메뉴 건너뛰기




Volumn 134, Issue 1, 2012, Pages 127-155

Sample size selection in optimization methods for machine learning

Author keywords

[No Author keywords available]

Indexed keywords

COMPLEXITY BOUNDS; DYNAMIC SAMPLE SELECTION; DYNAMIC SAMPLING; FREE VARIABLE; GRADIENT PROJECTIONS; MACHINE LEARNING PROBLEM; NEWTON ITERATIONS; NEWTON LIKE METHODS; NUMERICAL TESTS; OPTIMIZATION METHOD; SAMPLE SIZES; TOTAL COSTS; VARIANCE ESTIMATE;

EID: 84865685824     PISSN: 00255610     EISSN: 14364646     Source Type: Journal    
DOI: 10.1007/s10107-012-0572-5     Document Type: Conference Paper
Times cited : (367)

References (34)
  • 3
    • 29444437829 scopus 로고    scopus 로고
    • An adaptive monte carlo algorithm for computing mixed logit estimators
    • Bastin, F., Cirillo, C., Toint, P.L.: An adaptive monte carlo algorithm for computing mixed logit estimators. Comput. Manag. Sci. 3(1), 55-79 (2006)
    • (2006) Comput. Manag. Sci. , vol.3 , Issue.1 , pp. 55-79
    • Bastin, F.1    Cirillo, C.2    Toint, P.L.3
  • 4
    • 85014561619 scopus 로고    scopus 로고
    • A fast iterative shrinkage-thresholding algorithm for linear inverse problems
    • Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183-202 (2009)
    • (2009) SIAM J. Imaging Sci. , vol.2 , Issue.1 , pp. 183-202
    • Beck, A.1    Teboulle, M.2
  • 5
    • 0016948909 scopus 로고
    • On the Goldstein-Levitin-Poljak gradient projection method
    • Bertsekas, D.P.: On the Goldstein-Levitin-Poljak gradient projection method. IEEE Trans. Autom. Control AC-21, 174-184 (1976)
    • (1976) IEEE Trans. Autom. Control , vol.AC-21 , pp. 174-184
    • Bertsekas, D.P.1
  • 6
    • 85162035281 scopus 로고    scopus 로고
    • The tradeoffs of large scale learning
    • In: Platt, J., Koller, D., Singer, Y., Roweis, S. (eds.) MIT Press, Cambridge, MA
    • Bottou, L., Bousquet, O. : The tradeoffs of large scale learning. In: Platt, J., Koller, D., Singer, Y., Roweis, S. (eds.) Advances in Neural Information Processing Systems, vol. 20, pp. 161-168. MIT Press, Cambridge, MA (2008)
    • (2008) Advances in Neural Information Processing Systems , vol.20 , pp. 161-168
    • Bottou, L.1    Bousquet, O.2
  • 7
    • 80054732060 scopus 로고    scopus 로고
    • On the use of stochastic Hessian information in unconstrained optimization
    • Byrd, R., Chin, G.M., Neveitt,W., Nocedal, J.: On the use of stochastic Hessian information in unconstrained optimization. SIAM J. Optim. 21(3), 977-995 (2011)
    • (2011) SIAM J. Optim. , vol.21 , Issue.3 , pp. 977-995
    • Byrd, R.1    Chin, G.M.2    Neveitt, W.3    Nocedal, J.4
  • 8
    • 0026136104 scopus 로고
    • A globally convergent augmented Lagrangian algorithm for optimizationwith general constraints and simple bounds
    • Conn, A.R., Gould, N.I.M., Toint, P.L.: A globally convergent augmented Lagrangian algorithm for optimizationwith general constraints and simple bounds. SIAM J.Numer.Anal. 28(2), 545-572 (1991)
    • (1991) SIAM J.Numer.Anal. , vol.28 , Issue.2 , pp. 545-572
    • Conn, A.R.1    Gould, N.I.M.2    Toint, P.L.3
  • 9
    • 15544385032 scopus 로고    scopus 로고
    • Projected Barzilai-Borwein methods for large-scale box-constrained quadratic programming
    • Dai, Y., Fletcher, R.: Projected Barzilai-Borwein methods for large-scale box-constrained quadratic programming. Numerische Mathematik 100(1), 21-47 (2005)
    • (2005) Numerische Mathematik , vol.100 , Issue.1 , pp. 21-47
    • Dai, Y.1    Fletcher, R.2
  • 11
    • 46749143789 scopus 로고    scopus 로고
    • Variable-number sample-ath optimization
    • Deng, G., Ferris, M.C.: Variable-number sample-ath optimization. Math. Program. 117(1-2), 81-109 (2009)
    • (2009) Math. Program. , vol.117 , Issue.1-2 , pp. 81-109
    • Deng, G.1    Ferris, M.C.2
  • 12
    • 0029307534 scopus 로고
    • De-noising by soft-thresholding
    • Donoho, D.: De-noising by soft-thresholding. Inf. Theory IEEE Trans. 41(3), 613-627 (1995)
    • (1995) Inf. Theory IEEE Trans. , vol.41 , Issue.3 , pp. 613-627
    • Donoho, D.1
  • 14
    • 75249102673 scopus 로고    scopus 로고
    • Efficient online and batch learning using forward backward splitting
    • Duchi, J., Singer, Y.: Efficient online and batch learning using forward backward splitting. J. Mach. Learn. Res. 10, 2899-2934 (2009)
    • (2009) J. Mach. Learn. Res. , vol.10 , pp. 2899-2934
    • Duchi, J.1    Singer, Y.2
  • 15
    • 39449126969 scopus 로고    scopus 로고
    • Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems
    • Figueiredo, M., Nowak, R., Wright, S.: Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems. IEEE J. Sel. Top. Signal Process. 1(4), 586-597 (2007)
