-
1
-
-
68949128587
-
Function and biogenesis of iron-sulphur proteins
-
Lill R. 2009. Function and biogenesis of iron-sulphur proteins. Nature 460:831-838.
-
(2009)
Nature
, vol.460
, pp. 831-838
-
-
Lill, R.1
-
2
-
-
84864296714
-
The role of mitochondria in cellular iron-sulfur protein biogenesis and iron metabolism
-
Lill R, Hoffmann B, Molik S, Pierik AJ, Rietzschel N, Stehling O, Uzarska MA, Webert H, Wilbrecht C, Muhlenhoff U. 2012. The role of mitochondria in cellular iron-sulfur protein biogenesis and iron metabolism. Biochim. Biophys. Acta 1823:1491-1508.
-
(2012)
Biochim. Biophys. Acta
, vol.1823
, pp. 1491-1508
-
-
Lill, R.1
Hoffmann, B.2
Molik, S.3
Pierik, A.J.4
Rietzschel, N.5
Stehling, O.6
Uzarska, M.A.7
Webert, H.8
Wilbrecht, C.9
Muhlenhoff, U.10
-
3
-
-
47249094614
-
Maturation of iron-sulfur proteins in eukaryotes: mechanisms, connected processes, and diseases
-
Lill R, Muhlenhoff U. 2008. Maturation of iron-sulfur proteins in eukaryotes: mechanisms, connected processes, and diseases. Annu. Rev. Biochem. 77:669-700.
-
(2008)
Annu. Rev. Biochem.
, vol.77
, pp. 669-700
-
-
Lill, R.1
Muhlenhoff, U.2
-
4
-
-
33847050240
-
Non-heme dioxygenases: cellular sensors and regulators jelly rolled into one?
-
Ozer A, Bruick RK. 2007. Non-heme dioxygenases: cellular sensors and regulators jelly rolled into one? Nat. Chem. Biol. 3:144-153.
-
(2007)
Nat. Chem. Biol.
, vol.3
, pp. 144-153
-
-
Ozer, A.1
Bruick, R.K.2
-
5
-
-
84859417866
-
The hepcidin-ferroportin system as a therapeutic target in anemias and iron overload disorders
-
Ganz T, Nemeth E. 2011. The hepcidin-ferroportin system as a therapeutic target in anemias and iron overload disorders. Hematology Am. Soc. Hematol. Educ. Program 2011:538 -542.
-
(2011)
Hematology Am. Soc. Hematol. Educ. Program
, vol.2011
, pp. 538-542
-
-
Ganz, T.1
Nemeth, E.2
-
7
-
-
84858731200
-
The 2012 version of the gene table of monogenic neuromuscular disorders
-
Kaplan JC. 2011. The 2012 version of the gene table of monogenic neuromuscular disorders. Neuromuscul. Disord. 21:833-861.
-
(2011)
Neuromuscul. Disord.
, vol.21
, pp. 833-861
-
-
Kaplan, J.C.1
-
10
-
-
33746361251
-
The role of iron regulatory proteins in mammalian iron homeostasis and disease
-
Rouault TA. 2006. The role of iron regulatory proteins in mammalian iron homeostasis and disease. Nat. Chem. Biol. 2:406-414.
-
(2006)
Nat. Chem. Biol.
, vol.2
, pp. 406-414
-
-
Rouault, T.A.1
-
11
-
-
1842608845
-
Iron metabolism and the IRE/IRP regulatory system: an update
-
Pantopoulos K. 2004. Iron metabolism and the IRE/IRP regulatory system: an update. Ann. N. Y. Acad. Sci. 1012:1-13.
-
(2004)
Ann. N. Y. Acad. Sci.
, vol.1012
, pp. 1-13
-
-
Pantopoulos, K.1
-
12
-
-
70350576223
-
An E3 ligase possessing an iron-responsive hemerythrin domain is a regulator of iron homeostasis
-
Salahudeen AA, Thompson JW, Ruiz JC, Ma HW, Kinch LN, Li Q, Grishin NV, Bruick RK. 2009. An E3 ligase possessing an iron-responsive hemerythrin domain is a regulator of iron homeostasis. Science 326:722-726.
-
(2009)
Science
, vol.326
, pp. 722-726
-
-
Salahudeen, A.A.1
Thompson, J.W.2
Ruiz, J.C.3
Ma, H.W.4
Kinch, L.N.5
Li, Q.6
Grishin, N.V.7
Bruick, R.K.8
-
13
-
-
70350613915
-
Control of iron homeostasis by an ironregulated ubiquitin ligase
-
Vashisht AA, Zumbrennen KB, Huang X, Powers DN, Durazo A, Sun D, Bhaskaran N, Persson A, Uhlen M, Sangfelt O, Spruck C, Leibold EA, Wohlschlegel JA. 2009. Control of iron homeostasis by an ironregulated ubiquitin ligase. Science 326:718-721.
