-
1
-
-
0001578518
-
A learning algorithm for Boltzmann machines
-
Ackley, H., Hinton, E., & Sejnowski, J. (1985). A learning algorithm for Boltzmann machines. Cognitive Science, 9, 147–169.
-
(1985)
Cognitive Science
, vol.9
, pp. 147-169
-
-
Ackley, H.1
Hinton, E.2
Sejnowski, J.3
-
2
-
-
84886502372
-
Automatically mapped transfer between reinforcement learning tasks via three-way restricted boltzmann machines. In H. Blockeel, K. Kersting, S. Nijssen, & F. Elezn (Eds.), Machine learning and knowledge discovery in databases (Vol. 8189, pp. 449–464). Lecture Notes in Computer Science Berlin: Springer
-
Ammar, H. B., Mocanu, D. C., Taylor, M., Driessens, K., Tuyls, K., & Weiss, G. (2013). Automatically mapped transfer between reinforcement learning tasks via three-way restricted boltzmann machines. In H. Blockeel, K. Kersting, S. Nijssen, & F. Elezn (Eds.), Machine learning and knowledge discovery in databases (Vol. 8189, pp. 449–464). Lecture Notes in Computer Science Berlin: Springer. doi:10.1007/978-3-642-40991-2_29.
-
(2013)
doi:10.1007/978-3-642-40991-2_29
-
-
Ammar, H.B.1
Mocanu, D.C.2
Taylor, M.3
Driessens, K.4
Tuyls, K.5
Weiss, G.6
-
4
-
-
0038483826
-
Emergence of scaling in random networks
-
Barabasi, A. L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439), 509–512. doi:10.1126/science.286.5439.509.
-
(1999)
Science
, vol.286
, Issue.5439
, pp. 509-512
-
-
Barabasi, A.L.1
Albert, R.2
-
5
-
-
69349090197
-
Learning deep architectures for AI
-
Bengio, Y. (2009). Learning deep architectures for AI. Foundations and Trends in Machine Learning, 2(1), 1–127. doi:10.1561/2200000006.
-
(2009)
Foundations and Trends in Machine Learning
, vol.2
, Issue.1
, pp. 1-127
-
-
Bengio, Y.1
-
6
-
-
84882277761
-
The flip-the-state transition operator for restricted Boltzmann machines
-
Brgge, K., Fischer, A., & Igel, C. (2013). The flip-the-state transition operator for restricted Boltzmann machines. Machine Learning, 93(1), 53–69. doi:10.1007/s10994-013-5390-3.
-
(2013)
Machine Learning
, vol.93
, Issue.1
, pp. 53-69
-
-
Brgge, K.1
Fischer, A.2
Igel, C.3
-
8
-
-
65549085067
-
Power-law distributions in empirical data
-
Clauset, A., Shalizi, C. R., & Newman, M. E. J. (2009). Power-law distributions in empirical data. SIAM Review, 51(4), 661–703. doi:10.1137/070710111.
-
(2009)
SIAM Review
, vol.51
, Issue.4
, pp. 661-703
-
-
Clauset, A.1
Shalizi, C.R.2
Newman, M.E.J.3
-
9
-
-
80054751596
-
All scale-free networks are sparse
-
Del Genio, C. I., Gross, T., & Bassler, K. E. (2011). All scale-free networks are sparse. Physical Review Letter, 107, 178701. doi:10.1103/PhysRevLett.107.178701.
-
(2011)
Physical Review Letter
, vol.107
, pp. 178701
-
-
Del Genio, C.I.1
Gross, T.2
Bassler, K.E.3
-
10
-
-
84862293204
-
Tempered Markov Chain Monte Carlo for training of restricted Boltzmann machines
-
Sardinia, Chia Laguna Resort
-
Desjardins, G., Courville, A., Bengio, Y., Vincent, P., & Delalleau, O. (2010). Tempered Markov Chain Monte Carlo for training of restricted Boltzmann machines. In Y. W. Teh, & M. Titterington (Eds.), Proceedings of the thirteenth international conference on artificial intelligence and statistics (pp. 145–152), May 13–15, 2010. Sardinia: Chia Laguna Resort.
