, W.S.1
  • 38
    • 33645560710 scopus 로고    scopus 로고
    • Mitochondrial cytochrome oxidase produces nitric oxide under hypoxic conditions: implications for oxygen sensing and hypoxic signaling in eukaryotes
    • &
    • Castello PR, David PS, McClure T, Crook Z & Poyton RO (2006) Mitochondrial cytochrome oxidase produces nitric oxide under hypoxic conditions: implications for oxygen sensing and hypoxic signaling in eukaryotes. Cell Metab 3, 277–287.
    • (2006) Cell Metab , vol.3 , pp. 277-287
    • Castello, P.R.1    David, P.S.2    McClure, T.3    Crook, Z.4    Poyton, R.O.5
  • 40
    • 0037144396 scopus 로고    scopus 로고
    • Exposure of yeast cells to anoxia induces transient oxidative stress. Implications for the induction of hypoxic genes
    • &
    • Dirmeier R, O'Brien KM, Engle M, Dodd A, Spears E & Poyton RO (2002) Exposure of yeast cells to anoxia induces transient oxidative stress. Implications for the induction of hypoxic genes. J Biol Chem 277, 34773–34784.
    • (2002) J Biol Chem , vol.277 , pp. 34773-34784
    • Dirmeier, R.1    O'Brien, K.M.2    Engle, M.3    Dodd, A.4    Spears, E.5    Poyton, R.O.6
  • 41
    • 24144467846 scopus 로고    scopus 로고
    • ROS: really involved in oxygen sensing
    • Kaelin WG (2005) ROS: really involved in oxygen sensing. Cell Metab 1, 357–358.
    • (2005) Cell Metab , vol.1 , pp. 357-358
    • Kaelin, W.G.1
  • 42
    • 84919775416 scopus 로고    scopus 로고
    • The mitochondrial unfolded protein response—synchronizing genomes
    • &
    • Jovaisaite V & Auwerx J (2015) The mitochondrial unfolded protein response—synchronizing genomes. Curr Opin Cell Biol 33, 74–81.
    • (2015) Curr Opin Cell Biol , vol.33 , pp. 74-81
    • Jovaisaite, V.1    Auwerx, J.2
  • 44
    • 84941747116 scopus 로고    scopus 로고
    • UPR(mt)-mediated cytoprotection and organismal aging
    • &
    • Schulz AM & Haynes CM (2015) UPR(mt)-mediated cytoprotection and organismal aging. Biochim Biophys Acta 1847, 1448–1456.
    • (2015) Biochim Biophys Acta , vol.1847 , pp. 1448-1456
    • Schulz, A.M.1    Haynes, C.M.2
  • 45
    • 37849048003 scopus 로고    scopus 로고
    • Discovery of genes activated by the mitochondrial unfolded protein response (mtUPR) and cognate promoter elements
    • &
    • Aldridge JE, Horibe T & Hoogenraad NJ (2007) Discovery of genes activated by the mitochondrial unfolded protein response (mtUPR) and cognate promoter elements. PLoS One 2, e874.
    • (2007) PLoS One , vol.2
    • Aldridge, J.E.1    Horibe, T.2    Hoogenraad, N.J.3
  • 47
    • 78649728763 scopus 로고    scopus 로고
    • The mitochondrial UPR – protecting organelle protein homeostasis
    • &
    • Haynes CM & Ron D (2010) The mitochondrial UPR – protecting organelle protein homeostasis. J Cell Sci 123, 3849–3855.
    • (2010) J Cell Sci , vol.123 , pp. 3849-3855
    • Haynes, C.M.1    Ron, D.2
  • 48
    • 84940517301 scopus 로고    scopus 로고
    • A cytosolic network suppressing mitochondria-mediated proteostatic stress and cell death
    • &
    • Wang X & Chen XJ (2015) A cytosolic network suppressing mitochondria-mediated proteostatic stress and cell death. Nature 524, 481–484.
    • (2015) Nature , vol.524 , pp. 481-484
    • Wang, X.1    Chen, X.J.2
  • 49
    • 67549136242 scopus 로고    scopus 로고
    • Mitochondrial dysfunction leads to nuclear genome instability via an iron-sulfur cluster defect
    • &
    • Veatch JR, McMurray MA, Nelson ZW & Gottschling DE (2009) Mitochondrial dysfunction leads to nuclear genome instability via an iron-sulfur cluster defect. Cell 137, 1247–1258.