-
(2009)
Science
, vol.326
, pp. 718-721
-
-
Vashisht, A.A.1
Zumbrennen, K.B.2
Huang, X.3
Powers, D.N.4
Durazo, A.5
Sun, D.6
Bhaskaran, N.7
Persson, A.8
Uhlen, M.9
Sangfelt, O.10
Spruck, C.11
Leibold, E.A.12
Wohlschlegel, J.A.13
-
14
-
-
84861203729
-
The role of the Yap5 transcription factor in remodeling gene expression in response to Fe bioavailability
-
doi: 10.1371/journal.pone.0037434
-
Pimentel C, Vicente C, Menezes RA, Caetano S, Carreto L, Rodrigues-Pousada C. 2012. The role of the Yap5 transcription factor in remodeling gene expression in response to Fe bioavailability. PLoS One 7:e37434. doi: 10.1371/journal.pone.0037434.
-
(2012)
PLoS One
, vol.7
-
-
Pimentel, C.1
Vicente, C.2
Menezes, R.A.3
Caetano, S.4
Carreto, L.5
Rodrigues-Pousada, C.6
-
15
-
-
70350657148
-
Iron acquisition and transcriptional regulation
-
Kaplan CD, Kaplan J. 2009. Iron acquisition and transcriptional regulation. Chem. Rev. 109:4536-4552.
-
(2009)
Chem. Rev.
, vol.109
, pp. 4536-4552
-
-
Kaplan, C.D.1
Kaplan, J.2
-
16
-
-
40649120516
-
Response to iron deprivation in Saccharomyces cerevisiae
-
Philpott CC, Protchenko O. 2008. Response to iron deprivation in Saccharomyces cerevisiae. Eukaryot. Cell 7:20-27.
-
(2008)
Eukaryot. Cell
, vol.7
, pp. 20-27
-
-
Philpott, C.C.1
Protchenko, O.2
-
17
-
-
84878990808
-
Causes and consequences of nutritional iron deficiency in living organisms
-
Merkin TC (ed), Nova Science Publishers, Inc., New York, NY
-
Sanvisens N, Puig S. 2011. Causes and consequences of nutritional iron deficiency in living organisms, p 245-276. In Merkin TC (ed), Biology of starvation in humans and other organisms. Nova Science Publishers, Inc., New York, NY.
-
(2011)
Biology of starvation in humans and other organisms.
, pp. 245-276
-
-
Sanvisens, N.1
Puig, S.2
-
18
-
-
0032516626
-
Feedback inhibition of macrophage tumor necrosis factor-alpha production by tristetraprolin
-
Carballo E, Lai WS, Blackshear PJ. 1998. Feedback inhibition of macrophage tumor necrosis factor-alpha production by tristetraprolin. Science 281:1001-1005.
-
(1998)
Science
, vol.281
, pp. 1001-1005
-
-
Carballo, E.1
Lai, W.S.2
Blackshear, P.J.3
-
19
-
-
11844257593
-
Coordinated remodeling of cellular metabolism during iron deficiency through targeted mRNA degradation
-
Puig S, Askeland E, Thiele DJ. 2005. Coordinated remodeling of cellular metabolism during iron deficiency through targeted mRNA degradation. Cell 120:99-110.
-
(2005)
Cell
, vol.120
, pp. 99-110
-
-
Puig, S.1
Askeland, E.2
Thiele, D.J.3
-
20
-
-
44349183685
-
Cooperation of two mRNA-binding proteins drives metabolic adaptation to iron deficiency
-
Puig S, Vergara SV, Thiele DJ. 2008. Cooperation of two mRNA-binding proteins drives metabolic adaptation to iron deficiency. Cell Metab. 7:555-564.
-
(2008)
Cell Metab.
, vol.7
, pp. 555-564
-
-
Puig, S.1
Vergara, S.V.2
Thiele, D.J.3
-
21
-
-
57649140337
-
The Cth2 ARE-binding protein recruits the Dhh1 helicase to promote the decay of succinate dehydrogenase SDH4 mRNA in response to iron deficiency
-
Pedro-Segura E, Vergara SV, Rodriguez-Navarro S, Parker R, Thiele DJ, Puig S. 2008. The Cth2 ARE-binding protein recruits the Dhh1 helicase to promote the decay of succinate dehydrogenase SDH4 mRNA in response to iron deficiency. J. Biol. Chem. 283:28527-28535.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 28527-28535
-
-
Pedro-Segura, E.1
Vergara, S.V.2
Rodriguez-Navarro, S.3
Parker, R.4
Thiele, D.J.5
Puig, S.6
-
22
-
-
44349084822
-
The mRNA encoding the yeast ARE-binding protein Cth2 is generated by a novel 3= processing pathway
-
Ciais D, Bohnsack MT, Tollervey D. 2008. The mRNA encoding the yeast ARE-binding protein Cth2 is generated by a novel 3= processing pathway. Nucleic Acids Res. 36:3075-3084.
