메뉴 건너뛰기




Volumn 05-09-June-2016, Issue , 2016, Pages

Dynamic energy-accuracy trade-off using stochastic computing in deep neural networks

Author keywords

Deep learning; Deep neural networks; Energy efficiency; Stochastic computing

Indexed keywords

COMPUTATION THEORY; COMPUTER AIDED DESIGN; DESIGN; ECONOMIC AND SOCIAL EFFECTS; ENERGY EFFICIENCY; RECONFIGURABLE HARDWARE;

EID: 84977090767     PISSN: 0738100X     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2897937.2898011     Document Type: Conference Paper
Times cited : (170)

References (22)
  • 1
    • 84945953868 scopus 로고    scopus 로고
    • Spintastic: Spin-based stochastic logic for energy-efficient computing
    • R. Venkatesan, et al., "Spintastic: spin-based stochastic logic for energy-efficient computing," Proc. DATE, pp. 1575-1578, 2015
    • (2015) Proc. DATE , pp. 1575-1578
    • Venkatesan, R.1
  • 2
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, et al., "Imagenet classification with deep convolutional neural networks," Proc. NIPS, pp. 1097-1105, 2012
    • (2012) Proc. NIPS , pp. 1097-1105
    • Krizhevsky, A.1
  • 3
    • 85032751458 scopus 로고    scopus 로고
    • Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
    • G. Hinton, et al., "Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups," IEEE Signal Process. Mag., vol. 29, pp. 82-97, 2012
    • (2012) IEEE Signal Process. Mag , vol.29 , pp. 82-97
    • Hinton, G.1
  • 5
    • 84894294885 scopus 로고    scopus 로고
    • Deep learning with COTS HPC systems
    • A. Coates, et al., "Deep learning with COTS HPC systems," Proc. ICML, pp. 1337-1345, 2013
    • (2013) Proc. ICML , pp. 1337-1345
    • Coates, A.1
  • 6
    • 52649106991 scopus 로고    scopus 로고
    • Junior: The stanford entry in the urban challenge
    • M. Montemerlo, et al., "Junior: The stanford entry in the urban challenge," J. Field Robot., vol. 25, pp. 569-597, 2008
    • (2008) J. Field Robot , vol.25 , pp. 569-597
    • Montemerlo, M.1
  • 7
    • 84879931688 scopus 로고    scopus 로고
    • A low-power processor with configurable embedded machine-learning accelerators for high-order and adaptive analysis of medical-sensor signals
    • K. H. Lee, et al., "A low-power processor with configurable embedded machine-learning accelerators for high-order and adaptive analysis of medical-sensor signals," IEEE J. Solid-State Circuit, vol. 48, pp. 1625-1637, 2013
    • (2013) IEEE J. Solid-State Circuit , vol.48 , pp. 1625-1637
    • Lee, K.H.1
  • 8
    • 85083952302 scopus 로고    scopus 로고
    • Training deep neural networks with low precision multiplications
    • M. Courbariaux, et al., "Training deep neural networks with low precision multiplications," Proc. workshop contribution at ICLR, 2015
    • (2015) Proc. Workshop Contribution at ICLR
    • Courbariaux, M.1
  • 9
    • 84959176782 scopus 로고    scopus 로고
    • Distilling the knowledge in a neural network
    • H. Geoffrey, et al., "Distilling the knowledge in a neural network," Proc. NIPS workshop, 2014
    • (2014) Proc. NIPS Workshop
    • Geoffrey, H.1
  • 10
    • 0035439779 scopus 로고    scopus 로고
    • Stochastic neural computation II soft competitive learning
    • B. D. Brown, et al., "Stochastic neural computation. II. Soft competitive learning," IEEE Trans. Comput., vol. 50, pp. 906-920, 2001
    • (2001) IEEE Trans. Comput , vol.50 , pp. 906-920
    • Brown, B.D.1
  • 11
    • 84977148437 scopus 로고    scopus 로고
    • FPGA implementation of a Deep Belief Network architecture for character recognition using stochastic computation
    • K. Sanni, et al., "FPGA implementation of a Deep Belief Network architecture for character recognition using stochastic computation," Proc. CISS, pp. 1-5, 2015
    • (2015) Proc. CISS , pp. 1-5
    • Sanni, K.1
  • 13
    • 84965140688 scopus 로고    scopus 로고
    • Learning both weights and connections for efficient neural networks
    • S. Han, et al., "Learning both weights and connections for efficient neural networks," Proc. NIPS, 2015
    • (2015) Proc. NIPS
    • Han, S.1
  • 14
    • 84910651844 scopus 로고    scopus 로고
    • Deep learning in neural networks: An overview
    • J. Schmidhuber, "Deep learning in neural networks: An overview," Neural Networks, vol. 61, pp. 85-117, 2015
    • (2015) Neural Networks , vol.61 , pp. 85-117
    • Schmidhuber, J.1
  • 15
    • 84951863284 scopus 로고    scopus 로고
    • Scalable-effort classifiers for energyefficient machine learning
    • S. Venkataramani, et al., "Scalable-effort classifiers for energyefficient machine learning," Proc. DAC, p. 67, 2015
    • (2015) Proc. DAC , pp. 67
    • Venkataramani, S.1
  • 16
    • 85032752689 scopus 로고    scopus 로고
    • The MNIST database of handwritten digit images for machine learning research
    • L. Deng, "The MNIST database of handwritten digit images for machine learning research," IEEE Signal Process. Mag., vol. 29, pp. 141-142, 2012
    • (2012) IEEE Signal Process. Mag , vol.29 , pp. 141-142
    • Deng, L.1
  • 17
    • 0035440487 scopus 로고    scopus 로고
    • Stochastic neural computation. I. Computational elements
    • B. D. Brown, et al., "Stochastic neural computation. I. Computational elements," IEEE Trans. Comput., vol. 50, pp. 891-905, 2001
    • (2001) IEEE Trans. Comput , vol.50 , pp. 891-905
    • Brown, B.D.1
  • 20
    • 84977128887 scopus 로고    scopus 로고
    • Approximate de-randomizer for stochastic circuits
    • K. Kim, et al., "Approximate De-randomizer for Stochastic Circuits," Proc. ISOCC, 2015
    • (2015) Proc. ISOCC
    • Kim, K.1
  • 21
    • 84891879851 scopus 로고    scopus 로고
    • Survey of stochastic computing
    • A. Alaghi, et al., "Survey of stochastic computing," ACM Trans. Embed. Comput. Syst., vol. 12, p. 92, 2013
    • (2013) ACM Trans. Embed. Comput. Syst , vol.12 , pp. 92
    • Alaghi, A.1
  • 22
    • 84996835613 scopus 로고    scopus 로고
    • An energy-efficient random number generator for stochastic circuits
    • K. Kim, et al., "An Energy-Efficient Random Number Generator for Stochastic Circuits," Proc. ASP-DAC, 2016
    • (2016) Proc. ASP-DAC
    • Kim, K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.