메뉴 건너뛰기




Volumn 2015-June, Issue , 2015, Pages

Scalable-effort classifiers for energy-efficient machine learning

Author keywords

approximate computing; energy efficiency; input adaptive systems; machine learning classifiers

Indexed keywords

ALGORITHMS; ARTIFICIAL INTELLIGENCE; CHAINS; COMPUTER AIDED DESIGN; ENERGY EFFICIENCY; LEARNING ALGORITHMS; LEARNING SYSTEMS; SUPERVISED LEARNING;

EID: 84951863284     PISSN: 0738100X     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2744769.2744904     Document Type: Conference Paper
Times cited : (74)

References (18)
  • 1
    • 33749064644 scopus 로고    scopus 로고
    • Recognition mining and synthesis moves computers to the era of tera
    • Feb.
    • P. Dubey. Recognition, mining and synthesis moves computers to the era of tera. Intel Tech. Magazine, 9(2):1-10, Feb. 2005.
    • (2005) Intel Tech. Magazine , vol.9 , Issue.2 , pp. 1-10
    • Dubey, P.1
  • 2
    • 85032752689 scopus 로고    scopus 로고
    • The MNIST database of handwritten digit images for machine learning research
    • Nov.
    • L. Deng. The MNIST database of handwritten digit images for machine learning research. IEEE Signal Proc. Magazine, 29(6):141-142, Nov. 2012.
    • (2012) IEEE Signal Proc. Magazine , vol.29 , Issue.6 , pp. 141-142
    • Deng, L.1
  • 3
    • 23744503675 scopus 로고    scopus 로고
    • Low-power variable-length fast fourier transform processor
    • Jul.
    • Y.-T. Lin et al. Low-power variable-length fast fourier transform processor. Proc. IEEE Computers and Digital Techniques, 152(4):499-506, Jul. 2005.
    • (2005) Proc. IEEE Computers and Digital Techniques , vol.152 , Issue.4 , pp. 499-506
    • Lin, Y.-T.1
  • 4
    • 84860691732 scopus 로고    scopus 로고
    • A 1.45 GHz 52-to-162 GFLOPS/W variable-precision floating-point fused multiply-add unit with certainty tracking in 32nm CMOS
    • Feb.
    • H. Kaul et al. A 1.45 GHz 52-to-162 GFLOPS/W variable-precision floating-point fused multiply-add unit with certainty tracking in 32nm CMOS. In Proc. ISSCC, pages 182-184, Feb. 2012.
    • (2012) Proc. ISSCC , pp. 182-184
    • Kaul, H.1
  • 5
    • 77956193467 scopus 로고    scopus 로고
    • Scalable e-ort hardware design: Exploiting algorithmic resilience for energy eficiency
    • V. Chippa et al. Scalable e-ort hardware design: Exploiting algorithmic resilience for energy eficiency. In Proc. DAC, pages 555-560, 2010.
    • (2010) Proc. DAC , pp. 555-560
    • Chippa, V.1
  • 6
    • 80052659613 scopus 로고    scopus 로고
    • Dynamic effort scaling: Managing the quality-eficiency trade
    • June
    • V. Chippa et al. Dynamic e-ort scaling: Managing the quality-eficiency tradeo-. In Proc. DAC, pages 603-608, June 2011.
    • (2011) Proc. DAC , pp. 603-608
    • Chippa, V.1
  • 8
    • 80053213080 scopus 로고    scopus 로고
    • Managing performance vs. Accuracy trade-o-s with loop perforation
    • S. Sidiroglou-Douskos et al. Managing performance vs. accuracy trade-o-s with loop perforation. In Proc. ACM SIGSOFT Symposium '11, pages 124-134.
    • Proc. ACM SIGSOFT Symposium '11 , pp. 124-134
    • Sidiroglou-Douskos, S.1
  • 10
    • 84892524324 scopus 로고    scopus 로고
    • Quality programmable vector processors for approximate computing
    • S. Venkataramani et al. Quality programmable vector processors for approximate computing. In Proc. MICRO, pages 1-12, 2013.
    • (2013) Proc. MICRO , pp. 1-12
    • Venkataramani, S.1
  • 12
    • 0034541162 scopus 로고    scopus 로고
    • Cascade generalization
    • Dec.
    • J. Gama and P. Brazdil. Cascade generalization. J. Machine Learning, 41(3):315-343, Dec. 2000.
    • (2000) J. Machine Learning , vol.41 , Issue.3 , pp. 315-343
    • Gama, J.1    Brazdil, P.2
  • 13
    • 0035680116 scopus 로고    scopus 로고
    • Rapid object detection using a boosted cascade of simple features
    • Dec.
    • P. Viola et al. Rapid object detection using a boosted cascade of simple features. In Proc. Conf. Comput. Vision & Pattern Reco., pages 511-518, Dec. 2001.
    • (2001) Proc. Conf. Comput. Vision & Pattern Reco. , pp. 511-518
    • Viola, P.1
  • 14
    • 77954300642 scopus 로고    scopus 로고
    • Accelerating Viola-Jones face detection to FPGA-level using GPUs
    • May.
    • D. Hefenbrock et al. Accelerating Viola-Jones face detection to FPGA-level using GPUs. In Symp. Field-Programmable Custom Computing Machines, pages 11-18, May. 2010.
    • (2010) Symp. Field-Programmable Custom Computing Machines , pp. 11-18
    • Hefenbrock, D.1
  • 15
    • 85161981564 scopus 로고    scopus 로고
    • Multiple-instance pruning for learning eficient cascade detectors
    • Dec.
    • C. Zhang and P. Viola. Multiple-instance pruning for learning eficient cascade detectors. In Proc. Neural Info. Processing Syst., pages 1681-1888, Dec. 2008.
    • (2008) Proc. Neural Info. Processing Syst. , pp. 1681-1888
    • Zhang, C.1    Viola, P.2
  • 18
    • 76749092270 scopus 로고    scopus 로고
    • The WEKA data mining software: An update
    • Jun.
    • M. Hall et al. The WEKA data mining software: an update. ACM SIGKDD Explorations Newsletter, 11(1):10-18, Jun. 2009.
    • (2009) ACM SIGKDD Explorations Newsletter , vol.11 , Issue.1 , pp. 10-18
    • Hall, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.