    • (2009) Cell , vol.137 , pp. 1247-1258
    • Veatch, J.R.1    McMurray, M.A.2    Nelson, Z.W.3    Gottschling, D.E.4
  • 51
    • 84922422474 scopus 로고    scopus 로고
    • Cytosolic Hsp60 can modulate proteasome activity in yeast
    • &
    • Kalderon B, Kogan G, Bubis E & Pines O (2015) Cytosolic Hsp60 can modulate proteasome activity in yeast. J Biol Chem 290, 3542–3551.
    • (2015) J Biol Chem , vol.290 , pp. 3542-3551
    • Kalderon, B.1    Kogan, G.2    Bubis, E.3    Pines, O.4
  • 52
    • 0030667206 scopus 로고    scopus 로고
    • A yeast mutant showing diagnostic markers of early and late apoptosis
    • &
    • Madeo F, Fröhlich E & Fröhlich KU (1997) A yeast mutant showing diagnostic markers of early and late apoptosis. J Cell Biol 139, 729–734.
    • (1997) J Cell Biol , vol.139 , pp. 729-734
    • Madeo, F.1    Fröhlich, E.2    Fröhlich, K.U.3
  • 53
    • 84927909320 scopus 로고    scopus 로고
    • The dual role of a yeast metacaspase: what doesn't kill you makes you stronger
    • &
    • Hill SM & Nyström T (2015) The dual role of a yeast metacaspase: what doesn't kill you makes you stronger. BioEssays 37, 525–531.
    • (2015) BioEssays , vol.37 , pp. 525-531
    • Hill, S.M.1    Nyström, T.2
  • 55
    • 0347917233 scopus 로고    scopus 로고
    • The S. cerevisiae HtrA-like protein Nma111p is a nuclear serine protease that mediates yeast apoptosis
    • &
    • Fahrenkrog B, Sauder U & Aebi U (2004) The S. cerevisiae HtrA-like protein Nma111p is a nuclear serine protease that mediates yeast apoptosis. J Cell Sci 117, 115–126.
    • (2004) J Cell Sci , vol.117 , pp. 115-126
    • Fahrenkrog, B.1    Sauder, U.2    Aebi, U.3
  • 56
    • 33744523674 scopus 로고    scopus 로고
    • The inhibitor-of-apoptosis protein Bir1p protects against apoptosis in S. cerevisiae and is a substrate for the yeast homologue of Omi/HtrA2
    • &
    • Walter D, Wissing S, Madeo F & Fahrenkrog B (2006) The inhibitor-of-apoptosis protein Bir1p protects against apoptosis in S. cerevisiae and is a substrate for the yeast homologue of Omi/HtrA2. J Cell Sci 119, 1843–1851.
    • (2006) J Cell Sci , vol.119 , pp. 1843-1851
    • Walter, D.1    Wissing, S.2    Madeo, F.3    Fahrenkrog, B.4
  • 58
    • 34247469791 scopus 로고    scopus 로고
    • The mitochondrial pathway in yeast apoptosis
    • &
    • Eisenberg T, Büttner S, Kroemer G & Madeo F (2007) The mitochondrial pathway in yeast apoptosis. Apoptosis 12, 1011–1023.
    • (2007) Apoptosis , vol.12 , pp. 1011-1023
    • Eisenberg, T.1    Büttner, S.2    Kroemer, G.3    Madeo, F.4
  • 63
    • 84946592737 scopus 로고    scopus 로고
    • Mitochondrial iron-sulfur-cluster activity and cytosolic iron regulate iron traffic in Saccharomyces cerevisiae
    • &
    • Wofford JD & Lindahl PA (2015) Mitochondrial iron-sulfur-cluster activity and cytosolic iron regulate iron traffic in Saccharomyces cerevisiae. J Biol Chem 290, 26968–26977.
    • (2015) J Biol Chem , vol.290 , pp. 26968-26977
    • Wofford, J.D.1    Lindahl, P.A.2
  • 64
    • 84896800834 scopus 로고    scopus 로고
    • Crystal structures of nucleotide-free and glutathione-bound mitochondrial ABC transporter Atm1
    • &
    • Srinivasan V, Pierik AJ & Lill R (2014) Crystal structures of nucleotide-free and glutathione-bound mitochondrial ABC transporter Atm1. Science 343, 1137–1140.
