-
1
-
-
0000396062
-
Natural gradient works efficiently in learning
-
S.-I. AMARI, Natural gradient works efficiently in learning, Neural Comput., 10(1998), pp. 251-276.
-
(1998)
Neural Comput.
, vol.10
, pp. 251-276
-
-
Amari, S.-I.1
-
2
-
-
60749097285
-
Stochastic simulation: Algorithms and analysis
-
Springer, New York
-
S. ASMUSSEN and P. W. GLYNN, Stochastic Simulation: Algorithms and Analysis, Stoch. Model. Appl. Probab. 57, Springer, New York, 2007.
-
(2007)
Stoch. Model. Appl. Probab
, vol.57
-
-
Asmussen, S.1
Glynn, P.W.2
-
3
-
-
84899001337
-
Non-strongly-convex smooth stochastic approximation with convergence rate o (1/n)
-
Curran, Red Hook, NY
-
F. BACH and E. MOULINES, Non-strongly-convex smooth stochastic approximation with convergence rate o (1/n), in Advances in Neural Information Processing Systems 26, Curran, Red Hook, NY, 2013, pp. 773-781.
-
(2013)
Advances in Neural Information Processing Systems 26
, pp. 773-781
-
-
Bach, F.1
Moulines, E.2
-
4
-
-
68949096711
-
SGD-QN: Careful quasi-Newton stochastic gradient descent
-
A. BORDES, L. BOTTOU, and P. GALLINARI, SGD-QN: Careful quasi-Newton stochastic gradient descent, J. Mach. Learn. Res., 10(2009), pp. 1737-1754.
-
(2009)
J. Mach. Learn. Res.
, vol.10
, pp. 1737-1754
-
-
Bordes, A.1
Bottou, L.2
Gallinari, P.3
-
5
-
-
85162035281
-
The tradeoffs of large scale learning
-
J. C. Platt, D. Koller, Y. Singer, and S. Roweis, eds., MIT Press, Cambridge, MA
-
L. BOTTOU and O. BOUSQUET, The tradeoffs of large scale learning, in Advances in Neural Information Processing Systems 20, J. C. Platt, D. Koller, Y. Singer, and S. Roweis, eds., MIT Press, Cambridge, MA, 2008, pp. 161-168.
-
(2008)
Advances in Neural Information Processing Systems 20
, pp. 161-168
-
-
Bottou, L.1
Bousquet, O.2
-
6
-
-
84899022736
-
Large scale online learning
-
S. Thrun, L. Saul, and B. Schölkopf, eds., MIT Press, Cambridge, MA
-
L. BOTTOU and Y. LECUN, Large scale online learning, in Advances in Neural Information Processing Systems 16, S. Thrun, L. Saul, and B. Schölkopf, eds., MIT Press, Cambridge, MA, 2004.
-
(2004)
Advances in Neural Information Processing Systems 16
-
-
Bottou, L.1
LeCun, Y.2
-
7
-
-
84865685824
-
Sample size selection in optimization methods for machine learning
-
R. H. BYRD, G. M. CHIN, J. NOCEDAL, and Y. WU, Sample size selection in optimization methods for machine learning, Math. Program., 134(2012), pp. 127-155.
-
(2012)
Math. Program.
, vol.134
, pp. 127-155
-
-
Byrd, R.H.1
Chin, G.M.2
Nocedal, J.3
Wu, Y.4
-
8
-
-
80054732060
-
On the use of stochastic Hessian information in optimization methods for machine learning
-
R. H BYRD, G. M CHIN, W. NEVEITT, and J. NOCEDAL, On the use of stochastic Hessian information in optimization methods for machine learning, SIAM J. Optim., 21(2011), pp. 977-995.
-
(2011)
SIAM J. Optim.
