-
1
-
-
84945953868
-
Spintastic: Spin-based stochastic logic for energy-efficient computing
-
R. Venkatesan, et al., "Spintastic: spin-based stochastic logic for energy-efficient computing," Proc. DATE, pp. 1575-1578, 2015
-
(2015)
Proc. DATE
, pp. 1575-1578
-
-
Venkatesan, R.1
-
2
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
A. Krizhevsky, et al., "Imagenet classification with deep convolutional neural networks," Proc. NIPS, pp. 1097-1105, 2012
-
(2012)
Proc. NIPS
, pp. 1097-1105
-
-
Krizhevsky, A.1
-
3
-
-
85032751458
-
Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
-
G. Hinton, et al., "Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups," IEEE Signal Process. Mag., vol. 29, pp. 82-97, 2012
-
(2012)
IEEE Signal Process. Mag
, vol.29
, pp. 82-97
-
-
Hinton, G.1
-
5
-
-
84894294885
-
Deep learning with COTS HPC systems
-
A. Coates, et al., "Deep learning with COTS HPC systems," Proc. ICML, pp. 1337-1345, 2013
-
(2013)
Proc. ICML
, pp. 1337-1345
-
-
Coates, A.1
-
6
-
-
52649106991
-
Junior: The stanford entry in the urban challenge
-
M. Montemerlo, et al., "Junior: The stanford entry in the urban challenge," J. Field Robot., vol. 25, pp. 569-597, 2008
-
(2008)
J. Field Robot
, vol.25
, pp. 569-597
-
-
Montemerlo, M.1
-
7
-
-
84879931688
-
A low-power processor with configurable embedded machine-learning accelerators for high-order and adaptive analysis of medical-sensor signals
-
K. H. Lee, et al., "A low-power processor with configurable embedded machine-learning accelerators for high-order and adaptive analysis of medical-sensor signals," IEEE J. Solid-State Circuit, vol. 48, pp. 1625-1637, 2013
-
(2013)
IEEE J. Solid-State Circuit
, vol.48
, pp. 1625-1637
-
-
Lee, K.H.1
-
8
-
-
85083952302
-
Training deep neural networks with low precision multiplications
-
M. Courbariaux, et al., "Training deep neural networks with low precision multiplications," Proc. workshop contribution at ICLR, 2015
-
(2015)
Proc. Workshop Contribution at ICLR
-
-
Courbariaux, M.1
-
9
-
-
84959176782
-
Distilling the knowledge in a neural network
-
H. Geoffrey, et al., "Distilling the knowledge in a neural network," Proc. NIPS workshop, 2014
-
(2014)
Proc. NIPS Workshop
-
-
Geoffrey, H.1
-
10
-
-
0035439779
-
Stochastic neural computation II soft competitive learning
-
B. D. Brown, et al., "Stochastic neural computation. II. Soft competitive learning," IEEE Trans. Comput., vol. 50, pp. 906-920, 2001
-
(2001)
IEEE Trans. Comput
, vol.50
, pp. 906-920
-
-
Brown, B.D.1
-
11
-
-
84977148437
-
FPGA implementation of a Deep Belief Network architecture for character recognition using stochastic computation
-
K. Sanni, et al., "FPGA implementation of a Deep Belief Network architecture for character recognition using stochastic computation," Proc. CISS, pp. 1-5, 2015
-
(2015)
Proc. CISS
, pp. 1-5
-
-
Sanni, K.1
-
13
-
-
84965140688
-
Learning both weights and connections for efficient neural networks
-
S. Han, et al., "Learning both weights and connections for efficient neural networks," Proc. NIPS, 2015
-
(2015)
Proc. NIPS
-
-
Han, S.1
-
14
-
-
84910651844
-
Deep learning in neural networks: An overview
-
J. Schmidhuber, "Deep learning in neural networks: An overview," Neural Networks, vol. 61, pp. 85-117, 2015
-
(2015)
Neural Networks
, vol.61
, pp. 85-117
-
-
Schmidhuber, J.1
-
15
-
-
84951863284
-
Scalable-effort classifiers for energyefficient machine learning
-
S. Venkataramani, et al., "Scalable-effort classifiers for energyefficient machine learning," Proc. DAC, p. 67, 2015
-
(2015)
Proc. DAC
, pp. 67
-
-
Venkataramani, S.1
-
16
-
-
85032752689
-
The MNIST database of handwritten digit images for machine learning research
-
L. Deng, "The MNIST database of handwritten digit images for machine learning research," IEEE Signal Process. Mag., vol. 29, pp. 141-142, 2012
-
(2012)
IEEE Signal Process. Mag
, vol.29
, pp. 141-142
-
-
Deng, L.1
-
17
-
-
0035440487
-
Stochastic neural computation. I. Computational elements
-
B. D. Brown, et al., "Stochastic neural computation. I. Computational elements," IEEE Trans. Comput., vol. 50, pp. 891-905, 2001
-
(2001)
IEEE Trans. Comput
, vol.50
, pp. 891-905
-
-
Brown, B.D.1
-
20
-
-
84977128887
-
Approximate de-randomizer for stochastic circuits
-
K. Kim, et al., "Approximate De-randomizer for Stochastic Circuits," Proc. ISOCC, 2015
-
(2015)
Proc. ISOCC
-
-
Kim, K.1
-
21
-
-
84891879851
-
Survey of stochastic computing
-
A. Alaghi, et al., "Survey of stochastic computing," ACM Trans. Embed. Comput. Syst., vol. 12, p. 92, 2013
-
(2013)
ACM Trans. Embed. Comput. Syst
, vol.12
, pp. 92
-
-
Alaghi, A.1
-
22
-
-
84996835613
-
An energy-efficient random number generator for stochastic circuits
-
K. Kim, et al., "An Energy-Efficient Random Number Generator for Stochastic Circuits," Proc. ASP-DAC, 2016
-
(2016)
Proc. ASP-DAC
-
-
Kim, K.1
|