    • (2014) Science , vol.343 , pp. 1137-1140
    • Srinivasan, V.1    Pierik, A.J.2    Lill, R.3
  • 65
    • 84896803955 scopus 로고    scopus 로고
    • Structural basis for heavy metal detoxification by an Atm1-type ABC exporter
    • &
    • Lee JY, Yang JG, Zhitnitsky D, Lewinson O & Rees DC (2014) Structural basis for heavy metal detoxification by an Atm1-type ABC exporter. Science 343, 1133–1136.
    • (2014) Science , vol.343 , pp. 1133-1136
    • Lee, J.Y.1    Yang, J.G.2    Zhitnitsky, D.3    Lewinson, O.4    Rees, D.C.5
  • 66
    • 84861850380 scopus 로고    scopus 로고
    • Monothiol CGFS glutaredoxins and BolA-like proteins: [2Fe-2S] binding partners in iron homeostasis
    • &
    • Li H & Outten CE (2012) Monothiol CGFS glutaredoxins and BolA-like proteins: [2Fe-2S] binding partners in iron homeostasis. Biochemistry 51, 4377–4389.
    • (2012) Biochemistry , vol.51 , pp. 4377-4389
    • Li, H.1    Outten, C.E.2
  • 68
    • 44849098197 scopus 로고    scopus 로고
    • Identification of FRA1 and FRA2 as genes involved in regulating the yeast iron regulon in response to decreased mitochondrial iron-sulfur cluster synthesis
    • Kumánovics A, Chen OS, Li L, Bagley D, Adkins EM, Lin H, Dingra NN, Outten CE, Keller G, Winge D et al. (2008) Identification of FRA1 and FRA2 as genes involved in regulating the yeast iron regulon in response to decreased mitochondrial iron-sulfur cluster synthesis. J Biol Chem 283, 10276–10286.
    • (2008) J Biol Chem , vol.283 , pp. 10276-10286
    • Kumánovics, A.1    Chen, O.S.2    Li, L.3    Bagley, D.4    Adkins, E.M.5    Lin, H.6    Dingra, N.N.7    Outten, C.E.8    Keller, G.9    Winge, D.10
  • 69
    • 85010562203 scopus 로고    scopus 로고
    • Iron sensing and regulation in Saccharomyces cerevisiae: ironing out the mechanistic details
    • Sambasivarao SV (2013) Iron sensing and regulation in Saccharomyces cerevisiae: ironing out the mechanistic details. Curr Opin Microbiol 18, 1199–1216.
    • (2013) Curr Opin Microbiol , vol.18 , pp. 1199-1216
    • Sambasivarao, S.V.1
  • 71
    • 84878981799 scopus 로고    scopus 로고
    • Negative feedback regulation of the yeast CTH1 and CTH2 mRNA binding proteins is required for adaptation to iron deficiency and iron supplementation
    • &
    • Martínez-Pastor M, Vergara SV, Puig S & Thiele DJ (2013) Negative feedback regulation of the yeast CTH1 and CTH2 mRNA binding proteins is required for adaptation to iron deficiency and iron supplementation. Mol Cell Biol 33, 2178–2187.
    • (2013) Mol Cell Biol , vol.33 , pp. 2178-2187
    • Martínez-Pastor, M.1    Vergara, S.V.2    Puig, S.3    Thiele, D.J.4
  • 72
    • 38949162530 scopus 로고    scopus 로고
    • Yap5 is an iron-responsive transcriptional activator that regulates vacuolar iron storage in yeast
    • &
    • Li L, Bagley D, Ward DM & Kaplan J (2008) Yap5 is an iron-responsive transcriptional activator that regulates vacuolar iron storage in yeast. Mol Cell Biol 28, 1326–1337.
    • (2008) Mol Cell Biol , vol.28 , pp. 1326-1337
    • Li, L.1    Bagley, D.2    Ward, D.M.3    Kaplan, J.4
  • 73
    • 84954423840 scopus 로고    scopus 로고
    • Reduced glucose sensation can increase the fitness of Saccharomyces cerevisiae lacking mitochondrial DNA
    • &
    • Akdoğan E, Tardu M, Garipler G, Baytek G, Kavaklı İH & Dunn CD (2015) Reduced glucose sensation can increase the fitness of Saccharomyces cerevisiae lacking mitochondrial DNA. PLoS ONE 11, e0146511.