-
(2010)
Proceedings of the thirteenth international conference on artificial intelligence and statistics (pp. 145–152), May 13–15
, pp. 2010
-
-
Desjardins, G.1
Courville, A.2
Bengio, Y.3
Vincent, P.4
Delalleau, O.5
Teh, Y.W.6
Titterington, M.7
-
11
-
-
84981694218
-
Accelerating sparse restricted Boltzmann machine training using non-gaussianity measures. In Y. Bengiom, J. Bergstra, & Q. Le (Eds.) Proceedings of deep learning and unsupervised feature learning (p
-
Dieleman, S., & Schrauwen, B. (2012). Accelerating sparse restricted Boltzmann machine training using non-gaussianity measures. In Y. Bengiom, J. Bergstra, & Q. Le (Eds.) Proceedings of deep learning and unsupervised feature learning (p. 9).
-
(2012)
9)
-
-
Dieleman, S.1
Schrauwen, B.2
-
12
-
-
33749243771
-
The rate adapting poisson model for information retrieval and object recognition. In Proceedings of the 23rd international conference on machine learning, ACM
-
Gehler, P. V., Holub, A. D., & Welling, M. (2006). The rate adapting poisson model for information retrieval and object recognition. In Proceedings of the 23rd international conference on machine learning, ACM, ICML ’06 (pp. 337–344). doi:10.1145/1143844.1143887.
-
(2006)
ICML ’06
, pp. 337-344
-
-
Gehler, P.V.1
Holub, A.D.2
Welling, M.3
-
13
-
-
84969749373
-
MADE: Masked autoencoder for distribution estimation. In Proceedings of the 32nd international conference on machine learning, JMLR.org
-
Germain, M., Gregor, K., Murray, I., & Larochelle, H. (2015). MADE: Masked autoencoder for distribution estimation. In Proceedings of the 32nd international conference on machine learning, JMLR.org, JMLR Proceedings (Vol. 37, pp. 881–889).
-
(2015)
JMLR Proceedings
, vol.37
, pp. 881-889
-
-
Germain, M.1
Gregor, K.2
Murray, I.3
Larochelle, H.4
-
14
-
-
67249148362
-
Exploring network structure, dynamics, and function using NetworkX
-
Pasadena: CA USA
-
Hagberg, A. A., Schult, D. A., & Swart, P. J. (2008). Exploring network structure, dynamics, and function using NetworkX. In Proceedings of the 7th python in science conference (SciPy2008) (pp. 11–15), Pasadena: CA USA.
-
(2008)
In Proceedings of the 7th python in science conference (SciPy2008)
, pp. 11-15
-
-
Hagberg, A.A.1
Schult, D.A.2
Swart, P.J.3
-
15
-
-
0000224828
-
On realizability of a set of integers as degrees of the vertices of a linear graph. I
-
Hakimi, S. L. (1962). On realizability of a set of integers as degrees of the vertices of a linear graph. I. Journal of Society for Industrial and Applied Mathematics, 10, 496–506.
-
(1962)
Journal of Society for Industrial and Applied Mathematics
, vol.10
, pp. 496-506
-
-
Hakimi, S.L.1
-
16
-
-
84965140688
-
Learning both weights and connections for efficient neural network
-
Cortes C, Lawrence ND, Lee DD, Sugiyama M, Garnett R, (eds), 28, Curran Associates Inc, Red Hook
-
Han, S., Pool, J., Tran, J., & Dally, W. (2015). Learning both weights and connections for efficient neural network. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, & R. Garnett (Eds.), Advances in neural information processing systems (Vol. 28, pp. 1135–1143). Red Hook: Curran Associates Inc.
-
(2015)
Advances in neural information processing systems
, pp. 1135-1143
-
-
Han, S.1
Pool, J.2
Tran, J.3
Dally, W.4
-
17
-
-
84872506495
-
A practical guide to training restricted Boltzmann machines
-
Lecture Notes in Computer Science. Berlin: Springer
-
Hinton, G., (2012). A practical guide to training restricted Boltzmann machines. In Neural networks: Tricks of the trade (Vol. 7700, pp. 599–619). Lecture Notes in Computer Science. Berlin: Springer. doi:10.1007/978-3-642-35289-8_32.
