메뉴 건너뛰기




Volumn 26, Issue 2, 2016, Pages 1008-1031

A stochastic quasi-Newton method for large-scale optimization

Author keywords

Large scale optimization; Quasi Newton; Stochastic optimization; Sub sampling

Indexed keywords

APPROXIMATION THEORY; ARTIFICIAL INTELLIGENCE; CURVE FITTING; ITERATIVE METHODS; LEARNING SYSTEMS; NEWTON-RAPHSON METHOD; NUMERICAL METHODS; STOCHASTIC SYSTEMS;

EID: 84976910543     PISSN: 10526234     EISSN: None     Source Type: Journal    
DOI: 10.1137/140954362     Document Type: Article
Times cited : (452)

References (28)
  • 1
    • 0000396062 scopus 로고    scopus 로고
    • Natural gradient works efficiently in learning
    • S.-I. AMARI, Natural gradient works efficiently in learning, Neural Comput., 10(1998), pp. 251-276.
    • (1998) Neural Comput. , vol.10 , pp. 251-276
    • Amari, S.-I.1
  • 2
    • 60749097285 scopus 로고    scopus 로고
    • Stochastic simulation: Algorithms and analysis
    • Springer, New York
    • S. ASMUSSEN and P. W. GLYNN, Stochastic Simulation: Algorithms and Analysis, Stoch. Model. Appl. Probab. 57, Springer, New York, 2007.
    • (2007) Stoch. Model. Appl. Probab , vol.57
    • Asmussen, S.1    Glynn, P.W.2
  • 3
    • 84899001337 scopus 로고    scopus 로고
    • Non-strongly-convex smooth stochastic approximation with convergence rate o (1/n)
    • Curran, Red Hook, NY
    • F. BACH and E. MOULINES, Non-strongly-convex smooth stochastic approximation with convergence rate o (1/n), in Advances in Neural Information Processing Systems 26, Curran, Red Hook, NY, 2013, pp. 773-781.
    • (2013) Advances in Neural Information Processing Systems 26 , pp. 773-781
    • Bach, F.1    Moulines, E.2
  • 4
    • 68949096711 scopus 로고    scopus 로고
    • SGD-QN: Careful quasi-Newton stochastic gradient descent
    • A. BORDES, L. BOTTOU, and P. GALLINARI, SGD-QN: Careful quasi-Newton stochastic gradient descent, J. Mach. Learn. Res., 10(2009), pp. 1737-1754.
    • (2009) J. Mach. Learn. Res. , vol.10 , pp. 1737-1754
    • Bordes, A.1    Bottou, L.2    Gallinari, P.3
  • 5
    • 85162035281 scopus 로고    scopus 로고
    • The tradeoffs of large scale learning
    • J. C. Platt, D. Koller, Y. Singer, and S. Roweis, eds., MIT Press, Cambridge, MA
    • L. BOTTOU and O. BOUSQUET, The tradeoffs of large scale learning, in Advances in Neural Information Processing Systems 20, J. C. Platt, D. Koller, Y. Singer, and S. Roweis, eds., MIT Press, Cambridge, MA, 2008, pp. 161-168.
    • (2008) Advances in Neural Information Processing Systems 20 , pp. 161-168
    • Bottou, L.1    Bousquet, O.2
  • 6
    • 84899022736 scopus 로고    scopus 로고
    • Large scale online learning
    • S. Thrun, L. Saul, and B. Schölkopf, eds., MIT Press, Cambridge, MA
    • L. BOTTOU and Y. LECUN, Large scale online learning, in Advances in Neural Information Processing Systems 16, S. Thrun, L. Saul, and B. Schölkopf, eds., MIT Press, Cambridge, MA, 2004.
    • (2004) Advances in Neural Information Processing Systems 16
    • Bottou, L.1    LeCun, Y.2
  • 7
    • 84865685824 scopus 로고    scopus 로고
    • Sample size selection in optimization methods for machine learning
    • R. H. BYRD, G. M. CHIN, J. NOCEDAL, and Y. WU, Sample size selection in optimization methods for machine learning, Math. Program., 134(2012), pp. 127-155.
    • (2012) Math. Program. , vol.134 , pp. 127-155
    • Byrd, R.H.1    Chin, G.M.2    Nocedal, J.3    Wu, Y.4
  • 8
    • 80054732060 scopus 로고    scopus 로고
    • On the use of stochastic Hessian information in optimization methods for machine learning
    • R. H BYRD, G. M CHIN, W. NEVEITT, and J. NOCEDAL, On the use of stochastic Hessian information in optimization methods for machine learning, SIAM J. Optim., 21(2011), pp. 977-995.
    • (2011) SIAM J. Optim. , vol.21 , pp. 977-995
    • Byrd, R.H.1    Chin, G.M.2    Neveitt, W.3    Nocedal, J.4
  • 9
    • 80052250414 scopus 로고    scopus 로고