    • (2015) PLoS ONE , vol.11
    • Akdoğan, E.1    Tardu, M.2    Garipler, G.3    Baytek, G.4    Kavaklı, İ.H.5    Dunn, C.D.6
  • 74
    • 84893354941 scopus 로고    scopus 로고
    • Deletion of conserved protein phosphatases reverses defects associated with mitochondrial DNA damage in Saccharomyces cerevisiae
    • &
    • Garipler G, Mutlu N, Lack NA & Dunn CD (2014) Deletion of conserved protein phosphatases reverses defects associated with mitochondrial DNA damage in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 111, 1473–1478.
    • (2014) Proc Natl Acad Sci USA , vol.111 , pp. 1473-1478
    • Garipler, G.1    Mutlu, N.2    Lack, N.A.3    Dunn, C.D.4
  • 75
    • 33747453769 scopus 로고    scopus 로고
    • Heme: a versatile signaling molecule controlling the activities of diverse regulators ranging from transcription factors to MAP kinases
    • &
    • Mense SM & Zhang L (2006) Heme: a versatile signaling molecule controlling the activities of diverse regulators ranging from transcription factors to MAP kinases. Cell Res 16, 681–692.
    • (2006) Cell Res , vol.16 , pp. 681-692
    • Mense, S.M.1    Zhang, L.2
  • 76
    • 0032729833 scopus 로고    scopus 로고
    • Molecular mechanism of heme signaling in yeast: the transcriptional activator Hap1 serves as the key mediator
    • &
    • Zhang L & Hach A (1999) Molecular mechanism of heme signaling in yeast: the transcriptional activator Hap1 serves as the key mediator. Cell Mol Life Sci 56, 415–426.
    • (1999) Cell Mol Life Sci , vol.56 , pp. 415-426
    • Zhang, L.1    Hach, A.2
  • 77
    • 0031019657 scopus 로고    scopus 로고
    • Regulation of hypoxic gene expression in yeast
    • &
    • Zitomer RS, Carrico P & Deckert J (1997) Regulation of hypoxic gene expression in yeast. Kidney Int 51, 507–513.
    • (1997) Kidney Int , vol.51 , pp. 507-513
    • Zitomer, R.S.1    Carrico, P.2    Deckert, J.3
  • 78
    • 0026559542 scopus 로고
    • Regulation of gene expression by oxygen in Saccharomyces cerevisiae
    • &
    • Zitomer RS & Lowry CV (1992) Regulation of gene expression by oxygen in Saccharomyces cerevisiae. Microbiol Rev 56, 1–11.
    • (1992) Microbiol Rev , vol.56 , pp. 1-11
    • Zitomer, R.S.1    Lowry, C.V.2
  • 79
    • 0032966290 scopus 로고    scopus 로고
    • Models for oxygen sensing in yeast: implications for oxygen-regulated gene expression in higher eucaryotes
    • Poyton RO (1999) Models for oxygen sensing in yeast: implications for oxygen-regulated gene expression in higher eucaryotes. Respir Physiol 115, 119–133.
    • (1999) Respir Physiol , vol.115 , pp. 119-133
    • Poyton, R.O.1
  • 80
    • 0031806619 scopus 로고    scopus 로고
    • Molecular mechanism governing heme signaling in yeast: a higher-order complex mediates heme regulation of the transcriptional activator HAP1
    • &
    • Zhang L, Hach A & Wang C (1998) Molecular mechanism governing heme signaling in yeast: a higher-order complex mediates heme regulation of the transcriptional activator HAP1. Mol Cell Biol 18, 3819–3828.
    • (1998) Mol Cell Biol , vol.18 , pp. 3819-3828
    • Zhang, L.1    Hach, A.2    Wang, C.3
  • 81
    • 0035163058 scopus 로고    scopus 로고
    • The Hsp70-Ydj1 molecular chaperone represses the activity of the heme activator protein Hap1 in the absence of heme
    • &
    • Hon T, Lee HC, Hach A, Johnson JL, Craig EA, Erdjument-Bromage H, Tempst P & Zhang L (2001) The Hsp70-Ydj1 molecular chaperone represses the activity of the heme activator protein Hap1 in the absence of heme. Mol Cell Biol 21, 7923–7932.