-
(2008)
Nucleic Acids Res.
, vol.36
, pp. 3075-3084
-
-
Ciais, D.1
Bohnsack, M.T.2
Tollervey, D.3
-
23
-
-
56549129201
-
Regulation of ARE transcript 3= end processing by the yeast Cth2 mRNA decay factor
-
Prouteau M, Daugeron MC, Seraphin B. 2008. Regulation of ARE transcript 3= end processing by the yeast Cth2 mRNA decay factor. EMBO J. 27:2966-2976.
-
(2008)
EMBO J.
, vol.27
, pp. 2966-2976
-
-
Prouteau, M.1
Daugeron, M.C.2
Seraphin, B.3
-
24
-
-
83455219467
-
Regulation of ribonucleotide reductase in response to iron deficiency
-
Sanvisens N, Bano MC, Huang M, Puig S. 2011. Regulation of ribonucleotide reductase in response to iron deficiency. Mol. Cell 44:759 -769.
-
(2011)
Mol. Cell
, vol.44
, pp. 759-769
-
-
Sanvisens, N.1
Bano, M.C.2
Huang, M.3
Puig, S.4
-
25
-
-
0029776689
-
A three-hybrid system to detect RNA-protein interactions in vivo
-
SenGupta DJ, Zhang B, Kraemer B, Pochart P, Fields S, Wickens M. 1996. A three-hybrid system to detect RNA-protein interactions in vivo. Proc. Natl. Acad. Sci. U. S. A. 93:8496-8501.
-
(1996)
Proc. Natl. Acad. Sci. U. S. A.
, vol.93
, pp. 8496-8501
-
-
SenGupta, D.J.1
Zhang, B.2
Kraemer, B.3
Pochart, P.4
Fields, S.5
Wickens, M.6
-
26
-
-
0037438569
-
Automated screening in environmental arrays allows analysis of quantitative phenotypic profiles in Saccharomyces cerevisiae
-
Warringer J, Blomberg A. 2003. Automated screening in environmental arrays allows analysis of quantitative phenotypic profiles in Saccharomyces cerevisiae. Yeast 20:53-67.
-
(2003)
Yeast
, vol.20
, pp. 53-67
-
-
Warringer, J.1
Blomberg, A.2
-
27
-
-
0037135627
-
Biochemical and genetic analyses of yeast and human high affinity copper transporters suggest a conserved mechanism for copper uptake
-
Puig S, Lee J, Lau M, Thiele DJ. 2002. Biochemical and genetic analyses of yeast and human high affinity copper transporters suggest a conserved mechanism for copper uptake. J. Biol. Chem. 277:26021-26030.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 26021-26030
-
-
Puig, S.1
Lee, J.2
Lau, M.3
Thiele, D.J.4
-
28
-
-
64749102771
-
Correlation between biofilm formation and the hypoxic response in Candida parapsilosis
-
Rossignol T, Ding C, Guida A, d'Enfert C, Higgins DG, Butler G. 2009. Correlation between biofilm formation and the hypoxic response in Candida parapsilosis. Eukaryot. Cell 8:550-559.
-
(2009)
Eukaryot. Cell
, vol.8
, pp. 550-559
-
-
Rossignol, T.1
Ding, C.2
Guida, A.3
d'Enfert, C.4
Higgins, D.G.5
Butler, G.6
-
29
-
-
71049129777
-
Mitochondrial function is an inducible determinant of osmotic stress adaptation in yeast
-
Pastor MM, Proft M, Pascual-Ahuir A. 2009. Mitochondrial function is an inducible determinant of osmotic stress adaptation in yeast. J. Biol. Chem. 284:30307-30317.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 30307-30317
-
-
Pastor, M.M.1
Proft, M.2
Pascual-Ahuir, A.3
-
30
-
-
78751484964
-
Early recruitment of AU-rich element-containing mRNAs determines their cytosolic fate during iron deficiency
-
Vergara SV, Puig S, Thiele DJ. 2011. Early recruitment of AU-rich element-containing mRNAs determines their cytosolic fate during iron deficiency. Mol. Cell. Biol. 31:417-429.
-
(2011)
Mol. Cell. Biol.
, vol.31
, pp. 417-429
-
-
Vergara, S.V.1
Puig, S.2
Thiele, D.J.3
-
31
-
-
0029800497
-
Cloning and characterization of two yeast genes encoding members of the CCCH class of zinc finger proteins: zinc finger-mediated impairment of cell growth
-
Thompson MJ, Lai WS, Taylor GA, Blackshear PJ. 1996. Cloning and characterization of two yeast genes encoding members of the CCCH class of zinc finger proteins: zinc finger-mediated impairment of cell growth. Gene 174:225-233.
