메뉴 건너뛰기




Volumn 21, Issue 3, 2011, Pages 977-995

On the use of stochastic hessian information in optimization methods for machine learning

Author keywords

Machine learning; Stochastic optimization; Unconstrained optimization

Indexed keywords

CURVATURE INFORMATION; LIMITED MEMORY; MACHINE LEARNING APPLICATIONS; NEWTON ITERATIONS; OPTIMIZATION METHOD; QUASI-NEWTON METHODS; SAMPLE AVERAGE APPROXIMATION; SAMPLE SIZES; STATISTICAL LEARNING; STOCHASTIC OPTIMIZATION; STOCHASTIC OPTIMIZATIONS; SUPERVISED MACHINE LEARNING; UNCONSTRAINED OPTIMIZATION;

EID: 80054732060     PISSN: 10526234     EISSN: None     Source Type: Journal    
DOI: 10.1137/10079923X     Document Type: Article
Times cited : (271)

References (17)
  • 1
    • 0013309537 scopus 로고    scopus 로고
    • Online learning and stochastic approximations
    • Cambridge University Press, Cambridge
    • L. BOTTOU, Online learning and stochastic approximations, in Online Learning and Neural Networks, Vol. 17, Cambridge University Press, Cambridge, 1998, pp. 9-42.
    • (1998) Online Learning and Neural Networks , vol.17 , pp. 9-42
    • Bottou, L.1
  • 3
    • 77954919141 scopus 로고    scopus 로고
    • Linear and nonlinear optimization
    • 2nd ed., Philadelphia
    • I. GRIVA, S. G. NASH, AND A. SOFER, Linear and Nonlinear Optimization, 2nd ed., SIAM, Philadelphia, 2008.
    • (2008) SIAM
    • Griva, I.1    Nash, S.G.2    Sofer, A.3
  • 4
    • 77951160087 scopus 로고    scopus 로고
    • A quasi-Newton approach to nonsmooth convex optimization problems in machine learning
    • J. YU, S. V. N VISHWANATHAN, S. GÜNTER, AND N. N. SCHRAUDOLPH, A quasi-Newton approach to nonsmooth convex optimization problems in machine learning, J. Mach. Learn. Res., 11 (2010), pp. 1145-1200.
    • J. Mach. Learn. Res. , vol.11 , Issue.2010 , pp. 1145-1200
    • Yu, J.1    Vishwanathan, S.V.N.2    Günter, S.3    Schraudolph, N.N.4
  • 5
    • 44649088319 scopus 로고    scopus 로고
    • Trust region newton method for logistic regression
    • C. J. LIN, R. C. WENG, AND S. S. KEERTHI, Trust region Newton method for logistic regression, J. Mach. Learn. Res., 9 (2008), pp. 627-650.
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 627-650
    • Lin, C.J.1    Weng, R.C.2    Keerthi, S.S.3
  • 6
    • 33646887390 scopus 로고
    • On the limited memory BFGS method for large scale optimization
    • D. C. LIU AND J. NOCEDAL, On the limited memory BFGS method for large scale optimization, Math. Program., 45 (1989), pp. 503-528. (Pubitemid 20660315)
    • (1989) Mathematical Programming, Series B , vol.45 , Issue.3 , pp. 503-528
    • Liu Dong, C.1    Nocedal Jorge2
  • 11
    • 0021481124 scopus 로고
    • Newton-type minimization via the Lanczos method
    • S. G. NASH, Newton-type minimization via the Lanczos method, SIAM J. Numer. Anal., 21 (1984), 770-788.
    • (1984) SIAM J. Numer. Anal. , vol.21 , pp. 770-788
    • Nash, S.G.1
  • 13
    • 0000016172 scopus 로고
    • A stochastic approximation method
    • H. ROBBINS AND S. MONRO, A stochastic approximation method, Ann. Math. Statist., 22 (1951), pp. 400-407.
    • (1951) Ann. Math. Statist. , vol.22 , pp. 400-407
    • Robbins, H.1    Monro, S.2
  • 16
    • 0001762682 scopus 로고    scopus 로고
    • A simulation-based approach to two-stage stochastic programming with recourse
    • PII S0025561097000725
    • A. SHAPIRO AND T. HOMEM-DE-MELLO, A simulation-based approach to two-stage stochastic programming with recourse, Math. Program., 81 (1998), pp. 301-325. (Pubitemid 128393283)
    • (1998) Mathematical Programming, Series B , vol.81 , Issue.3 , pp. 301-325
    • Shapiro, A.1    Homem-de-Mello, T.2
  • 17
    • 0000305846 scopus 로고
    • The conjugate gradient method and trust regions in large scale optimization
    • T. STEIHAUG, The conjugate gradient method and trust regions in large scale optimization, SIAM J. Numer. Anal., 20 (1983), pp. 626-637.
    • (1983) SIAM J. Numer. Anal. , vol.20 , pp. 626-637
    • Steihaug, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.