메뉴 건너뛰기




Volumn 54, Issue 3, 2014, Pages 713-719

A new approach to radial basis function approximation and its application to QSAR

Author keywords

[No Author keywords available]

Indexed keywords

FORECASTING; FUNCTIONS; HEAT CONDUCTION; IMAGE SEGMENTATION; PHYSICOCHEMICAL PROPERTIES; SOFTWARE TESTING; TOXICITY;

EID: 84896988861     PISSN: 15499596     EISSN: 1549960X     Source Type: Journal    
DOI: 10.1021/ci400704f     Document Type: Article
Times cited : (44)

References (20)
  • 1
    • 84875790754 scopus 로고    scopus 로고
    • In silico physicochemical parameter predictions
    • Wenlock, M. C.; Barton, P. In silico physicochemical parameter predictions Mol. Pharmacol. 2013, 10, 1224-1235
    • (2013) Mol. Pharmacol. , vol.10 , pp. 1224-1235
    • Wenlock, M.C.1    Barton, P.2
  • 2
    • 0035272647 scopus 로고    scopus 로고
    • Prediction of surface tension, viscosity, and thermal conductivity for common organic solvents using quantitative structure-property relationships
    • Kauffman, G. W.; Jurs, P. C. Prediction of surface tension, viscosity, and thermal conductivity for common organic solvents using quantitative structure-property relationships J. Chem. Inf. Comput. Sci. 2001, 41, 408-418
    • (2001) J. Chem. Inf. Comput. Sci. , vol.41 , pp. 408-418
    • Kauffman, G.W.1    Jurs, P.C.2
  • 3
    • 79953839758 scopus 로고    scopus 로고
    • Importance of physicochemical properties for the design of new pesticides
    • Akamatsu, M. Importance of physicochemical properties for the design of new pesticides J. Agric. Food Chem. 2011, 59, 2909-2917
    • (2011) J. Agric. Food Chem. , vol.59 , pp. 2909-2917
    • Akamatsu, M.1
  • 4
    • 73849128409 scopus 로고    scopus 로고
    • Quantitative structure-activity relationship modeling of rat acute toxicity by oral exposure
    • Zhu, H.; Martin, T. M.; Ye, L.; Sedykh, A.; Young, D. M.; Tropsha, A. Quantitative structure-activity relationship modeling of rat acute toxicity by oral exposure Chem. Res. Toxicol. 2009, 22, 1913-1921
    • (2009) Chem. Res. Toxicol. , vol.22 , pp. 1913-1921
    • Zhu, H.1    Martin, T.M.2    Ye, L.3    Sedykh, A.4    Young, D.M.5    Tropsha, A.6
  • 5
    • 84869412244 scopus 로고    scopus 로고
    • Quantitative prediction of antitarget interaction profiles for chemical compounds
    • Zakharov, A. V.; Lagunin, A. A.; Filimonov, D. A.; Poroikov, V. V. Quantitative prediction of antitarget interaction profiles for chemical compounds Chem. Res. Toxicol. 2012, 25, 2378-2385
    • (2012) Chem. Res. Toxicol. , vol.25 , pp. 2378-2385
    • Zakharov, A.V.1    Lagunin, A.A.2    Filimonov, D.A.3    Poroikov, V.V.4
  • 6
    • 5444248702 scopus 로고    scopus 로고
    • Prediction of noninteractive mixture toxicity of organic compounds based on a fuzzy set method
    • Mwense, M.; Wang, X. Z.; Buontempo, F. V.; Horan, N.; Young, A.; Osborn, D. Prediction of noninteractive mixture toxicity of organic compounds based on a fuzzy set method J. Chem. Inf. Comput. Sci. 2004, 44, 1763-1773
    • (2004) J. Chem. Inf. Comput. Sci. , vol.44 , pp. 1763-1773
    • Mwense, M.1    Wang, X.Z.2    Buontempo, F.V.3    Horan, N.4    Young, A.5    Osborn, D.6
  • 7
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes, C.; Vapnik, V. Support-vector networks Mach. Learn. 1995, 20, 273-297
    • (1995) Mach. Learn. , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 9
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L. Random forests Mach. Learn. 2001, 45, 5-32
    • (2001) Mach. Learn. , vol.45 , pp. 5-32
    • Breiman, L.1
  • 12
    • 0037138659 scopus 로고    scopus 로고
    • A fast and efficient algorithm for training radial basis function neural networks based on a fuzzy partition of the input space
    • Sarimveis, H.; Alexandridis, A.; Tsekouras, G.; Bafas, G. A fast and efficient algorithm for training radial basis function neural networks based on a fuzzy partition of the input space Ind. Eng. Chem. Res. 2002, 41, 751-759
    • (2002) Ind. Eng. Chem. Res. , vol.41 , pp. 751-759
    • Sarimveis, H.1    Alexandridis, A.2    Tsekouras, G.3    Bafas, G.4
  • 13
    • 4344715628 scopus 로고    scopus 로고
    • The method of self-consistent regression for the quantitative analysis of relationships between structure and properties of chemicals
    • Filimonov, D. A.; Akimov, D. V.; Poroikov, V. V. The method of self-consistent regression for the quantitative analysis of relationships between structure and properties of chemicals Pharm. Chem. J. 2004, 38, 21-24
    • (2004) Pharm. Chem. J. , vol.38 , pp. 21-24
    • Filimonov, D.A.1    Akimov, D.V.2    Poroikov, V.V.3
  • 15
    • 84896938648 scopus 로고    scopus 로고
    • U.S. EPA T.E.S.T. Program. (accessed June 28)
    • U.S. EPA T.E.S.T. Program. http://www.epa.gov/nrmrl/std/qsar/qsar.html (accessed June 28, 2013).
    • (2013)
  • 16
    • 84867955838 scopus 로고    scopus 로고
    • Computational tools and resources for metabolism-related property predictions. 2. Application to prediction of half-life time in human liver microsomes
    • Zakharov, A. V.; Peach, M. L.; Sitzmann, M.; Filippov, I. V.; McCartney, H. J.; Smith, L. H.; Pugliese, A.; Nicklaus, M. C. Computational tools and resources for metabolism-related property predictions. 2. Application to prediction of half-life time in human liver microsomes Future Med. Chem. 2012, 4, 1933-1944
    • (2012) Future Med. Chem. , vol.4 , pp. 1933-1944
    • Zakharov, A.V.1    Peach, M.L.2    Sitzmann, M.3    Filippov, I.V.4    McCartney, H.J.5    Smith, L.H.6    Pugliese, A.7    Nicklaus, M.C.8
  • 18
    • 79958814927 scopus 로고    scopus 로고
    • QSAR modelling of rat acute toxicity on the basis of PASS prediction
    • Lagunin, A.; Zakharov, A.; Filimonov, D.; Poroikov, V. QSAR modelling of rat acute toxicity on the basis of PASS prediction Mol. Inf. 2011, 30, 241-250
    • (2011) Mol. Inf. , vol.30 , pp. 241-250
    • Lagunin, A.1    Zakharov, A.2    Filimonov, D.3    Poroikov, V.4
  • 20
    • 84896948352 scopus 로고    scopus 로고
    • TEST Users Guide 4.1. U.S. EPA. (accessed November 14)
    • TEST Users Guide 4.1., U.S. EPA. http://www.epa.gov/nrmrl/std/qsar/TEST- user-guide-v41.pdf (accessed November 14, 2013).
    • (2013)


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.