-
(1996)
Gene
, vol.174
, pp. 225-233
-
-
Thompson, M.J.1
Lai, W.S.2
Taylor, G.A.3
Blackshear, P.J.4
-
32
-
-
38949162530
-
Yap5 is an iron-responsive transcriptional activator that regulates vacuolar iron storage in yeast
-
Li L, Bagley D, Ward DM, Kaplan J. 2008. Yap5 is an iron-responsive transcriptional activator that regulates vacuolar iron storage in yeast. Mol. Cell. Biol. 28:1326-1337.
-
(2008)
Mol. Cell. Biol.
, vol.28
, pp. 1326-1337
-
-
Li, L.1
Bagley, D.2
Ward, D.M.3
Kaplan, J.4
-
33
-
-
77649315475
-
Iron regulation through the back door: iron-dependent metabolite levels contribute to transcriptional adaptation to iron deprivation in Saccharomyces cerevisiae
-
Ihrig J, Hausmann A, Hain A, Richter N, Hamza I, Lill R, Muhlenhoff U. 2010. Iron regulation through the back door: iron-dependent metabolite levels contribute to transcriptional adaptation to iron deprivation in Saccharomyces cerevisiae. Eukaryot. Cell 9:460-471.
-
(2010)
Eukaryot. Cell
, vol.9
, pp. 460-471
-
-
Ihrig, J.1
Hausmann, A.2
Hain, A.3
Richter, N.4
Hamza, I.5
Lill, R.6
Muhlenhoff, U.7
-
35
-
-
53949098609
-
Transient transcriptional responses to stress are generated by opposing effects of mRNA production and degradation
-
Shalem O, Dahan O, Levo M, Martinez MR, Furman I, Segal E, Pilpel Y. 2008. Transient transcriptional responses to stress are generated by opposing effects of mRNA production and degradation. Mol. Syst. Biol. 4:223.
-
(2008)
Mol. Syst. Biol.
, vol.4
, pp. 223
-
-
Shalem, O.1
Dahan, O.2
Levo, M.3
Martinez, M.R.4
Furman, I.5
Segal, E.6
Pilpel, Y.7
-
36
-
-
0034653560
-
Evidence that tristetraprolin is a physiological regulator of granulocyte-macrophage colony-stimulating factor messenger RNA deadenylation and stability
-
Carballo E, Lai WS, Blackshear PJ. 2000. Evidence that tristetraprolin is a physiological regulator of granulocyte-macrophage colony-stimulating factor messenger RNA deadenylation and stability. Blood 95:1891-1899.
-
(2000)
Blood
, vol.95
, pp. 1891-1899
-
-
Carballo, E.1
Lai, W.S.2
Blackshear, P.J.3
-
37
-
-
84864634079
-
Tristetraprolin impairs myc-induced lymphoma and abolishes the malignant state
-
Rounbehler RJ, Fallahi M, Yang C, Steeves MA, Li W, Doherty JR, Schaub FX, Sanduja S, Dixon DA, Blackshear PJ, Cleveland JL. 2012. Tristetraprolin impairs myc-induced lymphoma and abolishes the malignant state. Cell 150:563-574.
-
(2012)
Cell
, vol.150
, pp. 563-574
-
-
Rounbehler, R.J.1
Fallahi, M.2
Yang, C.3
Steeves, M.A.4
Li, W.5
Doherty, J.R.6
Schaub, F.X.7
Sanduja, S.8
Dixon, D.A.9
Blackshear, P.J.10
Cleveland, J.L.11
-
38
-
-
2942623942
-
The role of mRNA turnover in the regulation of tristetraprolin expression: evidence for an extracellular signal-regulated kinase-specific, AU-rich element-dependent, autoregulatory pathway
-
Brooks SA, Connolly JE, Rigby WF. 2004. The role of mRNA turnover in the regulation of tristetraprolin expression: evidence for an extracellular signal-regulated kinase-specific, AU-rich element-dependent, autoregulatory pathway. J. Immunol. 172:7263-7271.
-
(2004)
J. Immunol.
, vol.172
, pp. 7263-7271
-
-
Brooks, S.A.1
Connolly, J.E.2
Rigby, W.F.3
-
39
-
-
3543003469
-
The stability of tristetraprolin mRNA is regulated by mitogen-activated protein kinase p38 and by tristetraprolin itself
-
Tchen CR, Brook M, Saklatvala J, Clark AR. 2004. The stability of tristetraprolin mRNA is regulated by mitogen-activated protein kinase p38 and by tristetraprolin itself. J. Biol. Chem. 279:32393-32400.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 32393-32400
-
-
Tchen, C.R.1
Brook, M.2
Saklatvala, J.3
Clark, A.R.4
|