    • (2001) Mol Cell Biol , vol.21 , pp. 7923-7932
    • Hon, T.1    Lee, H.C.2    Hach, A.3    Johnson, J.L.4    Craig, E.A.5    Erdjument-Bromage, H.6    Tempst, P.7    Zhang, L.8
  • 82
    • 3042595446 scopus 로고    scopus 로고
    • A novel mode of chaperone action: heme activation of Hap1 by enhanced association of Hsp90 with the repressed Hsp70-Hap1 complex
    • &
    • Lan C, Lee HC, Tang S & Zhang L (2004) A novel mode of chaperone action: heme activation of Hap1 by enhanced association of Hsp90 with the repressed Hsp70-Hap1 complex. J Biol Chem 279, 27607–27612.
    • (2004) J Biol Chem , vol.279 , pp. 27607-27612
    • Lan, C.1    Lee, H.C.2    Tang, S.3    Zhang, L.4
  • 83
    • 35648957173 scopus 로고    scopus 로고
    • Heme levels Switch the function of Hap1 of Saccharomyces cerevisiae between transcriptional activator and transcriptional repressor
    • &
    • Hickman MJ & Winston F (2007) Heme levels Switch the function of Hap1 of Saccharomyces cerevisiae between transcriptional activator and transcriptional repressor. Mol Cell Biol 27, 7414–7424.
    • (2007) Mol Cell Biol , vol.27 , pp. 7414-7424
    • Hickman, M.J.1    Winston, F.2
  • 84
    • 84937522438 scopus 로고    scopus 로고
    • NAD+ metabolism and the control of energy homeostasis: a balancing act between mitochondria and the nucleus
    • &
    • Cantó C, Menzies KJ & Auwerx J (2015) NAD+ metabolism and the control of energy homeostasis: a balancing act between mitochondria and the nucleus. Cell Metab 22, 31–53.
    • (2015) Cell Metab , vol.22 , pp. 31-53
    • Cantó, C.1    Menzies, K.J.2    Auwerx, J.3
  • 85
    • 79957543031 scopus 로고    scopus 로고
    • Compartmentation of NAD+-dependent signalling
    • &
    • Koch-Nolte F, Fischer S, Haag F & Ziegler M (2011) Compartmentation of NAD+-dependent signalling. FEBS Lett 585, 1651–1656.
    • (2011) FEBS Lett , vol.585 , pp. 1651-1656
    • Koch-Nolte, F.1    Fischer, S.2    Haag, F.3    Ziegler, M.4
  • 86
    • 2942564591 scopus 로고    scopus 로고
    • Sirtuins: Sir2-related NAD-dependent protein deacetylases
    • &
    • North BJ & Verdin E (2004) Sirtuins: Sir2-related NAD-dependent protein deacetylases. Genome Biol 5, 224.
    • (2004) Genome Biol , vol.5 , pp. 224
    • North, B.J.1    Verdin, E.2
  • 87
    • 85010562203 scopus 로고    scopus 로고
    • Regulation of NAD+ metabolism, signaling and compartmentalization in the yeast Saccharomyces cerevisiae
    • Sambasivarao SV (2013) Regulation of NAD+ metabolism, signaling and compartmentalization in the yeast Saccharomyces cerevisiae. DNA Repair 18, 1199–1216.
    • (2013) DNA Repair , vol.18 , pp. 1199-1216
    • Sambasivarao, S.V.1
  • 88
    • 0347128279 scopus 로고    scopus 로고
    • Calorie restriction extends yeast life span by lowering the level of NADH
    • &
    • Lin S-J, Ford E, Haigis M, Liszt G & Guarente L (2004) Calorie restriction extends yeast life span by lowering the level of NADH. Genes Dev 18, 12–16.
    • (2004) Genes Dev , vol.18 , pp. 12-16
    • Lin, S.-J.1    Ford, E.2    Haigis, M.3    Liszt, G.4    Guarente, L.5
  • 89
    • 4544243684 scopus 로고    scopus 로고
    • Coenzyme specificity of Sir2 protein deacetylases: implications for physiological regulation
    • &
    • Schmidt MT, Smith BC, Jackson MD & Denu JM (2004) Coenzyme specificity of Sir2 protein deacetylases: implications for physiological regulation. J Biol Chem 279, 40122–40129.
    • (2004) J Biol Chem , vol.279 , pp. 40122-40129
    • Schmidt, M.T.1    Smith, B.C.2    Jackson, M.D.3    Denu, J.M.4
  • 93
    • 84875755814 scopus 로고    scopus 로고
    • Influence of metabolism on epigenetics and disease
    • &
    • Kaelin WG & McKnight SL (2013) Influence of metabolism on epigenetics and disease. Cell 153, 56–69.