-
(2012)
In Neural networks: Tricks of the trade
, vol.7700
, pp. 599-619
-
-
Hinton, G.1
-
18
-
-
0013344078
-
Training products of experts by minimizing contrastive divergence
-
Hinton, G. E. (2002). Training products of experts by minimizing contrastive divergence. Neural Computation, 14(8), 1771–1800. doi:10.1162/089976602760128018.
-
(2002)
Neural Computation
, vol.14
, Issue.8
, pp. 1771-1800
-
-
Hinton, G.E.1
-
19
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. Science, 313(5786), 504–507. doi:10.1126/science.1127647.
-
(2006)
Science
, vol.313
, Issue.5786
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
20
-
-
84892142922
-
Computer science: The learning machines
-
Jones, N. (2014). Computer science: The learning machines. Nature, 505(7482), 146–148.
-
(2014)
Nature
, vol.505
, Issue.7482
, pp. 146-148
-
-
Jones, N.1
-
21
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 25, 1097–1105.
-
(2012)
Advances in Neural Information Processing Systems
, vol.25
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
22
-
-
56449110012
-
Classification using discriminative restricted Boltzmann machines. In Proceedings of the 25th international conference on machine learning, ACM
-
Larochelle, H., & Bengio, Y. (2008). Classification using discriminative restricted Boltzmann machines. In Proceedings of the 25th international conference on machine learning, ACM, ICML ’08 (pp. 536–543). doi:10.1145/1390156.1390224
-
(2008)
ICML ’08
, pp. 536-543
-
-
Larochelle, H.1
Bengio, Y.2
-
23
-
-
84861999538
-
The neural autoregressive distribution estimator. In AISTATS, JMLR.org
-
Larochelle, H., & Murray, I. (2011). The neural autoregressive distribution estimator. In AISTATS, JMLR.org, JMLR Proceedings (Vol. 15, pp 29–37).
-
(2011)
JMLR Proceedings
, vol.15
, pp. 29-37
-
-
Larochelle, H.1
Murray, I.2
-
24
-
-
38349107283
-
Basic notions for the analysis of large two-mode networks
-
Latapy, M., Magnien, C., & Vecchio, N. D. (2008). Basic notions for the analysis of large two-mode networks. Social Networks, 30(1), 31–48. doi:10.1016/j.socnet.2007.04.006.
-
(2008)
Social Networks
, vol.30
, Issue.1
, pp. 31-48
-
-
Latapy, M.1
Magnien, C.2
Vecchio, N.D.3
-
25
-
-
85161980001
-
Sparse deep belief net model for visual area v2
-
Platt J, Koller D, Singer Y, Roweis S, (eds), 20, Curran Associates Inc, Red Hook
-
Lee, H., Ekanadham, C., & Ng, A. Y. (2008). Sparse deep belief net model for visual area v2. In J. Platt, D. Koller, Y. Singer, & S. Roweis (Eds.), Advances in Neural Information Processing System (Vol. 20, pp. 873–880). Red Hook: Curran Associates Inc.
-
(2008)
Advances in Neural Information Processing System
, pp. 873-880
-
-
Lee, H.1
Ekanadham, C.2
Ng, A.Y.3
-
26
-
-
84863380535
-
Unsupervised feature learning for audio classification using convolutional deep belief networks
-
Lee, H., Pham, P., Largman, Y., & Ng, A. Y. (2009). Unsupervised feature learning for audio classification using convolutional deep belief networks. Advances in Neural Information Processing Systems, 22, 1096–1104.
-
(2009)
Advances in Neural Information Processing Systems
, vol.22
, pp. 1096-1104
-
-
Lee, H.1
Pham, P.2
Largman, Y.3
Ng, A.Y.4
-
27
-
-
84899419802
-
Sparse group restricted boltzmann machines
-
Burgard W, Roth D, (eds), AAAI Press, Menlo Park
-
Luo, H., Shen, R., Niu, C., & Ullrich, C. (2011). Sparse group restricted boltzmann machines. In W. Burgard & D. Roth (Eds.), AAAI. Menlo Park: AAAI Press.