, vol.21
, pp. 977-995
-
-
Byrd, R.H.1
Chin, G.M.2
Neveitt, W.3
Nocedal, J.4
-
9
-
-
80052250414
-
Adaptive subgradient methods for online learning and stochastic optimization
-
J. DUCHI, E. HAZAN, and Y. SINGER, Adaptive subgradient methods for online learning and stochastic optimization, J. Mach. Learn. Res., 12(2011), pp. 2121-2159.
-
(2011)
J. Mach. Learn. Res.
, vol.12
, pp. 2121-2159
-
-
Duchi, J.1
Hazan, E.2
Singer, Y.3
-
11
-
-
84876811202
-
Rcv 1: A new benchmark collection for text categorization research
-
D. D LEWIS, Y. YANG, T. G. ROSE, and F. LI, Rcv 1: A new benchmark collection for text categorization research, J. Mach. Learn. Res., 5(2004), pp. 361-397.
-
(2004)
J. Mach. Learn. Res.
, vol.5
, pp. 361-397
-
-
Lewis, D.D.1
Yang, Y.2
Rose, T.G.3
Li, F.4
-
12
-
-
84897694467
-
Regularized stochastic BFGS algorithm
-
IEEE, Piscataway, NJ
-
A. MOKHTARI and A. RIBEIRO, Regularized stochastic BFGS algorithm, in IEEE Global Conference on Signal and Information Processing, IEEE, Piscataway, NJ, 2013.
-
(2013)
IEEE Global Conference on Signal and Information Processing
-
-
Mokhtari, A.1
Ribeiro, A.2
-
14
-
-
84886551243
-
Parallel boosting with momentum
-
Springer, Heidelberg
-
I. MUKHERJEE, K. CANINI, R. FRONGILLO, and Y. SINGER, Parallel boosting with momentum, in ECML PKDD 2013, Part III, Lecture Notes in Comput. Sci. 8190, Springer, Heidelberg, 2013, pp. 17-32.
-
(2013)
ECML PKDD 2013, Part III, Lecture Notes in Comput. Sci. 8190
, pp. 17-32
-
-
Mukherjee, I.1
Canini, K.2
Frongillo, R.3
Singer, Y.4
-
15
-
-
0001955526
-
A statistical study of on-line learning
-
Cambridge University Press, Cambridge, UK
-
N. MURATA, A statistical study of on-line learning, in On-line Learning in Neural Networks, Cambridge University Press, Cambridge, UK, 1998, pp. 63-92.
-
(1998)
On-line Learning in Neural Networks
, pp. 63-92
-
-
Murata, N.1
-
16
-
-
0005422061
-
Convergence rate of incremental subgradient algorithms
-
Springer, Boston
-
A. NEDIĆ and D. BERTSEKAS, Convergence rate of incremental subgradient algorithms, in Stochastic Optimization: Algorithms and Applications, Springer, Boston, 2001, pp. 223-264.
-
(2001)
Stochastic Optimization: Algorithms and Applications
, pp. 223-264
-
-
Nedić, A.1
Bertsekas, D.2
-
17
-
-
70450197241
-
Robust stochastic approximation approach to stochastic programming
-
A. NEMIROVSKI, A. JUDITSKY, G. LAN, and A. SHAPIRO, Robust stochastic approximation approach to stochastic programming, SIAM J. Optim., 19(2009), pp. 1574-1609.
-
(2009)
SIAM J. Optim.
, vol.19
, pp. 1574-1609
-
-
Nemirovski, A.1
Juditsky, A.2
Lan, G.3
Shapiro, A.4
-
19
-
-
0034266869
-
Adaptive natural gradient learning algorithms for various stochastic models
-
H. PARK, S.-I. AMARI, and K. FUKUMIZU, Adaptive natural gradient learning algorithms for various stochastic models, Neural Networks, 13(2000), pp. 755-764.
-
(2000)
Neural Networks
, vol.13
, pp. 755-764
-
-
Park, H.1
Amari, S.-I.2
Fukumizu, K.3
-
20
-
-
33645158713
-
A stochastic approximation algorithm with step-size adaptation
-
A. PLAKHOV and P. CRUZ, A stochastic approximation algorithm with step-size adaptation, J. Math. Sci., 120(2004), pp. 964-973.