    • Adaptive subgradient methods for online learning and stochastic optimization
    • J. DUCHI, E. HAZAN, and Y. SINGER, Adaptive subgradient methods for online learning and stochastic optimization, J. Mach. Learn. Res., 12(2011), pp. 2121-2159.
    • (2011) J. Mach. Learn. Res. , vol.12 , pp. 2121-2159
    • Duchi, J.1    Hazan, E.2    Singer, Y.3
  • 11
    • 84876811202 scopus 로고    scopus 로고
    • Rcv 1: A new benchmark collection for text categorization research
    • D. D LEWIS, Y. YANG, T. G. ROSE, and F. LI, Rcv 1: A new benchmark collection for text categorization research, J. Mach. Learn. Res., 5(2004), pp. 361-397.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 361-397
    • Lewis, D.D.1    Yang, Y.2    Rose, T.G.3    Li, F.4
  • 15
    • 0001955526 scopus 로고    scopus 로고
    • A statistical study of on-line learning
    • Cambridge University Press, Cambridge, UK
    • N. MURATA, A statistical study of on-line learning, in On-line Learning in Neural Networks, Cambridge University Press, Cambridge, UK, 1998, pp. 63-92.
    • (1998) On-line Learning in Neural Networks , pp. 63-92
    • Murata, N.1
  • 17
    • 70450197241 scopus 로고    scopus 로고
    • Robust stochastic approximation approach to stochastic programming
    • A. NEMIROVSKI, A. JUDITSKY, G. LAN, and A. SHAPIRO, Robust stochastic approximation approach to stochastic programming, SIAM J. Optim., 19(2009), pp. 1574-1609.
    • (2009) SIAM J. Optim. , vol.19 , pp. 1574-1609
    • Nemirovski, A.1    Juditsky, A.2    Lan, G.3    Shapiro, A.4
  • 19
    • 0034266869 scopus 로고    scopus 로고
    • Adaptive natural gradient learning algorithms for various stochastic models
    • H. PARK, S.-I. AMARI, and K. FUKUMIZU, Adaptive natural gradient learning algorithms for various stochastic models, Neural Networks, 13(2000), pp. 755-764.
    • (2000) Neural Networks , vol.13 , pp. 755-764
    • Park, H.1    Amari, S.-I.2    Fukumizu, K.3
  • 20
    • 33645158713 scopus 로고    scopus 로고
    • A stochastic approximation algorithm with step-size adaptation
    • A. PLAKHOV and P. CRUZ, A stochastic approximation algorithm with step-size adaptation, J. Math. Sci., 120(2004), pp. 964-973.
    • (2004) J. Math. Sci. , vol.120 , pp. 964-973
    • Plakhov, A.1    Cruz, P.2
  • 21
    • 0002855438 scopus 로고
    • Some global convergence properties of a variable metric algorithm for minimization without exact line searches
    • AMS, Providence, RI
    • M. J. D. POWELL, Some global convergence properties of a variable metric algorithm for minimization without exact line searches, in Nonlinear Programming, R. W. Cottle and C. E. Lemke, eds., SIAM-AMS Proc. 9, AMS, Providence, RI, 1976, pp. 53-72.
    • (1976) Nonlinear Programming, R. W. Cottle and C. E. Lemke, Eds., SIAM-aMS Proc , vol.9 , pp. 53-72
    • Powell, M.J.D.1
  • 22
    • 0000016172 scopus 로고
    • A stochastic approximation method
    • H. ROBBINS and S. MONRO, A stochastic approximation method, Ann. Math. Statist., 22(1951), pp. 400-407.
    • (1951) Ann. Math. Statist. , vol.22 , pp. 400-407
    • Robbins, H.1    Monro, S.2
  • 27
    • 46749146509 scopus 로고    scopus 로고
    • A coordinate gradient descent method for nonsmooth separable minimization
    • P. TSENG and S. YUN, A coordinate gradient descent method for nonsmooth separable minimization, Math. Program., 117(2009), pp. 387-423.
    • (2009) Math. Program. , vol.117 , pp. 387-423
    • Tseng, P.1    Yun, S.2
  • 28
    • 84355162114 scopus 로고    scopus 로고
    • On stochastic gradient and subgradient methods with adaptive steplength sequences
    • F. YOUSEFIAN, A. NEDIĆ, and U. V. SHANBHAG, On stochastic gradient and subgradient methods with adaptive steplength sequences, Automatica J. IFAC, 48(2012), pp. 56-67.
    • (2012) Automatica J. IFAC , vol.48 , pp. 56-67
    • Yousefian, F.1    Nedić, A.2    Shanbhag, U.V.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.