-
(2011)
AAAI
-
-
Luo, H.1
Shen, R.2
Niu, C.3
Ullrich, C.4
-
28
-
-
80053455323
-
Inductive principles for restricted boltzmann machine learning. In AISTATS, JMLR.org
-
Marlin, B. M., Swersky, K., Chen, B., & de Freitas, N. (2010). Inductive principles for restricted boltzmann machine learning. In AISTATS, JMLR.org, JMLR Proceedings (Vol. 9, pp. 509–516)
-
(2010)
JMLR Proceedings
, vol.9
, pp. 509-516
-
-
Marlin, B.M.1
Swersky, K.2
Chen, B.3
de Freitas, N.4
-
29
-
-
84924051598
-
Human-level control through deep reinforcement learning
-
Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., et al. (2015). Human-level control through deep reinforcement learning. Nature, 518(7540), 529–533. doi:10.1038/nature14236.
-
(2015)
Nature
, vol.518
, Issue.7540
, pp. 529-533
-
-
Mnih, V.1
Kavukcuoglu, K.2
Silver, D.3
Rusu, A.A.4
Veness, J.5
Bellemare, M.G.6
-
30
-
-
84942648494
-
Factored four way conditional restricted boltzmann machines for activity recognition. Pattern Recognition Letters, 66, 100–108. doi:10.1016/j.patrec.2015.01.013
-
Mocanu, D. C., Ammar, H. B., Lowet, D., Driessens, K., Liotta, A., Weiss, G., et al. (2015). Factored four way conditional restricted boltzmann machines for activity recognition. Pattern Recognition Letters, 66, 100–108. doi:10.1016/j.patrec.2015.01.013. Pattern Recognition in Human Computer Interaction.
-
(2015)
Pattern Recognition in Human Computer Interaction
-
-
Mocanu, D.C.1
Ammar, H.B.2
Lowet, D.3
Driessens, K.4
Liotta, A.5
Weiss, G.6
-
32
-
-
84906946351
-
Understanding brain networks and brain organization
-
Pessoa, L. (2014). Understanding brain networks and brain organization. Physics of Life Reviews, 11(3), 400–435. doi:10.1016/j.plrev.2014.03.005.
-
(2014)
Physics of Life Reviews
, vol.11
, Issue.3
, pp. 400-435
-
-
Pessoa, L.1
-
33
-
-
70049094447
-
Sparse feature learning for deep belief networks
-
Platt J, Koller D, Singer Y, Roweis S, (eds), 20, Curran Associates Inc, Red Hook
-
Ranzato, M. A., lan Boureau, Y., & Cun, Y. L. (2008). Sparse feature learning for deep belief networks. In J. Platt, D. Koller, Y. Singer, & S. Roweis (Eds.), Advances in neural information processing systems (Vol. 20, pp. 1185–1192). Red Hook: Curran Associates Inc.
-
(2008)
Advances in neural information processing systems
, pp. 1185-1192
-
-
Ranzato, M.A.1
lan Boureau, Y.2
Cun, Y.L.3
-
35
-
-
34547983260
-
Restricted boltzmann machines for collaborative filtering. In Proceedings of the 24th international conference on machine learning, ACM
-
Salakhutdinov, R., Mnih, A., & Hinton, G. (2007). Restricted boltzmann machines for collaborative filtering. In Proceedings of the 24th international conference on machine learning, ACM, ICML ’07 (pp 791–798). doi:10.1145/1273496.1273596
-
(2007)
ICML ’07
, pp. 791-798
-
-
Salakhutdinov, R.1
Mnih, A.2
Hinton, G.3
-
36
-
-
0000329993
-
Information processing in dynamical systems: Foundations of harmony theory
-
Rumelhart DE, McClelland JL, (eds), 1, MIT Press, Cambridge
-
Smolensky, P. (1987). Information processing in dynamical systems: Foundations of harmony theory. In D. E. Rumelhart, J. L. McClelland, et al. (Eds.), Parallel distributed processing (Vol. 1, pp. 194–281). Cambridge: MIT Press.