-
(2004)
J. Math. Sci.
, vol.120
, pp. 964-973
-
-
Plakhov, A.1
Cruz, P.2
-
21
-
-
0002855438
-
Some global convergence properties of a variable metric algorithm for minimization without exact line searches
-
AMS, Providence, RI
-
M. J. D. POWELL, Some global convergence properties of a variable metric algorithm for minimization without exact line searches, in Nonlinear Programming, R. W. Cottle and C. E. Lemke, eds., SIAM-AMS Proc. 9, AMS, Providence, RI, 1976, pp. 53-72.
-
(1976)
Nonlinear Programming, R. W. Cottle and C. E. Lemke, Eds., SIAM-aMS Proc
, vol.9
, pp. 53-72
-
-
Powell, M.J.D.1
-
22
-
-
0000016172
-
A stochastic approximation method
-
H. ROBBINS and S. MONRO, A stochastic approximation method, Ann. Math. Statist., 22(1951), pp. 400-407.
-
(1951)
Ann. Math. Statist.
, vol.22
, pp. 400-407
-
-
Robbins, H.1
Monro, S.2
-
24
-
-
77956526394
-
Topmoumoute online natural gradient algorithm
-
MIT Press, Cambridge, MA
-
N. L. ROUX, P.-A. MANZAGOL, and Y. BENGIO, Topmoumoute online natural gradient algorithm, in Advances in Neural Information Processing Systems 20, MIT Press, Cambridge, MA, 2007, pp. 849-856.
-
(2007)
Advances in Neural Information Processing Systems 20
, pp. 849-856
-
-
Roux, N.L.1
Manzagol, P.-A.2
Bengio, Y.3
-
25
-
-
84862300219
-
A stochastic quasi-Newton method for online convex optimization
-
Microtome Publishing, Brookline, MA
-
N. SCHRAUDOLPH, J. YU, and S. GÜNTER, A stochastic quasi-Newton method for online convex optimization, in Proceedings of the Eleventh International Conference on Artificial Intelligence and Statistics, Microtome Publishing, Brookline, MA, 2007, pp. 436-443.
-
(2007)
Proceedings of the Eleventh International Conference on Artificial Intelligence and Statistics
, pp. 436-443
-
-
Schraudolph, N.1
Yu, J.2
Günter, S.3
-
26
-
-
84976867900
-
Variable metric stochastic approximation theory
-
Microtome Publishing, Brookline, MA
-
P. SUNEHAG, J. TRUMPF, S. V. N. VISHWANATHAN, and N. SCHRAUDOLPH, Variable metric stochastic approximation theory, in Proceedings of the Twelfth International Conference on Artificial Intelligence and Statistics, Microtome Publishing, Brookline, MA, (2007), pp. 436-443.
-
(2007)
Proceedings of the Twelfth International Conference on Artificial Intelligence and Statistics
, pp. 436-443
-
-
Sunehag, P.1
Trumpf, J.2
Vishwanathan, S.V.N.3
Schraudolph, N.4
-
27
-
-
46749146509
-
A coordinate gradient descent method for nonsmooth separable minimization
-
P. TSENG and S. YUN, A coordinate gradient descent method for nonsmooth separable minimization, Math. Program., 117(2009), pp. 387-423.
-
(2009)
Math. Program.
, vol.117
, pp. 387-423
-
-
Tseng, P.1
Yun, S.2
-
28
-
-
84355162114
-
On stochastic gradient and subgradient methods with adaptive steplength sequences
-
F. YOUSEFIAN, A. NEDIĆ, and U. V. SHANBHAG, On stochastic gradient and subgradient methods with adaptive steplength sequences, Automatica J. IFAC, 48(2012), pp. 56-67.
-
(2012)
Automatica J. IFAC
, vol.48
, pp. 56-67
-
-
Yousefian, F.1
Nedić, A.2
Shanbhag, U.V.3
|