메뉴 건너뛰기




Volumn 66, Issue , 2015, Pages 100-108

Factored four way conditional restricted Boltzmann machines for activity recognition

Author keywords

Activity recognition; Deep learning; Restricted Boltzmann machines

Indexed keywords

ALGORITHMS; MARKOV PROCESSES; NEURONS;

EID: 84942648494     PISSN: 01678655     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patrec.2015.01.013     Document Type: Article
Times cited : (42)

References (22)
  • 5
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for ai
    • Y. Bengio Learning deep architectures for ai Found. Trends Mach. Learn. 2 1 2009 1 127
    • (2009) Found. Trends Mach. Learn. , vol.2 , Issue.1 , pp. 1-127
    • Bengio, Y.1
  • 6
    • 84892142922 scopus 로고    scopus 로고
    • Computer science: The learning machines
    • N. Jones Computer science: The learning machines Nature 505 7482 2014 146 148
    • (2014) Nature , vol.505 , Issue.7482 , pp. 146-148
    • Jones, N.1
  • 7
    • 84897953259 scopus 로고    scopus 로고
    • From neural networks to deep learning: Zeroing in on the human brain
    • J. Laserson From neural networks to deep learning: zeroing in on the human brain ACM Crossroads 18 1 2011 29 34
    • (2011) ACM Crossroads , vol.18 , Issue.1 , pp. 29-34
    • Laserson, J.1
  • 11
    • 0000329993 scopus 로고
    • Information processing in dynamical systems: Foundations of harmony theory
    • D.E. Rumelhart, J.L. McClelland, MIT Press Cambridge
    • P. Smolensky, and et al. Information processing in dynamical systems: foundations of harmony theory D.E. Rumelhart, J.L. McClelland, Parallel Distributed Processing. vol. 1: Foundations 1987 MIT Press Cambridge 194 281
    • (1987) Parallel Distributed Processing. Vol. 1: Foundations , pp. 194-281
    • Smolensky, P.1
  • 12
    • 80052392279 scopus 로고    scopus 로고
    • Learning multilevel distributed representations for high-dimensional sequences
    • M. Meila, X. Shen, JMLR.org
    • I. Sutskever, and G.E. Hinton Learning multilevel distributed representations for high-dimensional sequences M. Meila, X. Shen, AISTATS. vol. 2: JMLR Proceedings 2007 JMLR.org 548 555
    • (2007) AISTATS. Vol. 2: JMLR Proceedings , pp. 548-555
    • Sutskever, I.1    Hinton, G.E.2
  • 14
    • 79955836081 scopus 로고    scopus 로고
    • Two distributed-state models for generating high-dimensional time series
    • G.W. Taylor, G.E. Hinton, and S.T. Roweis Two distributed-state models for generating high-dimensional time series J. Mach. Learn. Res. 12 2011 1025 1068
    • (2011) J. Mach. Learn. Res. , vol.12 , pp. 1025-1068
    • Taylor, G.W.1    Hinton, G.E.2    Roweis, S.T.3
  • 15
    • 82555174662 scopus 로고    scopus 로고
    • Higher-order interactions characterized in cortical activity
    • S. Yu, H. Yang, H. Nakahara, G.S. Santos, D. Nikolić, and D. Plenz Higher-order interactions characterized in cortical activity J. Neurosci. 31 48 2011 17514 17526
    • (2011) J. Neurosci. , vol.31 , Issue.48 , pp. 17514-17526
    • Yu, S.1    Yang, H.2    Nakahara, H.3    Santos, G.S.4    Nikolić, D.5    Plenz, D.6
  • 16
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • G.E. Hinton Training products of experts by minimizing contrastive divergence Neural Comput. 14 8 2002 1771 1800
    • (2002) Neural Comput. , vol.14 , Issue.8 , pp. 1771-1800
    • Hinton, G.E.1
  • 19
    • 77953520240 scopus 로고    scopus 로고
    • Learning to represent spatial transformations with factored higher-order Boltzmann machines
    • R. Memisevic, and G.E. Hinton Learning to represent spatial transformations with factored higher-order Boltzmann machines Neural Comput. 22 6 2010 1473 1492
    • (2010) Neural Comput. , vol.22 , Issue.6 , pp. 1473-1492
    • Memisevic, R.1    Hinton, G.E.2
  • 20
    • 78650474133 scopus 로고    scopus 로고
    • A Practical Guide to Training Restricted Boltzmann Machines
    • G. Hinton A Practical Guide to Training Restricted Boltzmann Machines Technical Report 2010
    • (2010) Technical Report
    • Hinton, G.1
  • 21
    • 34249753618 scopus 로고
    • Support-vector networks
    • C. Cortes, and V. Vapnik Support-vector networks Mach. Learn. 20 3 1995 273 297
    • (1995) Mach. Learn. , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.