    • (2007) IEEE J. Sel. Top. Signal Process. , vol.1 , Issue.4 , pp. 586-597
    • Figueiredo, M.1    Nowak, R.2    Wright, S.3
  • 18
    • 34249008073 scopus 로고    scopus 로고
    • A new active set algorithm for box constrained optimization
    • Hager, W.W., Zhang, H.: A new active set algorithm for box constrained optimization. SIOPT 17(2), 526-557 (2007)
    • (2007) SIOPT , vol.17 , Issue.2 , pp. 526-557
    • Hager, W.W.1    Zhang, H.2
  • 19
    • 0346902109 scopus 로고    scopus 로고
    • Variable-sample methods for stochastic optimization
    • Homem-de-Mello, T.:Variable-sample methods for stochastic optimization.ACMTrans.Model. Comput. Simul. 13(2), 108-133 (2003)
    • (2003) ACMTrans.Model. Comput. Simul. , vol.13 , Issue.2 , pp. 108-133
    • Homem-de-Mello, T.1
  • 20
    • 0036013019 scopus 로고    scopus 로고
    • The sample average approximation method for stochastic discrete optimization
    • Kleywegt, A.J., Shapiro, A., Homem-de-Mello, T.: The sample average approximation method for stochastic discrete optimization. SIAM J. Optim. 12(2), 479-502 (2001)
    • (2001) SIAM J. Optim. , vol.12 , Issue.2 , pp. 479-502
    • Kleywegt, A.J.1    Shapiro, A.2    Homem-de-Mello, T.3
  • 21
    • 0033436056 scopus 로고    scopus 로고
    • Newton's method for large bound-constrained optimization problems
    • Lin, C., Moré, J. et al.: Newton's method for large bound-constrained optimization problems. SIAM J. Optim. 9(4), 1100-1127 (1999)
    • (1999) SIAM J. Optim. , vol.9 , Issue.4 , pp. 1100-1127
    • Lin, C.1    Moré, J.2
  • 23
    • 65249121279 scopus 로고    scopus 로고
    • Primal-dual subgradient methods for convex problems
    • doi:10.1007/s10107-007-0149-x
    • Nesterov, Y.: Primal-dual subgradient methods for convex problems. Math. Program. 120(1), 221-259 (2009). doi:10.1007/s10107-007-0149-x
    • (2009) Math. Program. , vol.120 , Issue.1 , pp. 221-259
    • Nesterov, Y.1
  • 25
    • 0026899240 scopus 로고
    • Acceleration of stochastic approximation by averaging
    • Polyak, B., Juditsky, A.: Acceleration of stochastic approximation by averaging. SIAM J. Control Optim. 30, 838 (1992)
    • (1992) SIAM J. Control Optim. , vol.30 , pp. 838
    • Polyak, B.1    Juditsky, A.2
  • 26
    • 0001931644 scopus 로고
    • The conjugate gradient method in extremal problems
    • Polyak, B.T.: The conjugate gradient method in extremal problems. USSR Comput.Math.Math. Phys. 9, 94-112 (1969)
    • (1969) USSR Comput. Math. Math. Phys. , vol.9 , pp. 94-112
    • Polyak, B.T.1
  • 27
    • 0000016172 scopus 로고
    • A stochastic approximation method
    • Robbins, H., Monro, S.: A stochastic approximation method. Ann. Math. Stat. 22(3), 400-407 (1951)
    • (1951) Ann. Math. Stat. , vol.22 , Issue.3 , pp. 400-407
    • Robbins, H.1    Monro, S.2
  • 28
    • 0001762682 scopus 로고    scopus 로고
    • A simulation-based approach to two-stage stochastic programming with recourse
    • Shapiro, A., Homem-de-Mello, T.: A simulation-based approach to two-stage stochastic programming with recourse. Math. Program. 81, 301-325 (1998)
    • (1998) Math. Program. , vol.81 , pp. 301-325
    • Shapiro, A.1    Homem-de-Mello, T.2
  • 29
    • 0034550507 scopus 로고    scopus 로고
    • On the rate of convergence of optimal solutions of monte carlo approximations of stochastic programs
    • Shapiro, A., Homem-de-Mello, T.: On the rate of convergence of optimal solutions of monte carlo approximations of stochastic programs. SIAM J. Optim. 11(1), 70-86 (2000)
    • (2000) SIAM J. Optim. , vol.11 , Issue.1 , pp. 70-86
    • Shapiro, A.1    Homem-de-Mello, T.2
  • 30
    • 0030204613 scopus 로고    scopus 로고
    • Convergence of stochastic algorithms
    • Shapiro, A.,Wardi, Y.: Convergence of stochastic algorithms.Math. Oper. Res. 21(3), 615-628 (1996)
    • (1996) Math. Oper. Res. , vol.21 , Issue.3 , pp. 615-628
    • Shapiro, A.1    Wardi, Y.2
  • 33
    • 67650178787 scopus 로고    scopus 로고
    • Sparse reconstruction by separable approximation
    • Wright, S., Nowak, R., Figueiredo, M.: Sparse reconstruction by separable approximation. Signal Process. IEEE Trans. 57(7), 2479-2493 (2009)
    • (2009) Signal Process. IEEE Trans. , vol.57 , Issue.7 , pp. 2479-2493
    • Wright, S.1    Nowak, R.2    Figueiredo, M.3
  • 34
    • 78649396336 scopus 로고    scopus 로고
    • Dual averaging methods for regularized stochastic learning and online optimization
    • Xiao, L.: Dual averaging methods for regularized stochastic learning and online optimization. J. Mach. Learn. Res. 9999, 2543-2596 (2010)
    • (2010) J. Mach. Learn. Res. , vol.9999 , pp. 2543-2596
    • Xiao, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.