-
(1987)
Parallel distributed processing
, pp. 194-281
-
-
Smolensky, P.1
-
37
-
-
84877724347
-
Multimodal learning with deep Boltzmann machines
-
Pereira F, Burges C, Bottou L, Weinberger K, (eds), 25, Curran Associates Inc, Red Hook
-
Srivastava, N., & Salakhutdinov, R. R. (2012). Multimodal learning with deep Boltzmann machines. In F. Pereira, C. Burges, L. Bottou, & K. Weinberger (Eds.), Advances in neural information processing systems (Vol. 25, pp. 2222–2230). Red Hook: Curran Associates Inc.
-
(2012)
Advances in neural information processing systems
, pp. 2222-2230
-
-
Srivastava, N.1
Salakhutdinov, R.R.2
-
38
-
-
0035826155
-
Exploring complex networks
-
Strogatz, S. H. (2001). Exploring complex networks. Nature, 410(6825), 268–276.
-
(2001)
Nature
, vol.410
, Issue.6825
, pp. 268-276
-
-
Strogatz, S.H.1
-
39
-
-
84877787734
-
Cardinality restricted boltzmann machines
-
Swersky, K., Tarlow, D., Sutskever, I., Salakhutdinov, R., Zemel, R. S., & Adams, R. P. (2012). Cardinality restricted boltzmann machines. In NIPS (pp. 3302–3310).
-
(2012)
In NIPS
, pp. 3302-3310
-
-
Swersky, K.1
Tarlow, D.2
Sutskever, I.3
Salakhutdinov, R.4
Zemel, R.S.5
Adams, R.P.6
-
40
-
-
56449086223
-
Training restricted boltzmann machines using approximations to the likelihood gradient
-
ACM, New York, NY, USA
-
Tieleman, T. (2008). Training restricted boltzmann machines using approximations to the likelihood gradient. In Proceedings of the 25th international conference on machine learning, ICML ’08 (pp. 1064–1071), ACM, New York, NY, USA. doi:10.1145/1390156.1390290
-
(2008)
In Proceedings of the 25th international conference on machine learning, ICML ’08
, pp. 1064-1071
-
-
Tieleman, T.1
-
41
-
-
71149084943
-
Using fast weights to improve persistent contrastive divergence
-
ACM, New York, NY, USA
-
Tieleman, T., & Hinton, G. (2009). Using fast weights to improve persistent contrastive divergence. In Proceedings of the 26th annual international conference on machine learning, ICML ’09 (pp. 1033–1040), ACM, New York, NY, USA. doi:10.1145/1553374.1553506
-
(2009)
In Proceedings of the 26th annual international conference on machine learning, ICML ’09
, pp. 1033-1040
-
-
Tieleman, T.1
Hinton, G.2
-
43
-
-
85055723024
-
Gaussian cardinality restricted boltzmann machines
-
Wan, C., Jin, X., Ding, G., & Shen, D. (2015) Gaussian cardinality restricted boltzmann machines. In Twenty-ninth AAAI conference on artificial intelligence.
-
(2015)
In Twenty-ninth AAAI conference on artificial intelligence
-
-
Wan, C.1
Jin, X.2
Ding, G.3
Shen, D.4
-
44
-
-
0032482432
-
Collective dynamics of ’small-world’ networks
-
Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ’small-world’ networks. Nature, 393, 440–442.
-
(1998)
Nature
, vol.393
, pp. 440-442
-
-
Watts, D.J.1
Strogatz, S.H.2
-
45
-
-
84899000641
-
Exponential family harmoniums with an application to information retrieval
-
Saul L, Weiss Y, Bottou L, (eds), 17, MIT Press, Cambridge
-
Welling, M., Rosen-zvi, M., & Hinton, G. E. (2005). Exponential family harmoniums with an application to information retrieval. In L. Saul, Y. Weiss, & L. Bottou (Eds.), Advances in neural information processing systems (Vol. 17, pp. 1481–1488). Cambridge: MIT Press.
-
(2005)
Advances in neural information processing systems
, pp. 1481-1488
-
-
Welling, M.1
Rosen-zvi, M.2
Hinton, G.E.3
|