    • (2013) Cell , vol.153 , pp. 56-69
    • Kaelin, W.G.1    McKnight, S.L.2
  • 94
    • 79851516332 scopus 로고    scopus 로고
    • Dual targeting of mitochondrial proteins: mechanism, regulation and function
    • &
    • Yogev O & Pines O (2011) Dual targeting of mitochondrial proteins: mechanism, regulation and function. Biochim Biophys Acta 1808, 1012–1020.
    • (2011) Biochim Biophys Acta , vol.1808 , pp. 1012-1020
    • Yogev, O.1    Pines, O.2
  • 95
    • 84974687278 scopus 로고    scopus 로고
    • Protein folding as a driving force for dual protein targeting in eukaryotes
    • &
    • Kalderon B & Pines O (2014) Protein folding as a driving force for dual protein targeting in eukaryotes. Front Mol Biosci 1, 23.
    • (2014) Front Mol Biosci , vol.1 , pp. 23
    • Kalderon, B.1    Pines, O.2
  • 96
    • 84951837246 scopus 로고    scopus 로고
    • Mitochondrial proteins moonlighting in the nucleus
    • &
    • Monaghan RM & Whitmarsh AJ (2015) Mitochondrial proteins moonlighting in the nucleus. Trends Biochem Sci 40, 1–8.
    • (2015) Trends Biochem Sci , vol.40 , pp. 1-8
    • Monaghan, R.M.1    Whitmarsh, A.J.2
  • 97
    • 80255122737 scopus 로고    scopus 로고
    • Fumarase: a paradigm of dual targeting and dual localized functions
    • &
    • Yogev O, Naamati A & Pines O (2011) Fumarase: a paradigm of dual targeting and dual localized functions. FEBS J 278, 4230–4242.
    • (2011) FEBS J , vol.278 , pp. 4230-4242
    • Yogev, O.1    Naamati, A.2    Pines, O.3
  • 98
    • 71049136017 scopus 로고    scopus 로고
    • Dual targeting of Nfs1 and discovery of its novel processing enzyme, Icp55
    • &
    • Naamati A, Regev-Rudzki N, Galperin S, Lill R & Pines O (2009) Dual targeting of Nfs1 and discovery of its novel processing enzyme, Icp55. J Biol Chem 284, 30200–30208.
    • (2009) J Biol Chem , vol.284 , pp. 30200-30208
    • Naamati, A.1    Regev-Rudzki, N.2    Galperin, S.3    Lill, R.4    Pines, O.5
  • 99
    • 22544484179 scopus 로고    scopus 로고
    • Rpm2p, a component of yeast mitochondrial RNase P, acts as a transcriptional activator in the nucleus
    • &
    • Stribinskis V, Heyman H-C, Ellis SR, Steffen MC & Martin NC (2005) Rpm2p, a component of yeast mitochondrial RNase P, acts as a transcriptional activator in the nucleus. Mol Cell Biol 25, 6546–6558.
    • (2005) Mol Cell Biol , vol.25 , pp. 6546-6558
    • Stribinskis, V.1    Heyman, H.-C.2    Ellis, S.R.3    Steffen, M.C.4    Martin, N.C.5
  • 100
    • 81855185408 scopus 로고    scopus 로고
    • A third of the yeast mitochondrial proteome is dual localized: a question of evolution
    • &
    • Ben-Menachem R, Tal M, Shadur T & Pines O (2011) A third of the yeast mitochondrial proteome is dual localized: a question of evolution. Proteomics 11, 4468–4476.
    • (2011) Proteomics , vol.11 , pp. 4468-4476
    • Ben-Menachem, R.1    Tal, M.2    Shadur, T.3    Pines, O.4
  • 101
    • 84930342555 scopus 로고    scopus 로고
    • Dual-targeted proteins tend to be more evolutionarily conserved
    • &
    • Kisslov I, Naamati A, Shakarchy N & Pines O (2014) Dual-targeted proteins tend to be more evolutionarily conserved. Mol Biol Evol 31, 2770–2779.
    • (2014) Mol Biol Evol , vol.31 , pp. 2770-2779
    • Kisslov, I.1    Naamati, A.2    Shakarchy, N.3    Pines, O.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.